

Density functional theory modeling of chemical reactions at interfaces

<u>Namita Narendra</u>, Jinying Wang, James Charles, Tillmann Kubis School of Electrical and Computer Engineering Purdue University, W. Lafayette, IN, USA

Motivation

Reaction acceleration observed for organic reactions in microdroplets

Hypothesis: Partially solvated species at interface reduce activation energy of reaction

Yan, Xin et al Angewandte Chemie International Edition 55.42 (2016): 12960-12972. Marsh, Brett M. et al Journal of The American Society for Mass Spectrometry 30.10 (2019): 2022-2030. Banerjee, Shibdas, et al Analyst 142.9 (2017): 1399-1402.

DFT for solvents

Explicit model

Explicit solvent for air/liquid interface modeling:

- 2.5 nm solvent slab needed (~1400 atoms)
- Statistical nature of solvent molecules need to sample large configuration phase
- Self-consistent Density Functional Tight Binding (DFTB) used

DFTB simulation workflow

Hydrazone reaction pathway

Gaussian B3LYP used to find reaction pathway in gas phase

Energy of reaction pathway

Energetics at interface

Explicit solvent DFTB calculations for hydrazone formation in methanol

Charged molecules - Large solvation effect at interface

□ Neutral molecules – Energy difference much lower between bulk/interface

Charge analysis

Charge distribution for phenylhydrazine-H+

Charge analysis

- Charged molecule Correlation of high energy/positive dipole vs low energy/negative dipole
 Neutral molecule
 - No dipole dependence

Reaction rate acceleration

Heads-up phenylhydrazine \rightarrow Heads-down TSB:

- Highest reaction rate pathway
- 612 meV decrease in activation energy from bulk to interface
- Probability of heads-up phenylhydrazine ~ 10⁻⁶ (calculated from partition function)

Predicted acceleration factor of 10⁴ matches experimental value

□ DFT based methodology verified to model reactions at droplet surface

- Reaction pathway involving partially solvated reactant at the microdroplet surface causes reaction acceleration
- Extended study to more organic reactions (benzimidazole, purine, adenine, benzoxazole). Observed interface solvation effects hold.