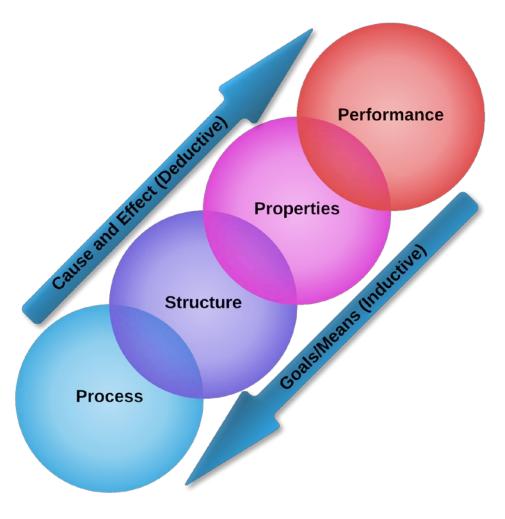


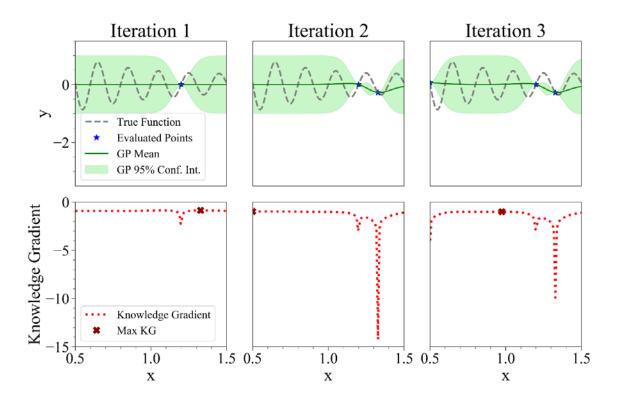
Department of Materials Science and Engineering

Batch Reification Fusion Optimization (BAREFOOT) Framework

Richard Andrew Couperthwaite

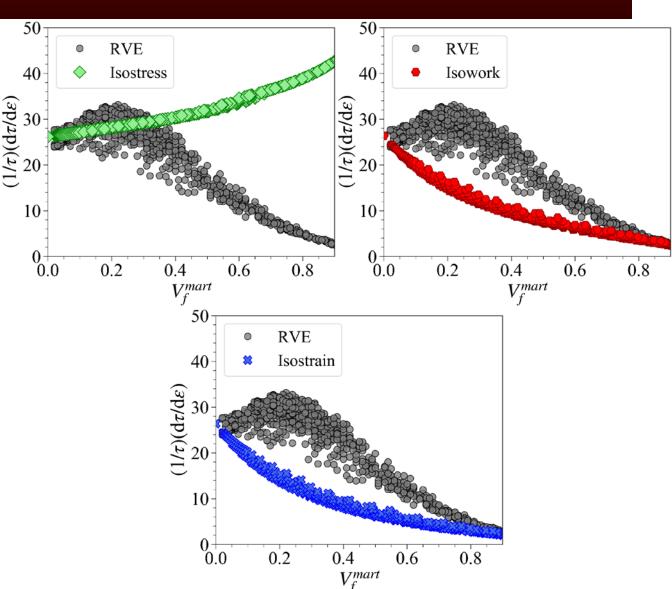

Raymundo Arróyave, Ankit Srivastava, Douglas Allaire, Danial Khatamsaz, Abhilash Molkeri, Jaylen James

Accelerated Material Design


Department of Materials Science and Engineering

- One of the primary aims of:
 - Integrated Computational Materials Engineering (ICME)
 - Materials Genome Initiative (MGI)
- Materials as Systems
 - Process-Structure-Property-Performance relationships
 - Many methods available for evaluating these relationships
- Many recent developments
 - High Throughput experiments and computation
 - Thin Film and Additive Manufacturing
- For design:
 - Need to "invert" these relationships
 - Not always simple to do
 - Common Solution:
 - Bayesian Optimization

Bayesian Optimization


- Black Box optimization approach
 - Surrogate Model used for the unknown function
 - Acquisition function used to determine next point to evaluate
 - Next best point evaluated and posterior of surrogate model recalculated
 - Repeat process
- Why do we use it?
 - Provides reduced cost
 - Generally a good global optimizer
 - Flexibility
 - Surrogate models
 - Acquisition functions

Multi-fidelity Model Fusion

- In many material science applications:
 - More than one model for a property
 - Models differ in accuracy
 - But all hold some information
- Multi-fidelity Model Fusion
 - Aims to utilize information in all models
 - Reduce evaluations of most expensive (most accurate) information source

TEXAS A&M UNIVERSITY Department of Materials Science and Engineering

Notes on the NanoHub Tool

- Due to limitations with Jupyter Notebook
 - Incompatibility with mutliprocessing and Notebooks
 - Implementation uses multithreading with limited threads
- For multiprocessing code
 - Github Repository
 - Most recent code can be found here

- The Nanohub tool
 demonstrates
 - Reification/Fusion
 - Multi-fidelity model approach
 - Batch and Sequential BO
 - Barefoot approach
 - Combined Reification/Batch
 - These approaches are all implemented in the Framework

Concluding Remarks

- BAREFOOT
 - Flexible, easy to implement
 - Provides multiple calculation approaches
 - Provides almost all acquisition functions
 - Maximization or minimization
 - Multi-objective
 - Implemented in parallel code
 - Makes calculations quite efficient
 - Open source
 - And under active development

- Calculations Approaches:
 - Barefoot
 - Batch only
 - Reification only
- Acquisition Functions:
 - Probability of improvement
 - Expected Improvement
 - Upper Confidence Bound
 - Thompson Sampling
 - Knowledge Gradient
 - Greedy Sampling
 - GP-Hedge Portfolio Optimization

Department of Materials Science and Engineering

This project has been funded under the NSF Project Number: 1663130