Debugging Neural Networks

Rishi Gurnani Ramprasad Group / Georgia Institute of Technology https://rishigurnani.wordpress.com/ http://ramprasad.mse.gatech.edu

WHY DO WE NEED ML? ... DESIGN CHALLENGES!

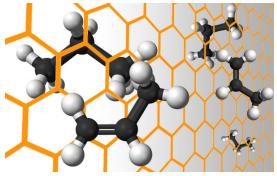
Optimal materials selection or discovery is non-trivial often due to conflicting property requirements

Some polymer examples ...

High Energy Density Capacitors

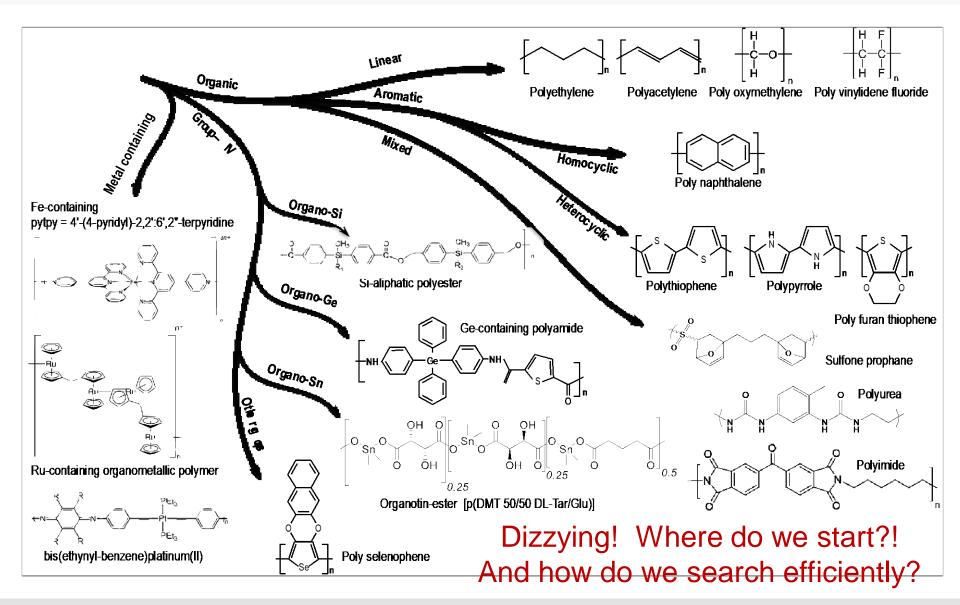
Gas Separation Membranes

Need: high band gap, high dielectric constant



Need: high permeability, high selectivity

POLYMER CHEMICAL UNIVERSE



COMPLEX PROPERTIES

No.	Polymer properties	Data		ML			
		Source	Size	Algo.	RMSE _{CV}	Notes	Reference
1	Polymer crystal bandgap	Comput.	562	GPR	0.26 eV	Training data produced using using	8
2	Polymer chain bandgap	Comput.	3881	GPR	0.24 eV	Training data produced using using HSE06 XC functional ²²	
3	ionization energy	Comput.	3/1	GPK	0.21 ev		
4	Electron affinity	Comput.	371	GPR	0.18 eV		
5	Static dielectric constant (crystal)	Comput.	383	GPR	0.38		8
6	Frequency-dependent dielectric constant	Exper.	1193	GPR	0.16	Training data include measurements at 60, 10 ² , 10 ³ , 10 ⁴ , 10 ⁵ , 10 ⁶ , 10 ⁷ , 10 ⁹ , and 10 ¹⁵ Hz	23
7	Refractive index (bulk resin)	Exper.	516	GPR	0.04		24
8	Refractive index (crystal)	Comput.	383	GPR	0.07		8
9	Tensile strength	Exper.	672	GPR	4.75 MPa		
10	Young's modulus	Exper.	629	GPR	120 MPa		
11	Glass transition temperature	Exper.	5076	GPR	18.8 K		8
12	Melting temperature	Exper.	2084	GPR	27.1 K		
13	Thermal decomposition temperature	Exper.	3545	GPR	28.03 K		
14	Polymer/solvent (in) compatibility	Exper.	6721	ANN	93% accurate classification	The compatibility with 24 solvents is predicted	25
15	Solubility parameter	Exper.	112	GPR	0.47 MPa ^{1/2}		26
16	Gas permeability	Exper.	1779	GPR	1.2 Barrer	The permeability to CH_4 , CO_2 , He, N_2 , O_2 , and H_2 is predicted	27
17	Polymer density	Exper.	890	GPR	0.03 g/cc	2 2 1	8
18	Atomization energy	Comput.	391	GPR	0.01 eV/atom		8
19	Specific heat	Exper.	80	GPR	0.07 J/gK		
20	Fractional free volume	Exper.	133	GPR	0.01		
21	Limiting oxygen index	Exper.	101	GPR	3.73%		
22	Tendency to crystallize	Exper.	429/107	СК	8.38%	Training data include low- and high-fidelity data	28

"Machine Learning Predictions of Polymer Properties with Polymer Genome" Journal of Applied Physics (2020)

Ramprasad Research Group, Georgia Institute of Technology

AGENDA

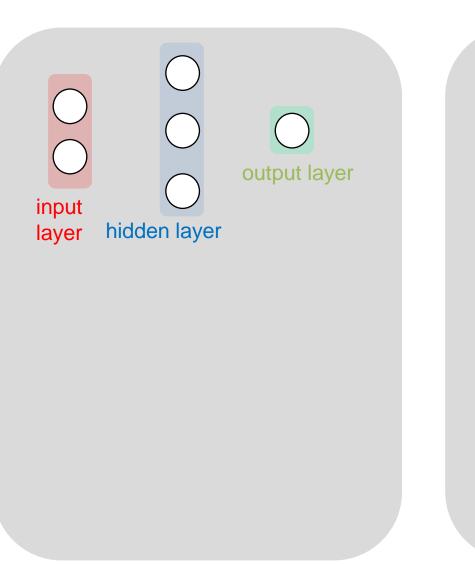
- Brief theory behind neural networks
- Overview of NetDebugger
- Demonstration of NetDebugger
- Summary

WHAT IS MACHINE LEARNING (ML)?

 A machine is said to *learn* if it tends to improve <u>performance</u> on some <u>task</u> given more and more <u>experience</u> – Tom Mitchell

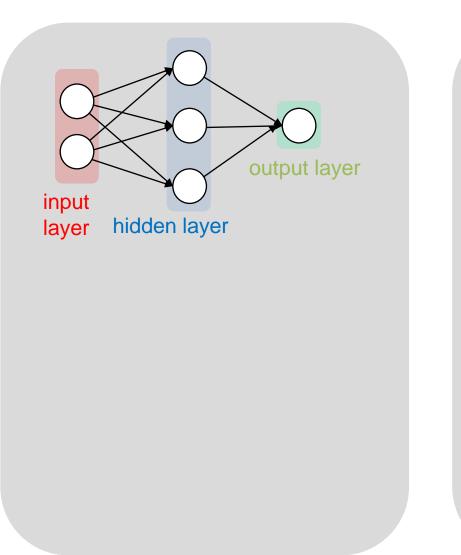
> $Task, T(\mathbf{x}_{i}) \rightarrow y_{i}$ inputs, \mathbf{x}_{i} outputs, y_{i} Model, $f(\mathbf{x}_{i}; \boldsymbol{\theta}) \rightarrow \hat{y}_{i}$ $f \sim T$

TRAINING A NEURAL NETWORK



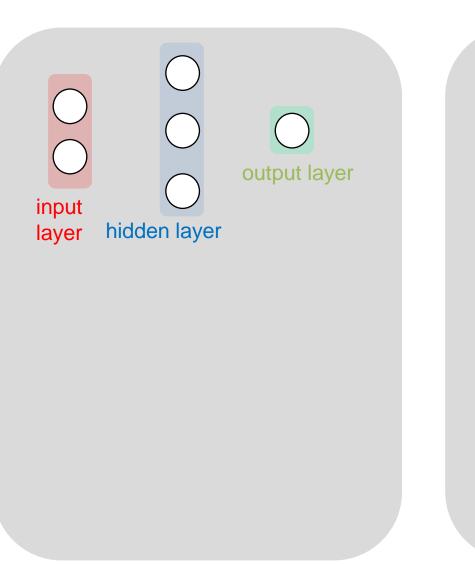
 $Model, f(\boldsymbol{x_i}; \boldsymbol{\theta}) \to \hat{y}_i$

TRAINING A NEURAL NETWORK



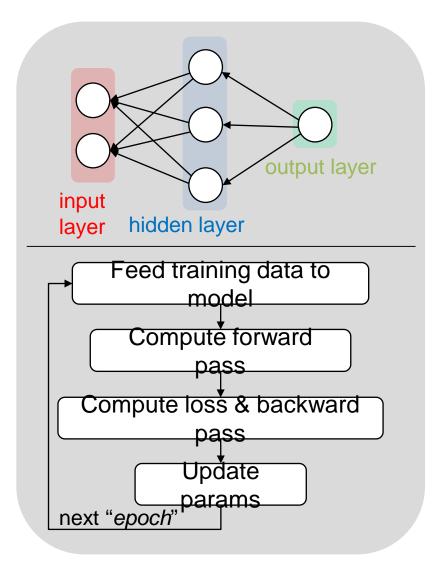
Model, $f(\mathbf{x}_i; \boldsymbol{\theta}) \rightarrow \hat{\mathbf{y}}_i$

TRAINING A NEURAL NETWORK



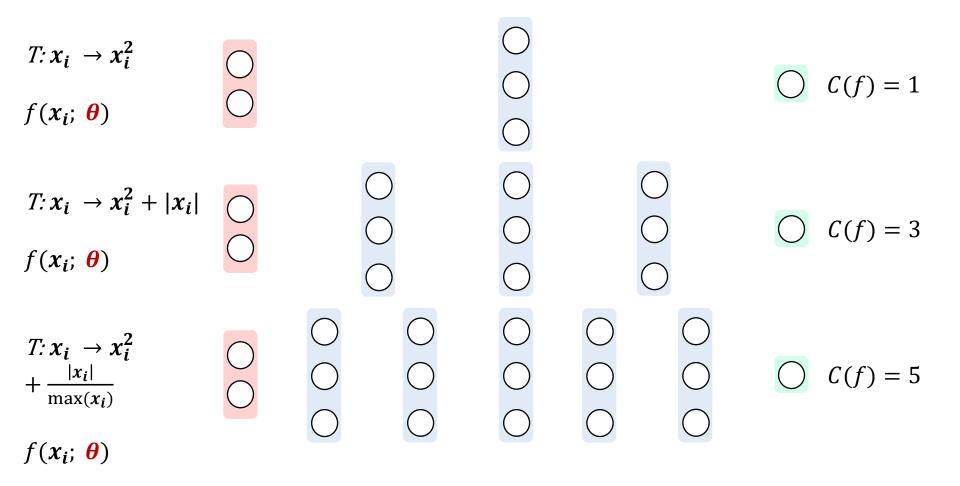
 $Model, f(\boldsymbol{x_i}; \boldsymbol{\theta}) \to \hat{\boldsymbol{y_i}}$

TRAINING A NEURAL NETWORK: Part 1



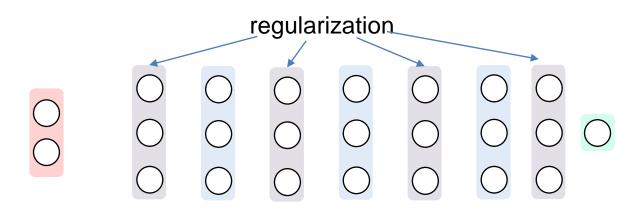
 $Model, f(\mathbf{x}_i; \boldsymbol{\theta}) \to \hat{y}_i$ $\hat{y}_i \sim y_i$ $\min L(\hat{y}_i, y_i)$ $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \boldsymbol{\alpha} \frac{dL}{d\boldsymbol{\theta}}$

TRAINING A NEURAL NETWORK: Part 2



Capacity matters!

TRAINING A NEURAL NETWORK: Part 3

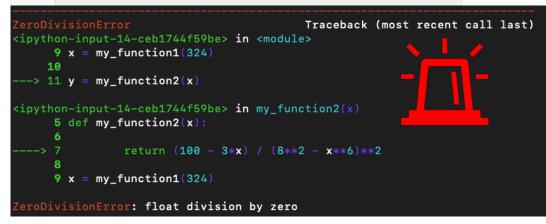


Find enough capacity, then regularize

DEBUGGING: "Do not go gentle into that good night"

```
def my_function1(x):
 2
 3
      return x * * (1/2) - 16
 4
 5
    def my_function2(x):
 6
      return (100 - 3*x) / (8**2 - x**6)**2
 7
 8
    x = my_function1(324)
 9
10
11
    y = my_function2(x)
```

Expect: 4? 3.7? -100?



DEBUGGING: "Do not go gentle into that good night"

```
2
    model = MyModel()
 3
    training_features, training_labels = get_training_data()
 4
 5
    best_mape = 0
 6
    for epoch in range(100):
      # do forward pass, backward pass, update weights, return MAPE
 8
      epoch_mape = trainer(model, training features, training labels)
 9
      if epoch_mape > best_mape:
10
11
        best_mape = epoch_mape
12
13
    print(best_mape)
       Expect: 5%? ~0%?
       Get: 107.15%
```

Silent Failure

NetDebugger

Contains five tests

- Inspired by Andrej Karpathy's blog post, "A Recipe for Training Neural Networks"
- Buggy scripts that fail tests, will have a helpful error message returned
- Written for *PyTorch*

NetDebugger: Test #1, Output Shape

<u>Test 1:</u> Passes if the shape of the model output matches the shape of the training labels

$$L(\widehat{\mathbf{y}}, \mathbf{y}) = \frac{1}{N} \sum_{i=0}^{N} |\widehat{y}_i - y_i|$$

Case 1: Matching shapes

$$\widehat{\mathbf{y}} = \begin{bmatrix} [1,2] \end{bmatrix}$$
$$\mathbf{y} = \begin{bmatrix} [1,2] \end{bmatrix}$$
$$\widehat{\mathbf{y}} - \mathbf{y} = \begin{bmatrix} [1,2] \end{bmatrix}$$
$$L = 0$$

Case 2: Mismatching shapes

$$\widehat{\mathbf{y}} = \begin{bmatrix} [1,2] \end{bmatrix}$$
$$\mathbf{y} = \begin{bmatrix} [1], [2] \end{bmatrix}$$
$$\widehat{\mathbf{y}} - \mathbf{y} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
$$L = 1 \neq 0$$

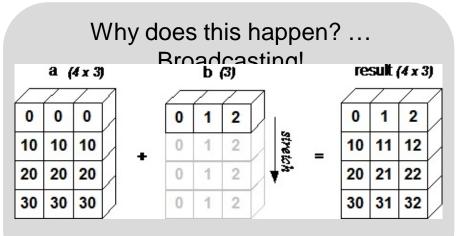


Image credit: https://www.tutorialspoint.com/numpy/numpy_broadcasting.htm

NetDebugger: Test #2, InputIndependent Baseline $f(x_i; \theta)$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $\frac{x_i \mid y_i}{0 \mid 0}$ $f(x_i; \theta)$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 1 $f(x_i; \theta)$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $f(x_i; \theta)$ $f(x_i; \theta)$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $f(x_i; \theta)$ $f(x_i; \theta)$ <

Case 1: Use real features of entire data Case 2: Zero out the features of entire data

There exist many functions that correctly relate this data, so we should be able to find some model that has a low loss $L_{dependent}$ There is no function that can correctly relate this data, so all models should have a relatively high loss $L_{independent}$

0 0 0 1

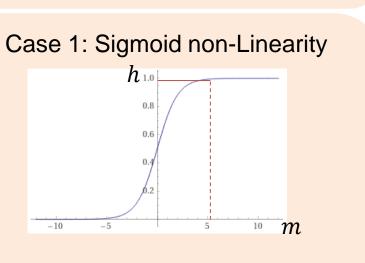
<u>Test 2:</u> Passes if $L_{dependent} \ll L_{independent}$ after several epochs

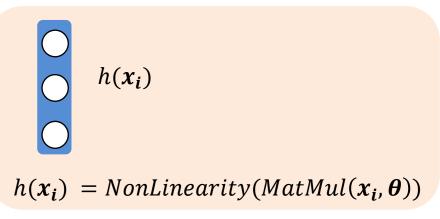
NetDebugger: Test #3, Overfit Small Batch

Test 3: Passes if a small batch of data (e.g., 10 points) can be completely overfit

$$\theta_2 \leftarrow \theta_1 - \alpha \frac{dL}{d\theta}$$
$$\frac{dL}{d\theta} = 0 \rightarrow \theta_1 = \theta_2$$

We need non-negligible gradients so that the model can improve



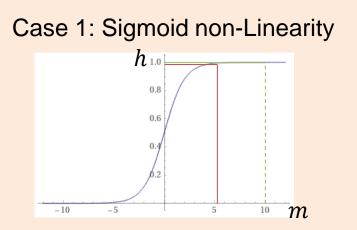


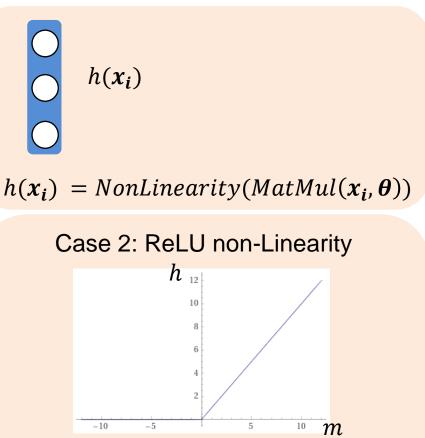
NetDebugger: Test #3, Overfit Small Batch

Test 3: Passes if a small batch of data (e.g., 10 points) can be completely overfit

 $\theta_2 \leftarrow \theta_1 - \alpha \frac{dL}{d\theta}$ $\frac{dL}{d\theta} = \mathbf{0} \rightarrow \theta_1 = \theta_2$

We need non-negligible gradients so that the model can improve





Saturation at **both** limits leads to bad gradients One limit is not saturated, better gradients

NetDebugger: Test #4, Chart Dependencies

$$X = \begin{bmatrix} 10 & 8 \\ 5 & 4 \end{bmatrix}; \ \theta = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & 2 \end{bmatrix}$$

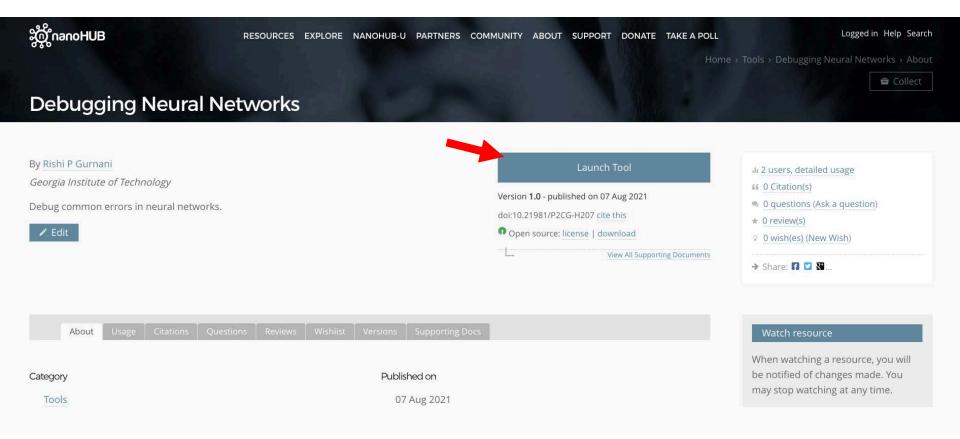
$$M = X\theta = \begin{bmatrix} 10 * 1 + 8 * 1 & - & - \\ 5 * 1 + 4 * 1 & - & - \end{bmatrix} \quad M = X^T\theta = \begin{bmatrix} 10 * 1 + 5 * 1 & - & - \\ 8 * 1 + 4 * 1 & - & - \end{bmatrix}$$

<u>Test 4:</u> Passes if information from separate instances are not mixed Ramprasad Research Group, Georgia Institute of Technology

NetDebugger: Test #5, Overfit Entire Training Data

<u>Test 5:</u> Returns the capacity of "smallest" model that can overfit the entire training data

Accessing NetDebugger tutorial on nanoHUB



https://nanohub.org/tools/netdebugger

Ramprasad Research Group, Georgia Institute of Technology

SUMMARY

- Neural networks offer great flexibility but this flexibility leads to silent failure. Efficiently debugging NNs requires forward thinking on what could go wrong during training.
- Some of this forward thinking has been encoded in *NetDebugger*
- *NetDebugger* is useful but by no means comprehensive. More checks and flexibility can be added.

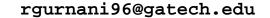
https://github.com/rishigurnani/nndebugger

ACKNOWLEDGEMENTS

Past Group Members: Rohit Batra (Argonne), Arun M.K. (Purdue), Ghanshyam Pilania (LANL), Vinit Sharma (ORNL), Chenchen Wang (Amgen), Venkatesh Botu (Corning), Deya Das (Mahindra), Anurag Jha (IIT-K), Abhirup Patra (U. Penn), Anand Chandrasokaran (Schrodinger)

Special Thanks To: Rampi Ramprasad

https://rishigurnani.wordpress.com/



Ramprasad Research Group, Georgia Institute of Technology