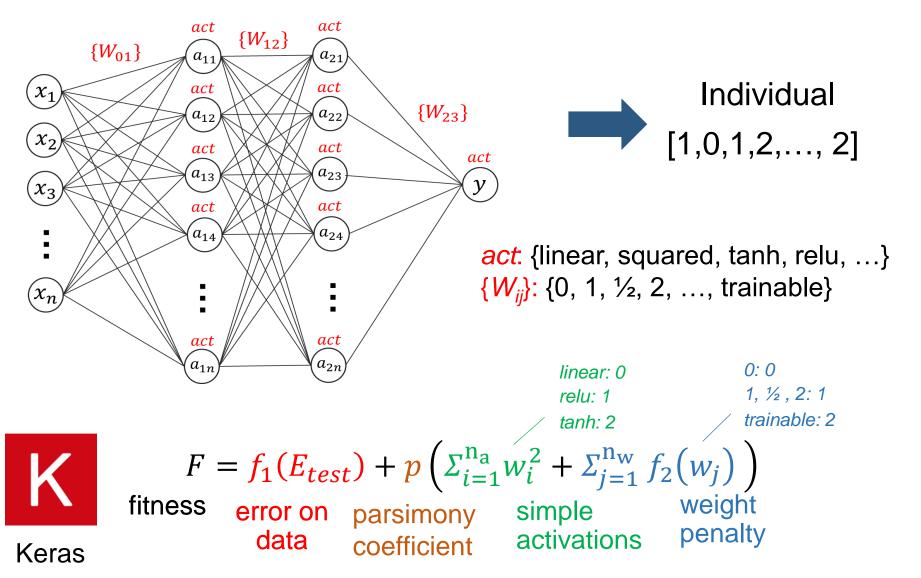
Parsimonious neural networks learn interpretable physical laws

Saaketh Desai¹, Alejandro Strachan²

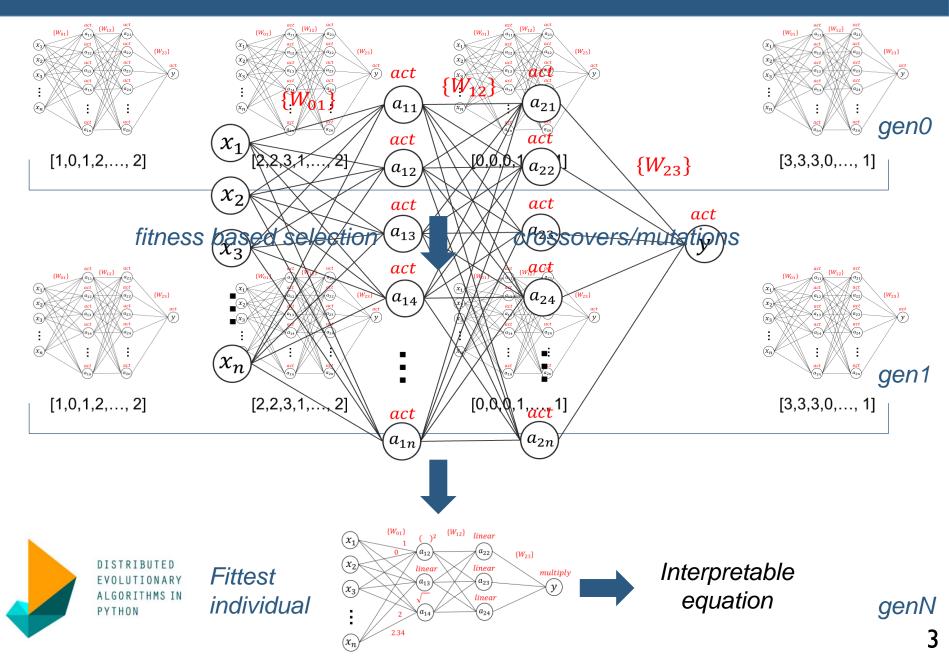
Centre for Integrated Nanotechnologies, Sandia National Laboratories School of Materials Engineering, Purdue University

Encoding neural networks for genetic algorithms

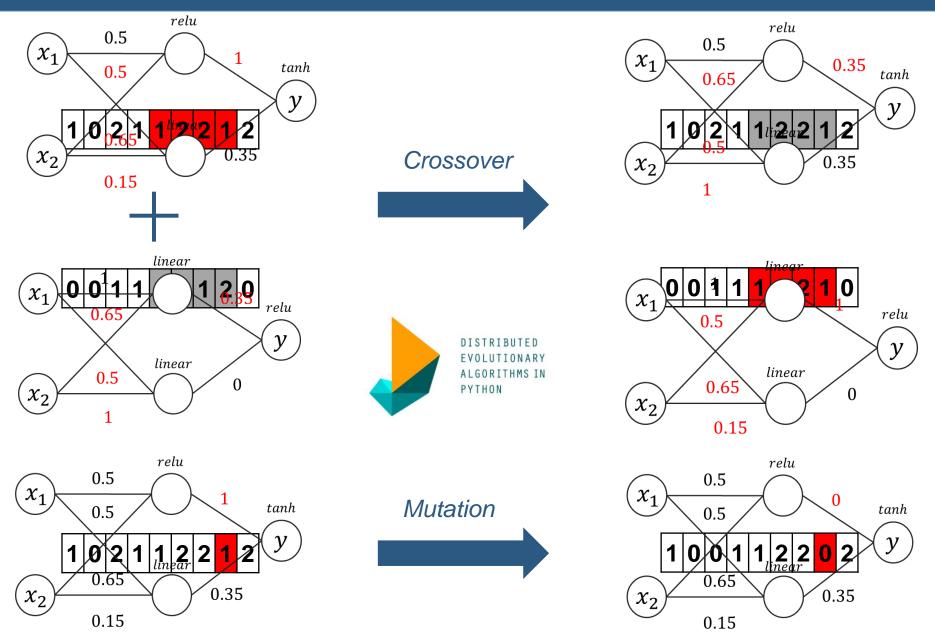
Couple neural networks with genetic algorithms to balance interpretability and accuracy



How to train a PNN?



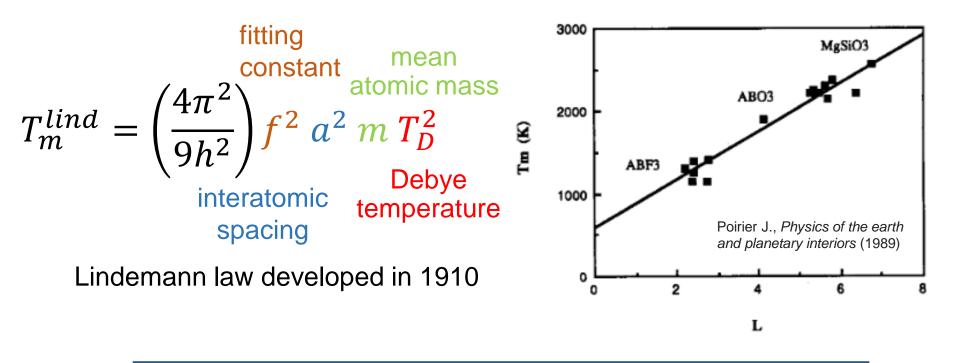
Genetic operations on neural networks



Parsimonious neural networks – melting point

Material	Volume	Density	Bulk modulus	Shear Modulus	Melting temp
BaZrO3	30.700078	5.983317	143.0	88.0	2813.15
Nd2O3	139.781930	6.395583	124.0	51.0	2543.15
BaO2	17.382291	5.391927	67.0	35.0	723.15

Can we predict the melting temp based on fundamental inputs?



Can PNNs learn improved descriptions of melting from data?

Dimensional analysis on inputs

$$\theta_0 = \frac{\hbar v_m}{k_b a} \qquad \theta_1 = \frac{\hbar^2}{ma^2 k_b} \qquad \theta_2 = \frac{a^3 G}{k_b} \qquad \theta_3 = \frac{a^3 K}{k_b} \qquad \text{Temperature units}$$
$$v_s = \sqrt{\frac{G}{\rho}} \qquad v_p = \sqrt{\frac{K + \frac{4}{3}G}{\rho}} \qquad v_m = \left[\frac{\frac{3}{\left(\frac{1}{v_p}\right)^3 + 2\left(\frac{1}{v_s}\right)^3}\right]^{\frac{1}{3}}$$

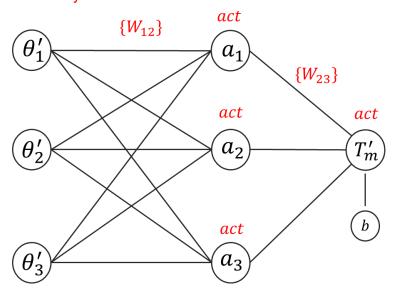
Dimensionless inputs

$$\theta_1' = \frac{\hbar}{ma\nu_m} = \frac{\theta_1}{\theta_0}$$

$$\theta_2' = \frac{a^4 G}{\hbar v_m} = \frac{\theta_2}{\theta_0}$$

$$\theta_3' = \frac{a^4 K}{\hbar \nu_m} = \frac{\theta_3}{\theta_0}$$

act. {linear, multiply, squared, tanh, ...} $\{W_{ij}\}$: {0, 1, ..., trainable}



Launching the nanoHUB tool

Parsimonious neural networks

From your browser go to link: https://nanohub.org/tools/pnndemo/

By Saaketh Desai, Alejandro Strachan

Edit

Design and train neural networks in conjunction with genetic algorithms to discover equations directly from data

Launch Tool

Version **1.1** - published on 05 Apr 2021 doi:10.21981/3Z9Z-4N07 cite this Open source: license | download

View All Supporting Documents

Click on Launch Tool to begin

Landing page

Navigate to the 4th notebook to access the notebook we will be working on during the workshop

Discovering classical equations of motion using parsimonious neural networks

Saaketh Desai and Alejandro Strachan, School of Materials Engineering, Purdue University

These notebooks will demonstrate the use of neural networks and genetic algorithms to discover scientific equations, in this case a discretized version of the classic networks as parsimonious neural networks (PNNs) as they are designed not only to reproduce the training and testing datasets, but also learn for the simplest, most data.

- Get started Click on the links below to begin each tutorial.
- Important To exit individual tutorials and return to this page, use File -> Close and Halt. "Terminate Session" (top right) will kill your entire Jupyter session.

Designing a parsimonious neural network - non-linear potential:

- · Discover the underlying equations for a particle in a non-linear external potential
- · Combine the Keras and DEAP packages to drive neural network training with genetic algorithms

Evaluating a parsimonious neural network - non-linear potential:

- · Evaluate a PNN model using the metrics defined while training
- · Check for conservation of energy and time reversibility

Designing a parsimonious neural network - linear potential:

• Train and discover the Verlet integration scheme without using genetic algorithms for this simple case

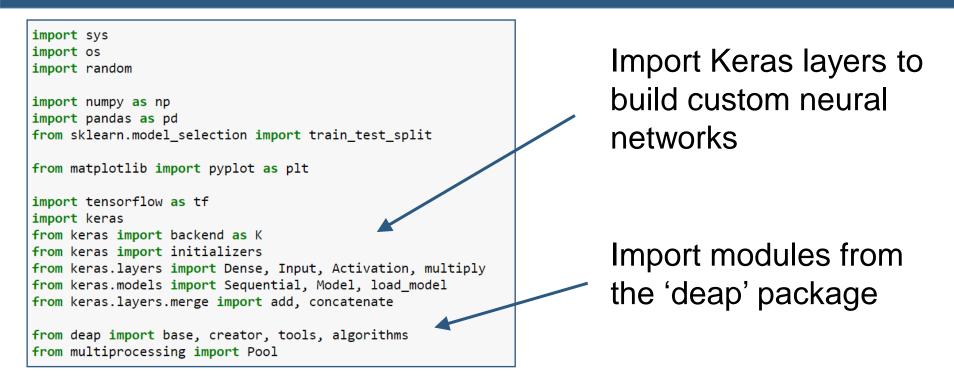
Designing a parsimonious neural network - predict melting temperature:

Discover melting laws directly from data

Evaluating a parsimonious neural network - predict melting temperature:

Evaluate a PNN model to predict the melting temperature

Import libraries and read in data



Step 1: Read training and testing data

df = pd.read_csv("../data/Combined_data_v3.csv")
print (df.shape)

Read in CSV data file from tool directory

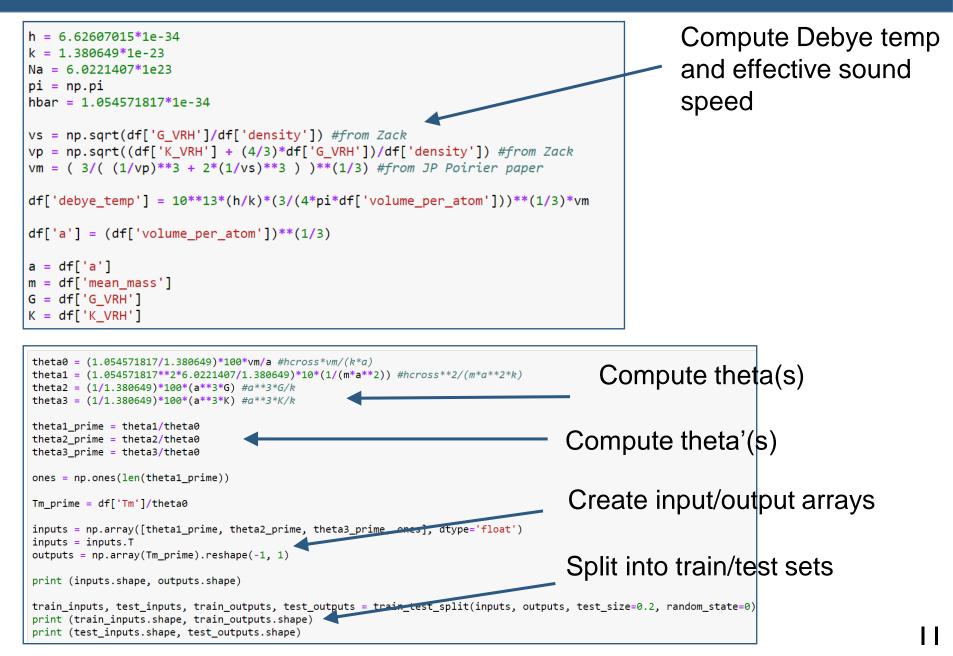
Display data and compute equations

mp_id	pretty_formula	formula	density	K_VRH	G_VRH	volume_uc	volume_per_atom	volume_per_formula_unit	natoms_uc	natoms_formula_unit	mean_mass	Tm
mp- 1019544	BaZrO3	{'Ba': 1.0, 'Zr': 1.0, 'O': 3.0}	5.983317	143.0	88.0	153.500391	30.700078	153.500391	5	5	81.516800	2813.15
mp- 1045	Nd2O3	{'Nd': 2.0, 'O': 3.0}	6.395583	124.0	51.0	698.909648	139.781930	698.909648	5	5	80.120700	2543. 1 5
mp-1105	BaO2	{'Ba': 1.0, 'O': 2.0}	5.391927	67.0	35.0	52.146872	17.382291	52.146872	3	3	76.663200	723.15
mp-1132	CdO	{'Cd': 1.0, 'O': 1.0}	7.791435	126.0	45.0	27.367291	13.683646	27.367291	2	2	64.205200	509.35
mp-1143	AI2O3	{'Al': 2.0, 'O': 3.0}	3.873498	232.0	147.0	87.420037	17.484007	87.420037	5	5	21.490469	2313.15
mp-1147	Ti3O5	{'Ti': 3.0, 'O': 5.0}	4.187248	171.0	76.0	177.344754	22.168094	177.344754	8	8	31.933200	2050.15
mp- 12105	RbO2	{'Rb': 1.0, 'O': 2.0}	3.144136	21.0	8.0	62.038631	20.679544	62.038631	3	3	50.733600	685. 1 5

$$\theta_0 = \frac{\hbar v_m}{k_b a}$$
 $\theta_1 = \frac{\hbar^2}{ma^2 k_b}$ $\theta_2 = \frac{a^3 G}{k_b}$ $\theta_3 = \frac{a^3 K}{k_b}$ Temperature units

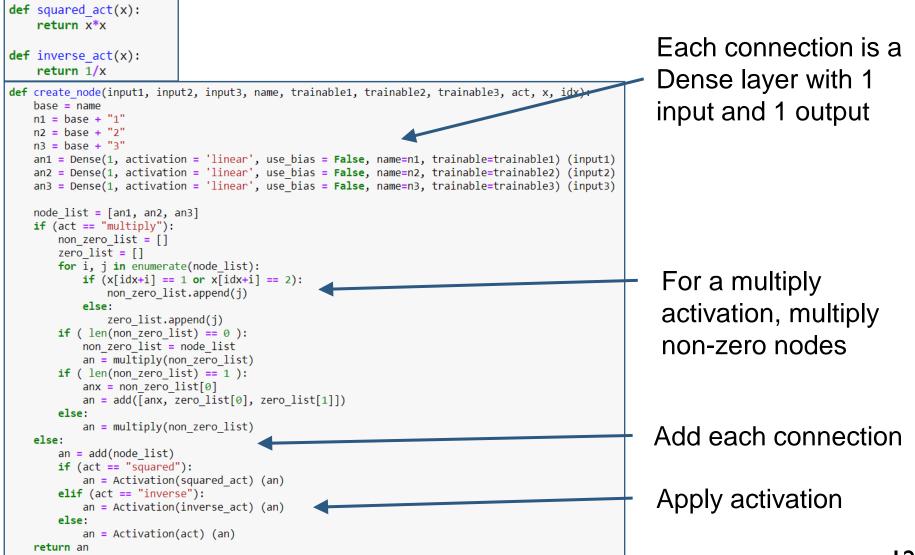
$$\theta_1' = \frac{\hbar}{mav_m} = \frac{\theta_1}{\theta_0}$$
 $\theta_2' = \frac{a^4G}{\hbar v_m} = \frac{\theta_2}{\theta_0}$ $\theta_3' = \frac{a^4K}{\hbar v_m} = \frac{\theta_3}{\theta_0}$ Dimensionless inputs

Compute PNN inputs



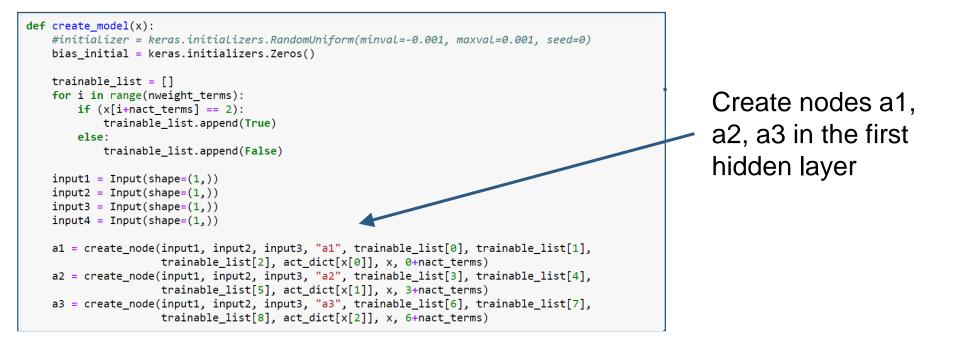
Create a node in the PNN

Step 2: Create a generic model



Create a model using custom nodes

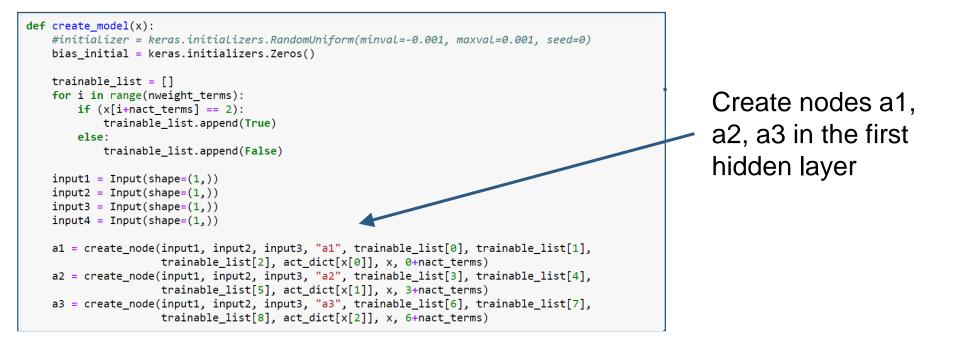
Step 2: Create a generic model



```
an1 = Dense(1, activation = 'linear', use_bias = False, name='output1', trainable=trainable_list[9]) (a1)
an2 = Dense(1, activation = 'linear', use_bias = False, name='output2', trainable=trainable_list[10]) (a2)
an3 = Dense(1, activation = 'linear', use_bias = False, name='output3', trainable=trainable_list[11]) (a3)
an4 = Dense(1, activation = 'linear', use_bias = False, name='output4', trainable=trainable_list[12]) (input4)
act = act_dict[x[3]]
node_list = [an1, an2, an3, an4]
```

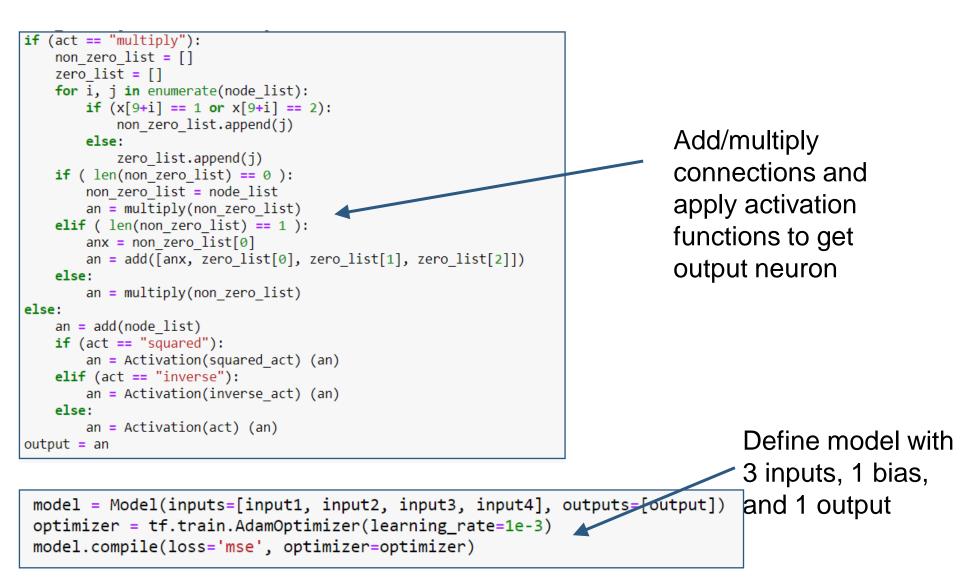
Create a model using custom nodes

Step 2: Create a generic model

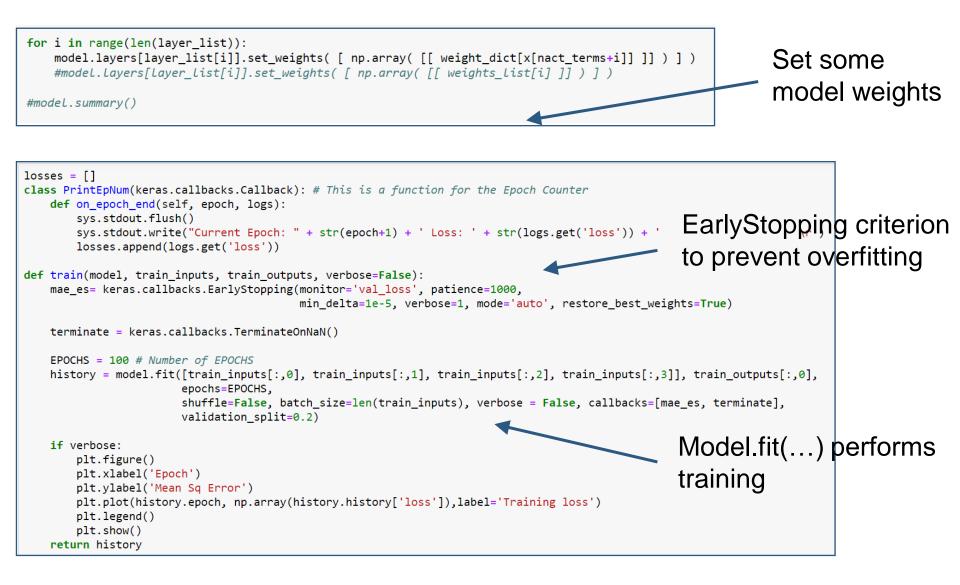


```
an1 = Dense(1, activation = 'linear', use_bias = False, name='output1', trainable=trainable_list[9]) (a1)
an2 = Dense(1, activation = 'linear', use_bias = False, name='output2', trainable=trainable_list[10]) (a2)
an3 = Dense(1, activation = 'linear', use_bias = False, name='output3', trainable=trainable_list[11]) (a3)
an4 = Dense(1, activation = 'linear', use_bias = False, name='output4', trainable=trainable_list[12]) (input4)
act = act_dict[x[3]]
node_list = [an1, an2, an3, an4]
```

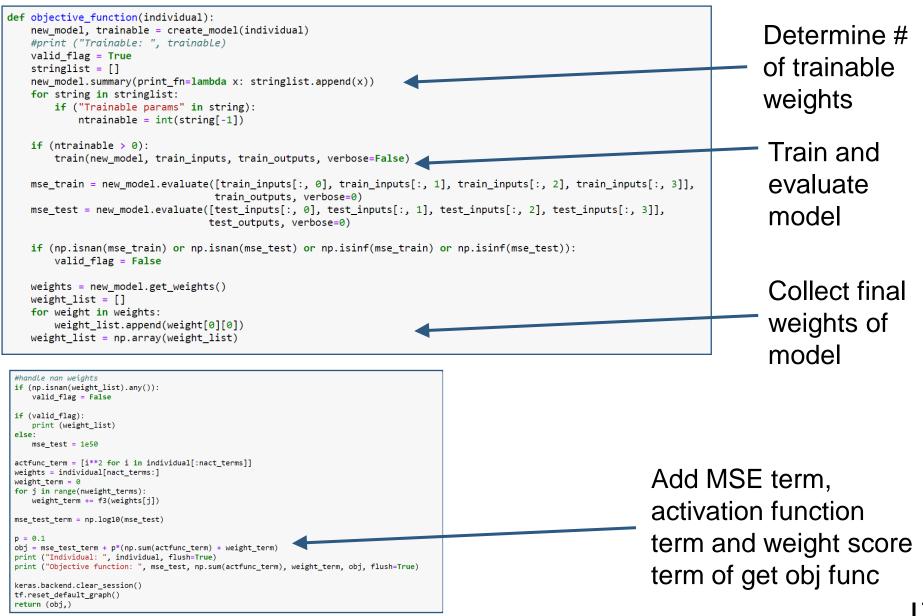
Create a model using custom nodes



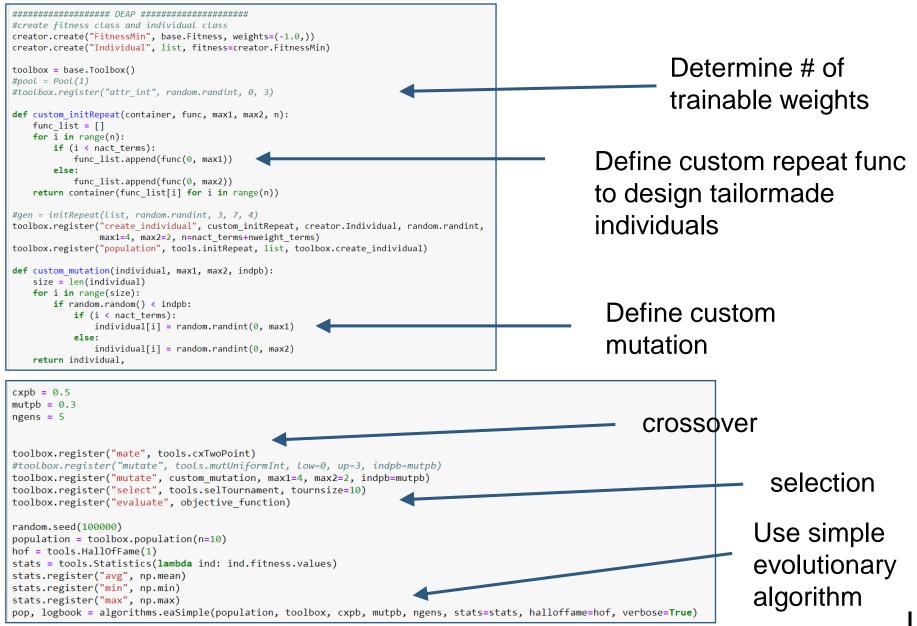
Setup model training



Define objective function

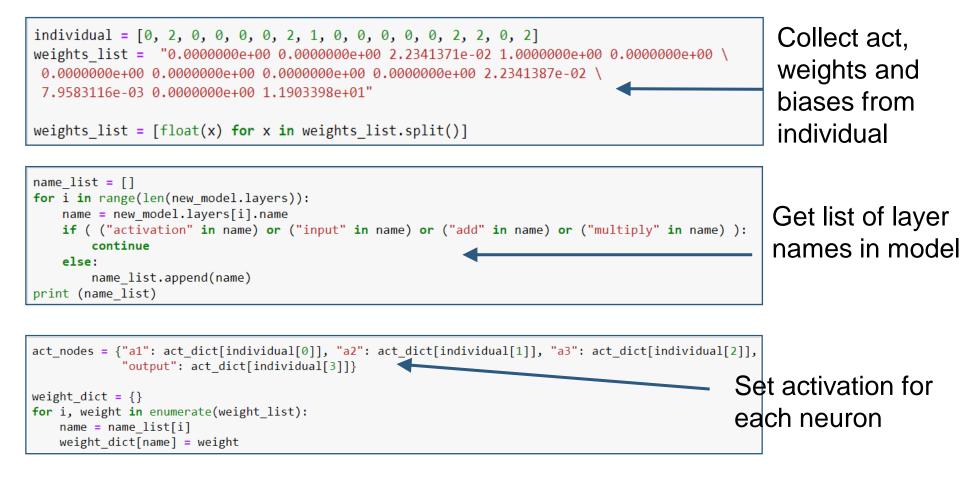


Setup genetic algorithm

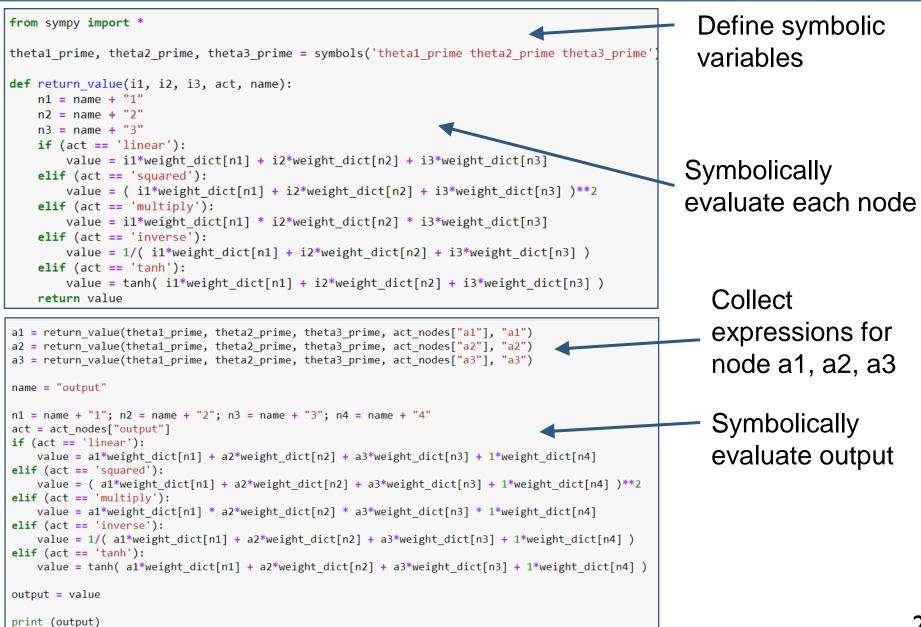


Interpreting an individual

Step 3: Express network weights as interpretable equations



Interpreting an individual

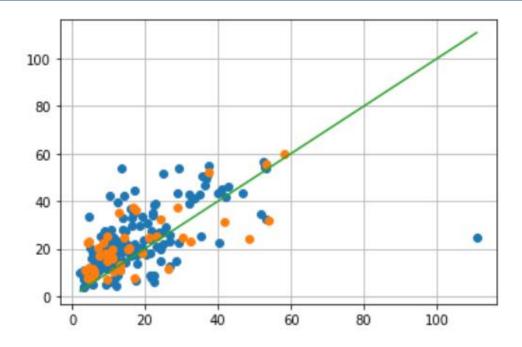


Evaluating an individual

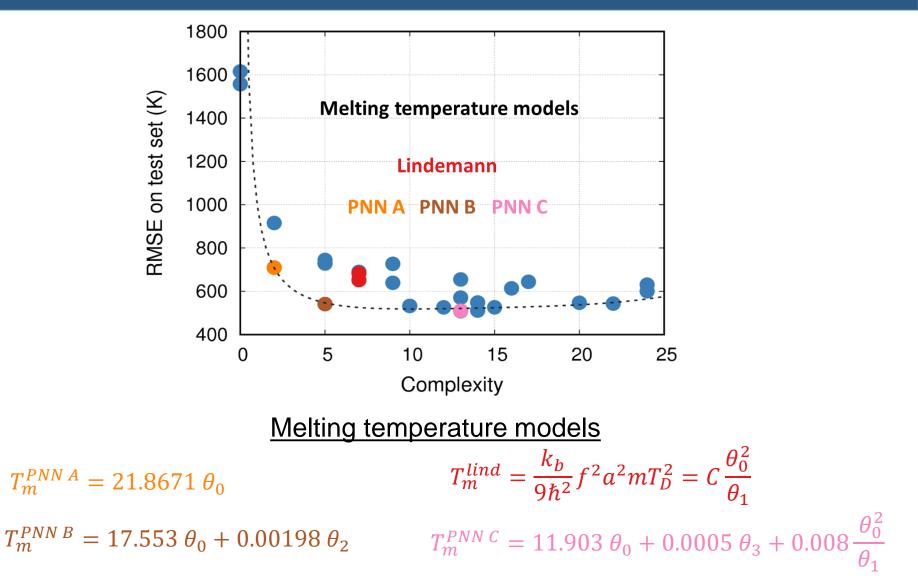
Step 4: Evaluate model on dataset and evaluate objective function

Evaluate model on train/test sets

test_preds = new_model.predict([test_inputs[:, 0], test_inputs[:, 1], test_inputs[:, 2], test_inputs[:, 3]])
train_preds = new_model.predict([train_inputs[:, 0], train_inputs[:, 1], train_inputs[:, 2], train_inputs[:, 3]])



Discovering melting point laws



Parsimonious neural networks learn non-linear interpretable laws