An Introduction to Machine Learning for Materials Science: A Basic Workflow for Predicting Materials Properties

> Ben Afflerbach University of Wisconsin – Madison

> > 5/12/2021

Summary

What is Machine Learning?

• Machine learning is a tool that finds patterns in large datasets that might be hard to discover otherwise

How can we use it for Materials Science?

• It can be included in existing materials science workflows to accelerate research, materials design, and materials discovery

An Application: Predict a Materials Property

Machine learning prediction here is obtained from only properties of the elements in the material!

A Basic Materials Design Workflow

Machine Learning is Pattern Matching

Atomic radius plotted against atomic number

Key Distinction in ML

Supervised Learning

Input Data X

Find a **Function** that represents the data

Unsupervised Learning

Input Data X₁

Find **Structure** in the data No Labels

Key Distinction in ML

Regression

Classification

Model Types

- Linear Models
- Kernel Ridge
- Support Vector Machines
- Nearest Neighbors
- Gaussian Processes
- Decision Trees
- Random Forests
- Neural Networks

We'll focus on just one type that is easier to understand conceptually and doesn't require advanced math

For a more complete list of models https://scikit-learn.org/stable/supervised_learning.html

Decision Trees: Structure

Decision Trees: Inputs

Decision Trees: Outputs

Summary

What is Machine Learning?

• Machine learning is a tool that finds patterns in large datasets that might be hard to discover otherwise

How can we use it for Materials Science?

• It can be included in existing materials science workflows to accelerate research, materials design, and materials discovery

