The Nanophotonics Challenge: Simulating Bioinspired Nanophotonic Structures

Enas Sakr, Jie Zhu, and Peter Bermel

What Gives the Morpho Butterfly Its Magnificent Blue?

https://www.youtube.com/watch?v=29Ts7CsJDpg

Morpho wing scales

M. rhetenor

The Challenge: Can we reproduce the effect using simulations?

Understanding light waves The electromagnetic spectrum

http://hyperphysics.phy-astr.gsu.edu/hbase/ems3.html

Understanding light waves

https://micro.magnet.fsu.edu/primer/java/electromagnetic/index.html

EM-optics governed by Maxwell's equations

A collection of equations describing relations **between time-varying** electric fields and magnetic fields and their **behavior at interfaces**

James Clerk Maxwell (1831 - 1879)Scottish physicist & mathematician

Propagation direction

Understanding light waves

https://micro.magnet.fsu.edu/primer/java/electromagnetic/index.html

EM-optics governed by Maxwell's equations

A collection of equations describing relations **between time-varying** electric fields and magnetic fields and their **behavior at interfaces**

James Clerk Maxwell (1831 - 1879)Scottish physicist & mathematician

Propagation direction

Light behavior at interfaces

http://www.differencebetween.net/science/difference-between-reflection-and-refraction/

Diffraction

EM Simulation

Do I have to solve Maxwell's equations?!

EM Simulation

Do I have to solve Maxwell's equations?!

- With a solver you can!
- Define your structure's dimensions and involved materials.
- Define your incident wave parameters.
- Use an EM simulation tool to solve Maxwell's equations in your structure. Define all simulation parameters.

EM Simulation

Do I have to solve Maxwell's equations?!

- With a solver you can!
- Define your structure's dimensions and involved materials.
- Define your incident wave parameters.
- Use an EM simulation tool to solve Maxwell's equations in your structure. Define all simulation parameters.

Yes and No!

I. Gauss' law for electricity	$7 \cdot \mathbf{D} = \boldsymbol{\rho}$	(Diver	gence)
	$\mathbf{D} = \boldsymbol{\varepsilon}_0$	E Free	space
	D=EF	Isotr diele	opic linear ctric
II. <u>Gauss' law for magnetism</u>	$\nabla \cdot \mathbf{B} = 0$)	
III. <u>Faraday's law of induction</u>	$\nabla \times \mathbf{E} =$	$\frac{\partial \mathbf{B}}{\partial t}$	(Curl)
IV. <u>Ampere's law</u> $\nabla \times \mathbf{F}$	$\mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	-	
	$\mathbf{B} = \mu_0 \mathbf{H}$	Free	space
	Β =μ H	Isotr magi	opic linear 1etic mediu

1. Diverging E-fields relate to charges (bound and free) ρ **D:** Electric displacement vector E: Electric field vector

Free-space electric permitvitty

 $\varepsilon_0 = \frac{10^{-9}}{36\pi} \,\mathrm{F/m}$

Free-space magnetic permeability

I. Gauss' law for electricity	$\nabla \cdot \mathbf{D} = \boldsymbol{\rho}$	(Diver	gence)
	$\mathbf{D} = \boldsymbol{\varepsilon}_0^T$ $\mathbf{D} = \boldsymbol{\varepsilon} \mathbf{E}$	E Free Isotr diele	space opic linear ctric
II. <u>Gauss' law for magnetism</u>	$\nabla \cdot \mathbf{B} = 0$)	
III. <u>Faraday's law of induction</u>	$\nabla \times \mathbf{E} =$	$\frac{\partial \mathbf{B}}{\partial t}$	(Curl)
IV. <u>Ampere's law</u> $\nabla \times$]	$\mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	-	
	$\mathbf{B} = \mu_0 \mathbf{F}$	Free	space
	$\mathbf{B} = \mu \mathbf{H}$	Isotro magr	opic linear 1etic mediun

- 1. Diverging E-fields relate to charges (bound and free) ρ **D:** Electric displacement vector E: Electric field vector
- 2. Diverging **B** (magnetic flux density) doesn't exist

Free-space electric permitvitty

$$\varepsilon_0 = \frac{10^{-9}}{36\pi} \, \mathrm{F/m}$$

Free-space magnetic permeability

I. Gauss' law for electricity	$\nabla \cdot \mathbf{D} = \rho$	(Diver	gence)
	$\mathbf{D} = \boldsymbol{\varepsilon}_0^T$ $\mathbf{D} = \boldsymbol{\varepsilon} \mathbf{E}$	E Free J Isotr diele	space opic linear ctric
II. <u>Gauss' law for magnetism</u>	$\nabla \cdot \mathbf{B} = 0$)	Ciric
III. <u>Faraday's law of inductio</u>	$\nabla \times \mathbf{E} =$	$\frac{\partial \mathbf{B}}{\partial t}$	(Curl)
IV. <u>Ampere's law</u> $ abla imes$	$\mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	-	
	$\mathbf{B} = \mu_0 \mathbf{F}$	Free	space
	$\mathbf{B} = \mu \mathbf{H}$	Isotro magr	opic linear 1etic medium

- 1. Diverging E-fields relate to charges (bound and free) ρ **D:** Electric displacement vector E: Electric field vector
- 2. Diverging **B** (magnetic flux density) doesn't exist
- 3. Rotating E-fields are related to changing 'magnetic fields'

Free-space electric permitvitty

$$\varepsilon_0 = \frac{10^{-9}}{36\pi} \, \mathrm{F/m}$$

Free-space magnetic permeability

I. Gauss' law for electricity	$\nabla \cdot \mathbf{D} = \boldsymbol{\rho}$	(Divergence)
	$\mathbf{D} = \boldsymbol{\varepsilon}_0^{I}$ $\mathbf{D} = \boldsymbol{\varepsilon} \mathbf{E}$	E Free space Isotropic linear
II. <u>Gauss' law for magnetism</u>	$\nabla \cdot \mathbf{B} = 0$	dielectric
III. <u>Faraday's law of inductio</u>	$\nabla \times \mathbf{E} =$	$-\frac{\partial \mathbf{B}}{\partial t}$ (Curl)
IV. <u>Ampere's law</u> $ abla imes$	$\mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	
	$\mathbf{B} = \mu_0 \mathbf{H}$	Free space
	B=µH	Isotropic linear magnetic medium

- 1. Diverging E-fields relate to charges (bound and free) ρ **D:** Electric displacement vector E: Electric field vector
- 2. Diverging **B** (magnetic flux density) doesn't exist
- 3. Rotating E-fields are related to changing 'magnetic fields'
- 4. Rotating **B** relates to changing E and 'displacement' currents' H: Magnetic field vector

Free-space electric permitvitty

$$\varepsilon_0 = \frac{10^{-9}}{36\pi} \, \mathrm{F/m}$$

Free-space magnetic permeability

I. Gauss' law for electricity	$\nabla \cdot \mathbf{D} = \boldsymbol{\rho}$	(Divergence)
	$\mathbf{D} = \boldsymbol{\varepsilon}_0^{I}$ $\mathbf{D} = \boldsymbol{\varepsilon} \mathbf{E}$	E Free space Isotropic linear
II. <u>Gauss' law for magnetism</u>	$\nabla \cdot \mathbf{B} = 0$	dielectric
III. <u>Faraday's law of inductio</u>	$\nabla \times \mathbf{E} =$	$-\frac{\partial \mathbf{B}}{\partial t}$ (Curl)
IV. <u>Ampere's law</u> $ abla imes$	$\mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	
	$\mathbf{B} = \mu_0 \mathbf{H}$	Free space
	B=µH	Isotropic linear magnetic medium

- 1. Diverging E-fields relate to charges (bound and free) ρ **D:** Electric displacement vector E: Electric field vector
- 2. Diverging **B** (magnetic flux density) doesn't exist
- 3. Rotating E-fields are related to changing 'magnetic fields'
- 4. Rotating **B** relates to changing E and 'displacement' currents' H: Magnetic field vector

Free-space electric permitvitty

$$\varepsilon_0 = \frac{10^{-9}}{36\pi} \, \mathrm{F/m}$$

Free-space magnetic permeability

 $\mu_0 = 4\pi \times 10^{-7} \, \text{H/m}$

.

Ellingson, Steven. *Electromagnetics Volume 1*. Virginia Tech Libraries, 2018

In a source free medium: Combining Equations (III) and (IV), playing around with some vector calculus and substituting by Equation (I) $(\rho \text{ and } \mathbf{J} = 0)$

 ∇

In a source free medium: Combining Equations (III) and (IV), playing around with some vector calculus and substituting by Equation (I) $(\rho \text{ and } \mathbf{J} = 0)$

> **SOLUTION:** Waves propagating with a (phase) velocity $v = \frac{1}{\sqrt{\mu\varepsilon}}$

Ellingson, Steven. *Electromagnetics Volume 1*. Virginia Tech Libraries, 2018

$$\times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t} \qquad \nabla \times \mathbf{H} = \varepsilon \frac{\partial \mathbf{E}}{\partial t}$$

$$\nabla^2 \mathbf{E} = \mu \varepsilon \frac{\partial^2 \mathbf{E}}{\partial^2 t} \qquad \text{Laplacian operato}$$

$$\mathbf{E}(\mathbf{r}, t) = \operatorname{Re}\left\{\mathbf{E}_{\mathbf{0}}(\mathbf{r}) \exp(-j\omega t)\right\}$$
Position
Time harmonic dependence

In a source free medium: Combining Equations (III) and (IV), playing around with some vector calculus and substituting by Equation (I) $(\rho \text{ and } \mathbf{J} = 0)$

> **SOLUTION:** Waves propagating with a (phase) velocity $v = \frac{1}{\sqrt{\mu\varepsilon}}$

Ellingson, Steven. *Electromagnetics Volume 1*. Virginia Tech Libraries, 2018

dependence

Phasor representation

Uniform p

Homogeneous vector Helmholtz equation

Constant vectors $\mathbf{E}_{\mathbf{0}}(\mathbf{r}) = \mathbf{E}_{\mathbf{0}}^{+} e^{-j\mathbf{k}\cdot\mathbf{r}} + \mathbf{E}_{\mathbf{0}}^{-} e^{j\mathbf{k}\cdot\mathbf{r}}$

Forward wave Backward wave

Deltane waves

$$\nabla^{2} \mathbf{E}_{0}(\mathbf{r}) + \frac{\omega^{2}}{v^{2}} \mathbf{E}_{0}(\mathbf{r}) = 0$$
Refractive index $n =$
Propagation $k = \frac{\omega}{v} = \omega \sqrt{\mu \varepsilon} = \frac{\omega}{c} n$
 $3 \times 10^{8} \text{ m/s}$

С _____ \mathcal{V} /s

Uniform pl

Homogeneous vector Helmholtz equation

Forward wave Backward wave

 E_o , H_o and k form a right-hand triplet and

$$\mathbf{H}_{o} = \frac{n}{\eta_{o}} \hat{\mathbf{k}} \times \mathbf{E}_{o} \quad \eta_{o} = \sqrt{\mu_{o}}$$
Intrinsic im

Dane waves

$$\nabla^{2}\mathbf{E_{0}}(\mathbf{r}) + \frac{\omega^{2}}{v^{2}}\mathbf{E_{0}}(\mathbf{r}) = 0$$
Refractive index $n = \frac{c}{v}$
Propagation $k = \frac{\omega}{v} = \omega\sqrt{\mu\varepsilon} = \frac{\omega}{c}n$
 3×10^{8} m/s

 $3 \times 10^{\circ}$

C \mathcal{V}

Homogeneous vector Helmholtz equation

 E_0 , H_0 and k form a right-hand triplet and

$$\mathbf{H}_{o} = \frac{n}{\eta_{o}} \hat{\mathbf{k}} \times \mathbf{E}_{o} \quad \eta_{o} = \sqrt{\mu_{o}}$$
Intrinsic im

$$\hat{\mathbf{E}}_{i} = \hat{x} E_{i0} e^{jk_{1}z}$$
$$\hat{\mathbf{H}}_{i} = \hat{y} \frac{E_{i0}}{\eta_{1}} e^{jk_{1}z}$$

Medium 1

 n_1

v

Stanford Stratified Structure Solver (S4)

- A frequency domain code to solve the linear Maxwell's equations in layered periodic structures.
- Implemented using Lua frontend scripting
- Computes transmission, reflection, or absorption spectra of structures composed of periodic, patterned, planar layers.
- We will follow up by a tutorial.

Liu, V., and Fan, S., Computer Physics Communications 183, 2233-2244 (2012)

• Benchmark a refractive semi-infinite plane

$$r = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

- Benchmark a refractive semi-infinite plane $r = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$
- Build upon your substrate: What could be a simple multilayer structure to represent the blue morph butterfly?

- Benchmark a refractive semi-infinite plane $r = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$
- Build upon your substrate: What could be a simple multilayer structure to represent the blue morph butterfly?
- Add more details to your tree structure and compare.

- Benchmark a refractive semi-infinite plane $r = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$
- Build upon your substrate: What could be a simple multilayer structure to represent the blue morph butterfly?
- Add more details to your tree structure and compare.
- What do you conclude from your results? What variables could control wavelength dependence or angular dependence?

Bioinspired micro grating

Zhang, S., Chen, Y. Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers. Sci Rep 5, 16637 (2015).

Min x position(µm)

Conclusion

- The morpho butterfly is an example of structural coloring.
- The wing scale of the morpho butterfly inspired artificial structure with added tunability and selectivity.
- Electromagnetic simulation is a powerful technique to understand, analyze and tune many optical effects in nanostructures.

THANK YOU

Tanya Faltens Joe Cychosz The nanoHUB team

