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Redox Flow Battery (RFB) as a Stationary Energy Storage System
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Kowalski, Su, Milshtein, Brushett (2016) Current Opinion in Chemical Engineering

Advantages:

Q Separation of energy and
power capacity

Q Integration of intermittent
renewable energy sources into
the electrical grid

U Non-aqueous RFBs potentially
yield high energy density and
lower cost
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Redox Flow Battery (RFB) as a Stationary Energy Storage System
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Model: Homobenzylic Ethers (HBEs)
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Desirable HBES’ properties:

Suitable redox potential windows

High solubility
Ease of synthesis

Electrochemical reversibility
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The Challenges

1. Large space of molecular candidates

HBE scaffold ] . .
SMILES (Simplified Molecular-Input Line Entry System)
R Rs
2
R1\O)>(©/ ~ [R3|C1=CC=C(C([R4])([RS)C(IR2)-[O][R1])C=C*

R4 Rs
R, = -Me, -Et, -Pr, -Ph, -CN, -Eth, -COMe, -C(Me)Me, -CCOMe
R, = -N(Me);*, -COMe, -Et, -OCMe, N(Me),, -NO,, -C(=0), -Pr, -C(Me)Me, -CCOMe, -C(Me)OMe > 105 | |
R, = -N(Me)s", -Me, -COMe, -Br, -C(=0), -OEth, -Pr, -C(Me)Me, -C(COMe), -C(Me)(OMe) molecules
R, - Rs = -N(Me);*, -OMe, -COMe, -Br, -N(Me)Me, -Et, -OEt, -NO,, -C(=0), -Pr, -C(Me)Me, -C(COMe), -C(Me)(OMe)

2. Expensive/time-consuming synthesis and characterization
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The Opportunities

1. Density Functional Theory (DFT) calculations starting from SMILES

SMILES 3D coordinates Geometry optimization E°* calculation
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COCCC1=CC=CC=C1 —>» —_ —4.28V

RDKit g 29 Gaussian 16 nr
2. Train machine learning (ML) models using DFT-computed E°X
Need ML models to not only make accurate Active learning/
predictions but also guide the selection of Bayesian optimization

training data (Surrogate model + Acquisition function)
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Gaussian Process Regression (GPR) as a surrogate model

In a nutshell: Predict properties/outputs based on feature/input differences (distances)

N2
Covariance is calculated as a function of (feature) distances, e.g. [K(x, x,) = exp [—% %}
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Use of GPR in Active learning/Bayesian optimization

GPR-predicted u(x) and o(x) enables Active Learning/Bayesian optimization
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"Exploitation”: follow p(X)max “Exploration”: follow 0(X)max
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Acquisition function

Acquisition function formulates an optimal strategy toward an objective by guiding the next

evaluation
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Upper Confidence Bound (UCB)

Upper Confidence Bound (UCB) ——
UCB(x) = u(x)+&xo(x) | o Q- e
Ty p(x)

Xnext = argmax(UCB(x)) o)

.4.'

XV

u(x): Mean
o(x): Standard deviation
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Probability of improvement (Pl) and Expected improvement (El)

Probability of Improvement (P1)
Pl(x) = P(y’x 2 YcurrentBest + f)

= d(2)

7 = U(x) = YeurrentBest — €
o(x)

Xnext = argmax(PI(x))

u(x): Mean
o(x): Standard deviation
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& Yeurrentgest T § E Expected Improvement(El)
—— __.. ____________ b e o i e e
o

El(x) =

N {(u(x) ~ Yeurrentgest ~ ) P(Z) + 0(x)¢(x),0(x) > 0
0, o(x)=0

Xnext = argmax(EI(x))

>
X

@: Cummulative Distribution Function
¢: Probability Density Function
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Problem definition for Bayesian optimization
Input Output/Objective

Molecule candidates Molecules w/ desired oxidation potential
(SMILES library)

“‘SMILES.csv”

RDKit

Feature vectors
E.q.

\N/

Sj MwW #of C | # of aromatic rings
o]

179 11 1

-

“features.csv” 125-component vectors
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Bayesian optimization scheme

Obijective: Given 1000 HBE molecules, find one with maximized E°* within N
evaluations

“features.csv”

“SMILES.csv” Step 1
HBE Library \nitial training datg
Surrogate Model Trainin
SMILES stri — MW, logP, TPSA... 10 random SMILEs — o
Strings Principle Component Analysis with computed Eox Gaussian Process Regression %

Bayesian optimization

G omputed Eo,

Acquisition Function

E°* Calculation Next SMILES Evaluation
e E.g.: Expected-
DFT simulation to test improvement

Step 3 Step 2

Code adapted from https://github.com/rajak7/Bayesian_Optimization_Material_design
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Launch the nanoHUB tool

From your browser go to this link: https://nanohub.org/resources/bayesopt

grﬁnanoHUB = MENU

Bayesian optimization tutorial using Jupyter
notebook

By Hieu Doan, Garvit Agarwal Launch Tool iusers datailed

usage

Active learning via Bayesian optimization for _ _
Version 1.0 - published on 11

materials discovery - 0 Citation(s)
un

0 questions (Ask
doi:10.21981/F3)8-N607 cite a question)

this

0 review(s)
(1] .
1 Open source: license R this)
Click to start the notebook - eview this
download 0 wish(es) (New
View All Supporting Wish)
Documents
2 Sharee A O W

"%, U.S. DEPARTMENT OF _ Argonne National Laboratory is a
@ ENERGY U.S. Department of Energy laboratory 1 3
managed by UChicago Argonne, LLC

AAAAAAAAAAAAAAAAAA


https://nanohub.org/resources/bayesopt

