The International Workshop on Computational Nanotechnology (IWCN) 2021 May 24-June 6, 2021 (Online)

Computational Research of CMOS Channel Material Benchmarking for Future Technology Nodes: Missions, Learnings, and Remaining Challenges

Raseong Kim, Uygar E. Avci, and Ian A. Young Components Research Intel Corporation

Overview

EDL (2015)

plane

^[001][010]

plane

^[001][010

[100]

- Goal: Review our comprehensive computational research on CMOS channel material benchmarking
 - Projected performance of various novel CMOS channel materials using rigorous physicsbased models
 - Obtained physical insights on the key design considerations for extremely scaled n/pMOS

TED (2019)

contact

(a)

 Remaining research gaps and challenges to provide ultimate theoretical guidance on the material choice in future CMOS

Light transport mass

After 2D confinement for x=<110> FP

Heavy transport mass

After 2D confinement for x=<100>

=[110]

=[100]

--- N_{tin}=5×10¹⁹

SS=83 mV/dec

DIBL=58 mV/V

 $V_{G}(V)$

10⁻³ 10⁻² 10⁻¹

target at 27 °C (µA/µm)

10⁻³ 10⁻²

I off target at 27 °C (µA/µm)

10-4

02

 $V_{G}(V)$

0.4

Components Research/Raseou

contac

contact

- Model device
- Material-dependent device optimization
 - S/D tip design
 - Crystal orientation
- Carrier transport model
- Performance metrics
- Temperature effects
- Remaining challenges

Model device

- Material-dependent device optimization
 - S/D tip design
 - Crystal orientation
- Carrier transport model
- Performance metrics
- Temperature effects
- Remaining challenges

Model Device

- Double-gate (DG) thin body or gate-allaround (GAA) NW MOSFETs with L_G=13 nm
 - Various nMOS and pMOS materials
 - Device parameters (e.g. tip doping density (N_{tip})) optimized for each material
 - Assumed high S/D doping density (N_{SD}) as in actual devices (R_{SD} reduction)
 - Also explored crystal orientation effects

nMOS	Si	InAs	InAs In _{0.53} Ga _{0.47} As		GaAs		Ge	
N _{tip} (cm ⁻³)	10 ²⁰	10 ¹⁹	10 ¹⁹ 10 ¹⁹		x10 ¹⁹	10 ¹⁹ , 2x10 ¹⁹ , 5x10 ¹⁹		⁹ , 5x10 ¹⁹
N _{SD} (cm ⁻³)	2x10 ²⁰	5x10 ¹⁹	5x10 ¹⁹	5x10 ¹⁹		10 ²⁰		
		$\hat{\mathbf{C}}$						
	Si		Co		v		V	7
pMOS	Si		Ge		X		У	Z
pMOS N _{tip} (cm ⁻³)	Si 10 ²⁰	10 ¹⁹ , 2x	Ge 10 ¹⁹ , 5x10 ¹⁹		x [110)]	y [110]	z [001]

- Model device
- Material-dependent device optimization
 - S/D tip design
 - Crystal orientation
- Carrier transport model
- Performance metrics
- Temperature effects
- Remaining challenges

Optimizing S/D Tip Design

- Materials with small E_g and m^{*} (such as III-V nMOS): Trade-off between source exhaustion and tunneling leakage
 - Trade-off between ON-state vs. OFF-state performance
 - ON-state: High N_{tip} helps (less source exhaustion)
 - OFF-state: Low N_{tip} helps (less tunneling leakage)
 - Note: Similar trade-off achieved using gate underlap (X_{UD})
 - For the given performance target (I_{OFF}, V_{DD}), there exists an optimum N_{tip} (or X_{UD}) that maximizes I_{ON}.

X	У	Z	
[110]	[110]	[001]	"<110> NW"
[100]	[010]	[001]	"<100> NW"

R. Kim, U. E. Avci, and I. A. Young,

IEEE JEDS 3, 37-43 (2015)

Tip Doping Effects and Material Dependence

0.4 • Physics of SS vs. N_{tip} SS_{actual}, <100> InAs nMOS Electrostatics: $SS_{TOB} = \ln(10) \times \frac{k_B T}{q} \times \left(\frac{d\psi_{TOB}}{d(qV_G)}\right)$ OEFS 10 o_{actual}, <110>, (eV) nAs <100 **-** SS_{TOB}, <100> $N_{tin} = 2 \times 10^{19}$ ш -0.4 5 **Ē**FD Monotonic increase with N_{tip}: (mV/dec) -<mark>--</mark>-SS_{TOB}, <110> 80 "Classical" short channel effect (SCE) -0.8 0.4 Si <100> - Rapid increase of SS_{actual} with N_{tip} : SS Si <110 70 10 0-----Direct S-D tunneling eV) E_{FS} nAs <100 ш -0.4 =6x10[°] E_{FD} **Band parameters** (E_a and m^{*}) depend on the material and crystal orientation. -0.8 6 8 10 2 20 30 10 N_{tip} (10¹⁹ cm⁻³) [nA/eV] x (nm) The **S/D tip optimization** also depends 0.4 100r on the material and crystal orientation. •SS_{actual}, <100> GaAs nMOS 90 -9-SS_{actual}, <110> (eV) Extracted band parameters of nanowires and bulk reference [13]. TABLE 1. E_c GaAs <100> **_**SS_{TOB}, <100> 64 ш -0.4 $=2 \times 10^{19}$ NW type E_{σ} m^* (lowest band)^a m^*_{bulk} $E_{g,\text{bulk}}$ (mV/dec) -⊡-SS_{TOB}, <110> InAs <100> 0.871 eV $0.0592m_0$ 80 0.354 eV $0.023m_0$ ♦ Si <100 -0.8 InAs <110> 0.853 eV $0.0525m_0$ 0.4 62 ◊ Si < 110 GaAs <100> 1.788 eV $0.0967m_0$ SS 1.424 eV $0.063m_0$ 70 GaAs <110> 1.791 eV $0.0859m_0$ 0 ----eV) EFS Si <100> 1.319 eV $0.239m_0$ Ec GaAs <100> 1.12 eV $0.19m_0$ Si <110> 1.272 eV $0.192m_0$ ш -0.4 60 $N_{tip} = 6 \times 10^{19}$ E_{FD} R. Kim, U. E. Avci, and I. A. Young, IEEE JEDS 3, 37-43 (2015) 2 8 10 -0.8 10 30 20 intel $(10^{19} \text{ cm}^{-3})$ Components N_{tip} [nA/eV x (nm)

- Model device
- Material-dependent device optimization
 - S/D tip design
 - Crystal orientation
- Carrier transport model
- Performance metrics
- Temperature effects
- Remaining challenges

Optimizing Crystal Orientations

- Materials with multiple valleys (Γ, X, L): Band structure of quantum confined structures (e.g. NWs) may significantly depend on the crystal orientation
 - Example: Γ and L-valleys of Ge NW nMOS
 - Crystal orientation should be carefully chosen to optimize the band structure (e.g. DOS and injection velocity).

X	У	Z	
[110]	[110]	[001]	"<110> NW"
[100]	[010]	[001]	"<100> NW"

Band Structures of NW nMOS

- E-k, density-of-states (DOS), injection velocity (v_{inj})
- InAs (Γ-valley only)
 - Weak orientation dependence
 - Light m* with g_v=1: v_{inj} is high, but
 DOS is low ("DOS bottleneck")
- Ge <110> NW gives optimum band structures
 - DOS improves (higher g_v) while v_{inj} remains high (light transport m^{*})
- Ge <100> NW gives even higher DOS, but v_{inj} degrades significantly (heavy transport m*).

I-V Simulation Results

- Atomistic self-consistent ballistic quantum transport simulation
 - $sp^3d^5s^*$ tight-binding model
 - Non-equilibrium Green's function (NEGF) method
 - S/D tip optimized for each material
- InAs gives ballistic currents lower than in Si ("DOS bottleneck")
- Ge <110> NW gives high ballistic
 current due to optimum band structure (improved DOS with still high v_{inj})
- Ge <100> NW gives ballistic current that are comparable to or lower than in Si (v_{inj} degradation).

- Model device
- Material-dependent device optimization
 - S/D tip design
 - Crystal orientation
- Carrier transport model
- Performance metrics
- Temperature effects
- Remaining challenges

Carrier Transport Model: Ballistic vs. Scattering

- **Ballistic** transport model: Frequently used to estimate the **upper limit** of current drivability
- For the L_G of our interest (~13 nm), carrier scattering effect can be still significant.
- Challenge: For the scaled device, it is critical to consider quantum transport effects (e.g. tunneling) while it gives a **very high numerical cost** to include carrier scattering within the quantum simulation framework.
- **Our approach**: To capture both effects of quantum transport and carrier scattering, we use "ballistic ratio" as a <u>correction factor</u> to include scattering effects.
- Ballistic ratio (BR) \equiv I_{scatt} / I_{ball}
 - BR = 1: Ballistic limit

intel

- BR < 1: Current reduction due to scattering
- I_{scatt} and I_{ball} are calculated by turning ON and OFF carrier scattering in Monte Carlo (MC) simulation

 $BR(V_G, V_D) = I_{scatt,MC}(V_G, V_D) / I_{ball,MC}(V_G, V_D)$

Components Research/Raseong Kim

IEEE JEDS 8, 505-523 (2020)

Carrier Transport Model: Ballistic vs. Scattering

- Model device
- Material-dependent device optimization
 - S/D tip design
 - Crystal orientation
- Carrier transport model
- Performance metrics
- Temperature effects
- Remaining challenges

CMOS Performance Metrics

 In addition to transistor I-V's, CMOS circuit performance metrics such as effective drive current (I_{eff}), capacitance, switching energy (CV²), and switching delay (CV/I) are also important.

$$I_{eff} = (I_{H} + I_{L})/2 \qquad I_{H} = I_{D} (V_{G} = V_{DD}, V_{D} = V_{DD}/2)$$
$$I_{L} = I_{D} (V_{G} = V_{DD}/2, V_{D} = V_{DD})$$
$$1/I_{eff,n+p} = 1/I_{eff,n} + 1/I_{eff,p}$$

$$\begin{split} C_{e\!f\!f} = & \frac{Q_G \left(V_G = V_{DD}, V_D = 0\right) - Q_G \left(V_G = 0, V_D = V_{DD}\right)}{V_{DD}} & \text{"Miller effect"} \\ CV^2 = & C_{load} V_{DD}^2 \end{split}$$

 $CV/I = C_{load}V_{DD}/I_{eff,n+p}$

- Device parasitics: S/D resistance (R_{SD}), Parasitic capacitance (C_{par})
- Loading scenarios: "gate", "wire", or mixed loading (e.g. 50:50, 70:30)

CMOS combinations

(homogeneous and heterogeneous*)

	nMOS	pMOS
Si CMOS	Si	Si
III-V	In _{0.53} Ga _{0.47} As	Si
hybrid CMOS	In _{0.53} Ga _{0.47} As	Ge
Ge hybrid CMOS	Si	Ge
	Ge (Iow N _{tip})	Ge (Iow N _{tip})
Gercivios	Ge (high N _{tip})	Ge (high N _{tip})

*A partial list – a comprehensive list of CMOS combinations discussed in our reference

2.	Kim,	U.	Ε.	Avci,	and	I. A.	Young,	IEEE TED 62 , 713-721 (2015)
2.	Kim,	U.	Ε.	Avci,	and	Ι. Α.	Young,	IEDM Tech. Dig., 34.1.1, Dec. 2015
2.	Kim,	U.	Ε.	Avci,	and	Ι. Α.	Young,	IEEE JEDS 8 , 505-523 (2020)

Energy vs. Delay

- Gate capacitance loading
- Material-dependent tradeoffs
 - Ge CMOS (low N_{tip}) gives the largest energy reduction for large delay (low freq) operation.
 - For small delay (high freq), III-V hybrid CMOS (In_{0.53}Ga_{0.47}As-Ge) gives the best performance.
- Trade-off also depends on the loading scenario

inte

R. Kim, U. E. Avci, and I. A. Young,

- Model device
- Material-dependent device optimization
 - S/D tip design
 - Crystal orientation
- Carrier transport model
- Performance metrics
- Temperature effects
- Remaining challenges

Temperature Effects

- Most of previous benchmarking studies in literatures assume room temperature (RT, 300 K, 27 °C)
- Actual operating T's of circuits: Much higher than RT
 - May have significant implications for CMOS benchmarking, especially for novel channel materials
- T-dependence of thermionic and tunneling leakages
 - Thermionic leakage (I_{thermal}): Very strong T-dependence —
 - S-D (I_{SDT}) and band-to-band tunneling (I_{BTBT}): Weak Tdependence

Application	Temperature
Mobile ^a	~60 °C
CPU ^b	100~120 °C
Automotive ^c	up to ~175 °C

a. G. Singla et al., Proc. Design, Autom. Test Eur. Conf. Exhib., Mar. 2015, pp. 960-965.

b. J.-L. Tsai et al., Proc. IEEE, vol. 94, pp. 1502-1518, 2006 c. D. Cherniak et el., Proc. IEEE RFIC, Jun. 2017, pp. 57-60

R. Kim, U. E. Avci, and I. A. Young,

Components Research/Raseong Kim

Temperature Effects

- $I_{OFF,actual}$: I_D at $V_G = 0$ V, $V_D = V_{DD}$
- Si nMOS
 - I_{OFF,actual} increases monotonically with V_{DD} (classical SCE)
 - I_{OFF,actual} increases significantly with T (I_{thermal})

• Ge nMOS

- I_{OFF,actual} first increases monotonically at low V_{DD}'s (classical SCE) but rapidly increases at high V_{DD}'s (I_{втвт})
- I_{OFF,actual} shows similar T-dependence as in Si at low
 V_{DD}'s (I_{thermal}) while the T-dependence becomes weaker at high V_{DD}'s (I_{BTBT})

Temperature Effects

- A new metric: Maximum V_{DD} (V_{DD,max})
 - Maximum V_{DD} where I_{OFF,actual} of a device meets the I_{OFF,actual} of the Si reference
 - Due to the different T-dependence of tunneling leakage,
 V_{DD,max} of materials with light m^{*} and small E_g (e.g. InGaAs and Ge) increases at higher T.
- Confirmed by experimental data (SiGe and Ge pMOS)
 - T-dependence of I_{OFF,actual}

- Model device
- Material-dependent device optimization
 - S/D tip design
 - Crystal orientation
- Carrier transport model
- Performance metrics
- Temperature effects
- Remaining challenges

Remaining Challenges

- While we have achieved significant benchmarking results for novel CMOS channel materials, there are still research gaps to be filled.
- We used a "hybrid" approach by combining <u>two different simulation tools</u> (quantum ballistic + MC) to capture both effects of quantum transport and carrier scattering in a <u>numerically manageable way</u>.
 - A more unified approach may be developed to accurately include carrier scattering and quantum transport effects within a single, self-consistent simulation tool that is still numerically tractable.
- 2) While we considered some circuit aspects in our benchmarking (I_{eff}, CV², CV/I, operating T's), more in-depth simulation may be done to analyze the material impact on the layout, fabrication, and system-level performance ("design-technology co-optimization") to better help the material choice in future CMOS.
 - Novel CMOS channel materials (e.g. III-V's and Ge) may promise performance boost for <u>individual transistors</u>, but they may also give **integration challenges** to Sibased technology.

Thank you for your attention!

