1t ILLINOIS

Brief run-through
of Workshop 1

In this tutorial:
* Login to nanoHUB
e Steps to follow the workshop

Aagam Shah, Darren Adams,
Sameh Tawfick, Elif Ertekin

University of lllinois at
Urbana-Champaign

Step 1: Login/Sign up to nanoHUB

- C @ nanohuborg * ® 0 Q@ He O

ﬁnanoHUB RESOURCES EXPLORE NANOHUB-U PARTNERS COMMUNITY ABOUT SUPPORT DONATE Login Sign Up [Help Search

Serving Students,

Researchers & Instructors

1.9 Million Annual Visitors 17,000 Simulation Users

x o

o
Model & Simulate Learn & Teach Develop Software Share &Pt ¢ 5 ¢ & nohuborgregist # 0 QD HEO O

R R RE RCE ﬁnanoHUB RESOURCES EXPLORE NANOHUB-U PARTNERS COMMUNITY ABOUT SUPPORT DONATE Login SignUp Help Search

Create New Account

CONNECT WITH

MM With an affiliated institution:

n Sign in with Facebook

Sign in with Google

|

in with Linkedin

Step 2: View presentation slides for template
matching

Unsupervised Template Matching
CIuSterlng methOdS Idea: select area that looks like

L4 .t e .
graphene and screen for similar looking
for image o
31 » Step 1: Select the “template” , flatten
Segmentatl()ln and vectorize it.

applicatiOn tO . 'So}gtp 2: Plot it on the intensity vector]Flaﬁen
scanning electron g

tflle template on the intensity vector
plot

microscopy images
of graphene e g |

not, then “not graphene”.

Pixel Intensity

Parameters:
Aagam Shah, Darren Adams, * Iemplate; position
Sameh Tawfick, Elif Ertekin Iemplate:size

Threshold (or distance)

of Illir

Step 3: Launch imagesegment tool on nanoHUB

* From your browser, go to the link: https://nanohub.org/tools/imagesegment

SEM Image Segmentation Workshop

nvFick, E. Ertekin

Click on Launch Tool to begin

https://nanohub.org/tools/imagesegment

Step 4: Navigate to the Template Matching
Jupyter notebook

Machine Learning for SEM Image Segmentation in Materials Science

Scanning electron microscopy (SEM) images are typically used to observe the growth resulis of a synthesis experiment, such as areal coverage, nucleation density, and the
shape, size, and quality of graphene domains. While the visual inspection of images can sometimes be sufficient to determine the quality of graphene, it is desirable to
determine quantitative metrics as well. Quantitative metrics can provide for easier comparison between experimental resulits and are useful as response variables when
attempting to predict optimal recipes. To calculate these metrics, we need to segment the image and each pixel needs to be classified as "‘graphene’ or ‘not-graphene'.

The tutorials here will give you an insight into the usage of machine learning to segment microscopy images.

+ Get started: Click on the links below to begin each tutorial.
« Important: To exit individual tutorials and return to this page, use File -> Close and Halt . "Terminate Session” (top right) will kill your entire Jupyter session.

Template Matching: | < Click on this link

* Use template maiching to segment a microscopy image of graphene on copper
* See the effecis of changing the variables - ROl size, threshold and statistical technique

K-Means Clustering;

* Use K-Means Clustering to segment a microscopy image of graphene on copper
* See the effects of changing the variables - window size, stride and number of clusters

Step 5: Execute each cell in the Template
Matching Jupyter notebook

%}rﬁnanoHUB ’ 'Jupyter TemplatefMatohing (read only) ? Submit a ticket

File Edit View Insert Cell Kernel Widgets Help Snippets Trusted

+ 5 o0 2 v] i et Click this button to run a cell or
press Shift-Enter on the keyboard

Machine Learning for SEM Image Segmentation in Materials Science

Using template matching fo segment microscopy images

Template matching is a quick method to segment microscopy images. Although it requires considerable human input, it is very versatile and reliable.

In this tutorial you will learn how to implement template matching and use it to segment a scanning electron microscopy image of graphene on a substrate.
Outline:

1. Import image

2. Define parameters

3. Match template

4. See effects of varying parameters

Get started: Click "Shift-Enter" to run the code in each cell.

Let's begin

We will first import the relevant Python libraries.

In []: # import all relevant Libraries

Note: Slide 7 and 8 show the steps in the Template Matching Jupyter notebook

Step 5.1: Import relevant packages
and display the image

fifnancius " Jupyter Template_Matching (ead ony)

File Ediit

+| =@
In [1]
In [2]

View Insert Cell Kernel Widgets Help Snippets

B 4 4 MARun B C | W Markdown v = | X Appmode | il Validate

Let's begin

We will first import the relevant Python libraries.
import all relevant libraries

import numpy as np

import matplotlib.pyplot as plt
import cv2 # this is the computer vision library that allows us to perform template matching

Import the image

Now, we import the image as a numpy n-dimensional array and display the image and its resolution.

img_gray = cv2.imread('../data/test template.tif', @) # import the grayscale image as an ndarray
imgplot = plt.imshow(img_gray, cmap='gray') # display the raw image

0

600
800

1000 TV -
400 600 800 1000 1200

Step 5.2: Define the parameters and view
the template

finenorus . Jupyter Template_Matohing (ead any

File Edit View Insert Cell Kernel Widgets Help Snippets
+ & & B A % MR B C W Markdown v | = || X Appmode | il | Validate
Define the parameters
We define all the parameters that we can change.
In [3]: template size = 20 # define the side Length of the template
threshold = 0.25 # define the threshold
template_posn = [275,500] # define the position of the template
In [4]: | ## NOTE: THIS CELL IS NOT REQUIRED IN THE SEGMENTATION PROCESS. IT IS ONLY FOR VISUAL AID.

Vview the template in the image
img_rgb = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2BGR) # convert the image from grayscale to RGB
add the rectangle to show the template
cv2.rectangle(img_rgb, (template posn[1],template_posn[@]), (template_ posn[1]+template_size,template_posn[@]+template size), (255,0,0), 2)
imgplot = plt.imshow(img_rgb) # display the image with the template marked
B s
200 48
400
600

800

1000

1000 1200

Step 5.4: See the effects of varying the

Step 5.3: Match the template and
parameters

apply a binary filter

difnanohus . Jupyter Template_Matching (eadoniy) fifnencHus . JUpyter Template_Matching (eadoniy)

Help Snippets

File Edit View nsert Gell Kerme! Widgets Help Snippets File Edit View nsert Cell Keme! Wi

B 4+ 3% A B 4 ¥ MR B C W uarown v | @ | X Appmoce | lal || Validate B+ 3 A B 4 ¥ MR B C B Coe v = RAppmode LWl Validae

Varying_the parameters

Maich template
Now, we maich the template to each tile in the image. The maichTemplate function returns an ndarray that can be interpretated as the degree of similarity Now, we vary the template size and the threshold and see how it affects our result

In [8]: # define a function that does the template matching and returns a binary filtered array

In [6]: res = cv2.matchTemplate(img_gray, template, cv2.TM_SQDIFF_NORMED)
def temp_match(roi_size, threshold, template_posn):

res_plot = plt.imshow(res, cmap="gray') # display the match percentages as a heat map i .. L.
template = img_gray[template pesn[@]:template_posn[@]+roi_size,template posn[1]:template posn[1]+roi size]
- res = cv2.matchTemplate(img gray, template, cv2.TM_SQDIFF_HORMED)
. - simple_mask = np.uhere(res<=threshold, 1, @)

return simple_mask

400
Vary the template size:

600 { See the difference between having an template size of 10, 20 and 30 pixels.

In [9]: size = [10, 20, 38]
t = 0.25
posn = [275,566]

800

1000

fig, ax = plt.subplots(ncols=4, nrows=1, figsize=(20,5))
for iter, roi in enumerate(size):
In [7]: simple_mask = np.where(res<=threshold, 1, @) # apply a binary filter mask=temp_match(roi, t, posn)
ax[iter].imshow(mask, cmap='gray’);

ax[iter].set_title(Template Size = %i' %roi)
ax[3].imshow(img_gray, cmap='gray')
o ax[3].set_title('original’)
00 Out[9]: Text(@.5, 1.8, 'original’)

Template Size = 20 Template Size = 3 ginal

400
200
€00
400
800
800

1000

400 600 800 1000 1200 800

Step 6: View presentation slides for template
mathcing

K-Means: Pre-processing K-Means (unsupervised clusterlng
method)

* Advantages:
* No need to select template or threshold
¢ Fast, memory efficient

* Recall preprocessing: We
divide the image into
tiles, flatten them to
make pixel intensity
vectors and plot the
vectors on high
dimensional graph

¢ In k-means, we also
control the number of
pixels moved between
two tiles (stride length)

°

Flatten

* Drawbacks:

.:-m[-.:.] * Need to select number of centroids

V =Py, e, Dy) (clusters)
‘ ¢ Can suffer from concaveshaped blobs

Set of all
intensity vectors

I={v;,..,v,}

Step 7: Return to the imagesegment tool on
nanoHUB

* In case you closed the tool, go to the link: https://nanohub.org/tools/imagesegment

SEM Image Segmentation Workshop

/ Edit

Click on Launch Tool to begin

https://nanohub.org/tools/imagesegment

Step 8: Navigate to the K-Means Clustering
Jupyter notebook

Machine Learning for SEM Image Segmentation in Materials Science

Scanning electron microscopy (SEM) images are typically used to observe the growth resulis of a synthesis experiment, such as areal coverage, nucleation density, and the
shape, size, and quality of graphene domains. While the visual inspection of images can sometimes be sufficient to determine the quality of graphene, it is desirable to
determine quantitative metrics as well. Quantitative metrics can provide for easier comparison between experimental resulits and are useful as response variables when
attempting to predict optimal recipes. To calculate these metrics, we need to segment the image and each pixel needs to be classified as "‘graphene’ or ‘not-graphene'.

The tutorials here will give you an insight into the usage of machine learning to segment microscopy images.

+ Get started: Click on the links below to begin each tutorial.
« Important: To exit individual tutorials and return to this page, use File -> Close and Halt . "Terminate Session” (top right) will kill your entire Jupyter session.

Template Matching:

* Use template maiching to segment a microscopy image of graphene on copper
* See the effecis of changing the variables - ROl size, threshold and statistical technique

K-Means Clustering: | < Click on this link

* Use K-Means Clustering to segment a microscopy image of graphene on copper
* See the effects of changing the variables - window size, stride and number of clusters

Step 9: Execute each cell in the K-Means
Clustering Jupyter notebook

ﬁna noHUB

Edi

s &

n []:

~ jupyter K-Means (eadaniy)

View Insert Gell Kemel Widgets Help Snippets

IS *I"HHHILAF B S & il
<

Machine Learning for SEM Image Segmentation in Materials Science

Using K-Means clustering fo segment microscopy images

K-Means is a relatively quick and memory efficient method to cluster images. There is no need 1o select any template or threshald.

I this tutorial will Iearn how to implement k-means clustering and use these 10 segment a scanning electron microscopy image of graphene on asubstrate
Outline:

1. Import image

2. Define parameters

3. Pre-process image

4. Run the method

5. Post-process the fitted data

6. See effects of varying paramsters

Get started: Click "Shift-Enter” to run the code in each cell.

Let's begin

We will first im port the KMeans and MiniBaichKMeans libraries, along with other relevant Python libraries

import all releu
import numpy as np
from PIL import Image

import matplotlib.pyplot as plt

from skimage import util

from sklearn.cluster import KMeans, MiniBatchKMeans

Import the image

Now, we import the image as & numpy n-dimensional array and display the image and s resolution

Click this button to run a cell or
press Shift-Enter on the keyboard

Note: Slide 13 to 15 show the steps in the K-Means Clustering Jupyter notebook

File Edit View nsert Cell Keme

Step 9.1: Import relevant packages
and display the image

T jupyter K-Means (eadoniy)

Help Snippels

+ 3 & B 4+ ¥ MHRun B C W Markdown v lwd || ¥ Appmode | Validate

Let's begin

We will first impaort the KMeans and MiniBaichKMeans libraries, along with ather relevant Python libraries.

In [1]: # import all relevant
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from skimage import util
from sklearn.cluster import KMeans, MiniBatchKMeans

Import the image

MNow, we import the image as a numpy n-dimensional array and display the image and its resolution

In [2]: img_in = np.array(Image.open(’../data/test_kmeans2.tif').convert('L')) # import the grayscale image as an array

print(“Resolution of Image: ", img_in.shape)
img_plot = plt.imshow(img_in, cmap='gray') #

resolution of the image

Resolution of Image: (1024, 123@)

0

1000 1200

Step 9.2: Define the parameters

T Jupyter K-Means (eadoniy)
Edit View nsert Cell Keme Widgets ~ Help Snippets

& A B 4 % MHAum B C B Codke v

X Apprmode | Validate

Define the parameters

We define all the parameters that we can change

In [3]: wsize = 3@ e the low size in pixels. f the tiles
n_clusters = 5 e the number of clusters. Thi .
stride = 3 # e the stride Llengt his is d right or down between two files.
seed = 197208 # ea ndom seed which will be v ital positien of the centroids.

This can be any random

integer.

Step 9.3: Run the model and note the
difference in computation time

::' Ju pyter K-Means (read only)

File Edit View nzert Cell Kerne Widgets Help Snippets

B+ 3 @ B 4+ ¥ HRun B C MW Caode v Ll | ¥ Appmode | Validate

Run the model

We define the standard and mini-batch k-means models and fit them to our data.

In [6]: kmeans = KMeans(
n_clusters=n_clusters,
random_state=seed) # create a KMeans object which

5
[}
=1
+
i~
3
s
+
o
m
5
m
+
-
&
o

%time kmeans = kmeans.fit{X) # fit the model to our pre-processed image data

CPU times: user 12min 9s, sys: 57.4 s, total: 13min 7s
Wall time: 52.9 s

In [7]: mb_kmeans = MiniBatchKMeans(
n_clusters=n_clusters,
random_state=seed) # create a MiniBatchKMeans object which contains the method

%time mb_kmeans = mb_kmeans.fit(X) # fit the model to our pre-processed image data

Note the difference in time between KMeans and MiniBatchKMeans

CPU times: user 14.4 s, sys: 2.72 s, total: 17.1 s
Wall time: 2.22 s

Step 9.4: Display the results

lfnanoHus . Jupyter K-Means (eadony)

ile Edit View Insert Cell Keme Wi

B |+ @& B4+ ¥ MHRun B C|» | GCocke v = | X Appmode | Validate

Plot the segmented images

In [*]: fig, ax = plt.subplots(nrows=1,ncols=3, figsize=(18,6)) # create a figure with sub-plots

show the images segemented by KMeans and MiniBatchKMeans res
ax[@].imshow(clusters, cmap='gray');
ax[1].imshow(mod_mb_clusters, cmap='gray');
ax[2].imshow(img_in, cmap='gray')

Label the images
ax[0].set_title('KMeans')
ax[1].set_title('MiniBatchKMeans")
ax[2].set_title('Original’)

Out[1@]: Text(@.5, 1.0, 'Original’)

Original

200
w00
w;? S u‘ s 600
800

1000 1000

1000 1200 1200

Step 9.5: See the effects of varying the
parameters

' Jupyter K-Means (eadoniy

(o} nanoHUB
B+ 3 B 4 % MHawm B C » coe MR Validate
Vary the number of clusters:
See the difference between having 2, 5 and B clusters. Note the differences in the tine taken 1o execute the segmentation
In [*]: wsize = 38
nclusters = [2, 5, 8]
stride = 3

seed = 1

flgsize=(20,5))

ig, ax = plt.subplots(ncols=4, nrow

for iter, ncl in enumerate(nclusters):
%time mb_cluster=mbkmeans(ncl,seed,stride,usize)
ax[iter].imshow(mb_cluster, cmap='gray’);
ax[iter].set_title(# clust - % ncl)

ax[3].imshow(img_in, cmap='

ax[3].set_title(c al’)

CPU times: user 11.3 s, sys: 2.06 s, total: 13.3 s

Wall time: 1.64 s
CPU times: user 12.7 s, sys: 2.29 s, total: 15
Wall time: 1.6 s

CPU times: user 13.6 s, sys: 2.53 s, total: 16.2 s
Wall time: 1.69 s

Text(0.5, 1.8, ‘original’)
original

clusters

clusters

20 400 600

Other resources:

Control

* Visit https://nanohub.org/tools/gsaimage to use a
software that performs these functions. You can
upload your own image and use the same functions.

* For questions, please write to aagam2@illinois.edu

https://nanohub.org/tools/gsaimage
mailto:aagam2@illinois.edu

