
Computational Research of CMOS Channel Material 
Benchmarking for Future Technology Nodes: 

Missions, Learnings, and Remaining Challenges

Raseong Kim, Uygar E. Avci, and Ian A. Young

Components Research
Intel Corporation

1Components Research/Raseong Kim

The International Workshop on Computational Nanotechnology (IWCN) 2021
May 24-June 6, 2021 (Online)



Overview

2

• Goal: Review our comprehensive 
computational research on CMOS channel 
material benchmarking
– Projected performance of various novel CMOS 

channel materials using rigorous physics-
based models

– Obtained physical insights on the key design 
considerations for extremely scaled n/pMOS

• Remaining research gaps and challenges to 
provide ultimate theoretical guidance on the 
material choice in future CMOS
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• Model device

• Material-dependent device optimization

– S/D tip design

– Crystal orientation

• Carrier transport model

• Performance metrics

• Temperature effects

• Remaining challenges
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Model Device
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nMOS Si InAs In0.53Ga0.47As GaAs Ge
Ntip (cm-3) 1020 1019 1019 2x1019 1019, 2x1019, 5x1019

NSD (cm-3) 2x1020 5x1019 5x1019 5x1019 1020

pMOS Si Ge
Ntip (cm-3) 1020 1019, 2x1019, 5x1019

NSD (cm-3) 2x1020 1020
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• Double-gate (DG) thin body or gate-all-
around (GAA) NW MOSFETs with LG=13 nm
– Various nMOS and pMOS materials
– Device parameters (e.g. tip doping density 

(Ntip)) optimized for each material
– Assumed high S/D doping density (NSD) as 

in actual devices (RSD reduction)
– Also explored crystal orientation effects
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• Materials with small Eg and m* (such as III-V nMOS): Trade-off 
between source exhaustion and tunneling leakage
– Trade-off between ON-state vs. OFF-state performance

• ON-state: High Ntip helps (less source exhaustion)
• OFF-state: Low Ntip helps (less tunneling leakage)
• Note: Similar trade-off achieved using gate underlap (XUD)

– For the given performance target (IOFF, VDD), there exists an 
optimum Ntip (or XUD) that maximizes ION.

Optimizing S/D Tip Design
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R. Kim, U. E. Avci, and I. A. Young, 
IEEE JEDS 3, 37-43 (2015) 
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Tip Doping Effects and Material Dependence
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• Physics of SS vs. Ntip
– Electrostatics: 

• Monotonic increase with Ntip: 
“Classical” short channel effect (SCE)

– Rapid increase of SSactual with Ntip: 
Direct S-D tunneling

• Band parameters (Eg and m*) depend 
on the material and crystal orientation.
– The S/D tip optimization also depends 

on the material and crystal orientation. GaAs nMOS
EFS

EFD

EC

EFS EC

EFD

Si <100>
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Optimizing Crystal Orientations
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• Materials with multiple valleys (Γ, X, L): 
Band structure of quantum confined 
structures (e.g. NWs) may significantly 
depend on the crystal orientation
– Example: Γ and L-valleys of Ge NW nMOS
– Crystal orientation should be carefully 

chosen to optimize the band structure 
(e.g. DOS and injection velocity).
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After 2D confinement (all cases)
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R. Kim, U. E. Avci, and I. A. Young, 
IEEE EDL 36, 751-753 (2015) 



Band Structures of 
NW nMOS
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• E-k, density-of-states (DOS), 
injection velocity (vinj)

• InAs (Γ-valley only)
– Weak orientation dependence
– Light m* with gv=1: vinj is high, but 

DOS is low (“DOS bottleneck”)

• Ge <110> NW gives optimum band 
structures
– DOS improves (higher gv) while vinj

remains high (light transport m*)

• Ge <100> NW gives even higher 
DOS, but vinj degrades significantly 
(heavy transport m*).

Si <110>
gv=2
0.19m0Si <110>

InAs
<110> InAs <110>

gv=1
0.052m0

Ge <110>

Ge <110>gv=2
0.090m0

Ge <100>
Ge <100>

gv=4
0.53m0

R. Kim, U. E. Avci, and I. A. Young, 
IEEE EDL 36, 751-753 (2015) 



I-V Simulation Results
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• Atomistic self-consistent ballistic 

quantum transport simulation
– sp3d5s* tight-binding model
– Non-equilibrium Green’s function 

(NEGF) method
– S/D tip optimized for each material

• InAs gives ballistic currents lower than 
in Si (“DOS bottleneck”) 

• Ge <110> NW gives high ballistic 
current due to optimum band structure 
(improved DOS with still high vinj)

• Ge <100> NW gives ballistic current 
that are comparable to or lower than 
in Si (vinj degradation).

R. Kim, U. E. Avci, and I. A. Young, 
IEEE EDL 36, 751-753 (2015) 
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It is important to optimize crystal 
orientations for quantum-confined 

structures using multi-valley materials
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• Ballistic transport model: Frequently used to estimate 
the upper limit of current drivability

• For the LG of our interest (~13 nm), carrier scattering 
effect can be still significant.

• Challenge: For the scaled device, it is critical to consider 
quantum transport effects (e.g. tunneling) while it 
gives a very high numerical cost to include carrier 
scattering within the quantum simulation framework.

• Our approach: To capture both effects of quantum 
transport and carrier scattering, we use “ballistic ratio” 
as a correction factor to include scattering effects.

• Ballistic ratio (BR) ≡ Iscatt / Iball
– BR = 1: Ballistic limit
– BR < 1: Current reduction due to scattering
– Iscatt and Iball are calculated by turning ON and OFF carrier 

scattering in Monte Carlo (MC) simulation

Carrier Transport Model: Ballistic vs. Scattering
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• Our “hybrid” approach to capture 
both effects of quantum transport 
and carrier scattering:
1) Extract “ballistic ratio” (BR) from 

full-band MC simulation considering 
relevant carrier scattering mechanisms

2) Apply the BR as correction factors to 
the quantum ballistic transport 
simulation results from atomistic NEGF

Carrier Transport Model: Ballistic vs. Scattering
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Carrier scattering may still have significant 
impact on the I-V’s of the model device
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*A partial list – a comprehensive list of CMOS 
combinations discussed in our reference

CMOS Performance Metrics
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• In addition to transistor I-V’s, CMOS circuit 
performance metrics such as effective drive 
current (Ieff), capacitance, switching energy (CV2), 
and switching delay (CV/I) are also important.

– Device parasitics: S/D resistance (RSD), Parasitic 
capacitance (Cpar)

– Loading scenarios: “gate”, “wire”, or mixed      
loading (e.g. 50:50, 70:30)
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R. Kim, U. E. Avci, and I. A. Young, IEEE TED 62, 713-721 (2015)
R. Kim, U. E. Avci, and I. A. Young, IEDM Tech. Dig., 34.1.1, Dec. 2015
R. Kim, U. E. Avci, and I. A. Young, IEEE JEDS 8, 505-523 (2020)
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• Gate capacitance loading
• Material-dependent trade-

offs
– Ge CMOS (low Ntip) gives 

the largest energy 
reduction for large delay 
(low freq) operation. 

– For small delay (high 
freq), III-V hybrid CMOS 
(In0.53Ga0.47As-Ge) gives 
the best performance.

• Trade-off also depends on 
the loading scenario

Energy vs. Delay
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Temperature Effects
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• Most of previous benchmarking studies in literatures 
assume room temperature (RT, 300 K, 27 °C)

• Actual operating T’s of circuits: Much higher than RT
– May have significant implications for CMOS benchmarking, 

especially for novel channel materials
• T-dependence of thermionic and tunneling leakages

– Thermionic leakage (Ithermal): Very strong T-dependence
– S-D (ISDT) and band-to-band tunneling (IBTBT): Weak T-

dependence
E
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0 1

Application Temperature
Mobilea ~60 °C
CPUb 100~120 °C
Automotivec up to ~175 °C

a. G. Singla et al., Proc. Design, Autom. Test Eur. Conf. 
Exhib., Mar. 2015, pp. 960–965.
b. J.-L. Tsai et al., Proc. IEEE, vol. 94, pp. 1502–1518, 2006 
c. D. Cherniak et el., Proc. IEEE RFIC, Jun. 2017, pp. 57–60 
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R. Kim, U. E. Avci, and I. A. Young, 
IEEE EDL 41, 1332-1335 (2020)



Temperature Effects
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• IOFF,actual: ID at VG=0 V, VD=VDD

• Si nMOS
– IOFF,actual increases monotonically with VDD (classical SCE)
– IOFF,actual increases significantly with T (Ithermal)

• Ge nMOS
– IOFF,actual first increases monotonically at low VDD’s 

(classical SCE) but rapidly increases at high VDD’s (IBTBT)
– IOFF,actual shows similar T-dependence as in Si at low 

VDD’s (Ithermal) while the T-dependence becomes weaker 
at high VDD’s (IBTBT)

Si (101 °C)

Si (27 °C)

Ge (101 °C)

Ge (27 °C)

IOFF,target at 27 °C

R. Kim, U. E. Avci, and I. A. Young, 
IEEE EDL 41, 1332-1335 (2020)
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Temperature Effects
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• A new metric: Maximum VDD (VDD,max)
– Maximum VDD where IOFF,actual of a device meets the 

IOFF,actual of the Si reference
– Due to the different T-dependence of tunneling leakage, 

VDD,max of materials with light m* and small Eg (e.g. 
InGaAs and Ge) increases at higher T.

• Confirmed by experimental data (SiGe and Ge pMOS)
– T-dependence of IOFF,actual
– Increase of VDD,max at high T

Si (101 °C)

Si (27 °C)

Ge (101 °C)

Ge (27 °C)

IOFF,target at 27 °C

R. Kim, U. E. Avci, and I. A. Young, 
IEEE EDL 41, 1332-1335 (2020)

Ge DG nMOS

101 °C

27 °C

A. Agrawal et al., in IEDM 
Tech. Dig., 2.2.1, Dec. 2020 
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Remaining Challenges
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• While we have achieved significant benchmarking results for novel CMOS channel 
materials, there are still research gaps to be filled.

1) We used a “hybrid” approach by combining two different simulation tools (quantum 
ballistic + MC) to capture both effects of quantum transport and carrier scattering in 
a numerically manageable way.

– A more unified approach may be developed to accurately include carrier scattering 
and quantum transport effects within a single, self-consistent simulation tool that is 
still numerically tractable.

2) While we considered some circuit aspects in our benchmarking (Ieff, CV2, CV/I, 
operating T’s), more in-depth simulation may be done to analyze the material impact 
on the layout, fabrication, and system-level performance (“design-technology 
co-optimization”) to better help the material choice in future CMOS.

– Novel CMOS channel materials (e.g. III-V’s and Ge) may promise performance boost 
for individual transistors, but they may also give integration challenges to Si-
based technology.



Thank you for your attention!
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