
Ramprasad Research Group, Georgia Institute of Technology

Debugging Neural Networks

Rishi Gurnani
Ramprasad Group / Georgia Institute of Technology
https://rishigurnani.wordpress.com/
http://ramprasad.mse.gatech.edu

Ramprasad Research Group, Georgia Institute of Technology

WHY DO WE NEED ML? … DESIGN
CHALLENGES!

High Energy Density
Capacitors

Optimal materials selection or discovery is non-trivial …
… often due to conflicting property requirements

Gas Separation
Membranes

Need: high band gap,
high dielectric

constant

Need: high perm-
eability, high

selectivity

Some polymer examples …

2

Ramprasad Research Group, Georgia Institute of Technology

POLYMER CHEMICAL UNIVERSE

Dizzying! Where do we start?!
And how do we search efficiently?

3

Ramprasad Research Group, Georgia Institute of Technology

COMPLEX PROPERTIES

4

“Machine Learning Predictions of Polymer Properties with Polymer Genome” Journal of Applied
Physics (2020)

https://www.polymergenome.org/

Ramprasad Research Group, Georgia Institute of Technology

AGENDA

5

• Brief theory behind neural networks

• Overview of NetDebugger

• Demonstration of NetDebugger

• Summary

Ramprasad Research Group, Georgia Institute of Technology

WHAT IS MACHINE LEARNING (ML)?

6

• A machine is said to learn if it tends to improve performance on some task
given more and more experience – Tom Mitchell

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑇𝑇 𝒙𝒙𝒊𝒊 → 𝑦𝑦𝑖𝑖
inputs, 𝒙𝒙𝒊𝒊
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑇𝑇, 𝑦𝑦𝑖𝑖
𝑀𝑀𝑜𝑜𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓(𝒙𝒙𝒊𝒊; 𝜽𝜽) → �𝑦𝑦𝑖𝑖
𝑓𝑓 ~ 𝑇𝑇

Ramprasad Research Group, Georgia Institute of Technology

TRAINING A NEURAL NETWORK

7

input
layer hidden layer

output layer

𝑀𝑀𝑜𝑜𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓(𝒙𝒙𝒊𝒊; 𝜽𝜽) → �𝑦𝑦𝑖𝑖

Ramprasad Research Group, Georgia Institute of Technology

TRAINING A NEURAL NETWORK

8

input
layer hidden layer

output layer

𝑀𝑀𝑜𝑜𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓(𝒙𝒙𝒊𝒊; 𝜽𝜽) → �𝑦𝑦𝑖𝑖

Ramprasad Research Group, Georgia Institute of Technology

TRAINING A NEURAL NETWORK

9

input
layer hidden layer

output layer

𝑀𝑀𝑜𝑜𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓(𝒙𝒙𝒊𝒊; 𝜽𝜽) → �𝑦𝑦𝑖𝑖

Ramprasad Research Group, Georgia Institute of Technology

TRAINING A NEURAL NETWORK: Part 1

10

input
layer hidden layer

output layer
�𝑦𝑦𝑖𝑖 ~ 𝑦𝑦𝑖𝑖
min 𝐿𝐿(�𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝜽𝜽 ← 𝜽𝜽 − 𝜶𝜶 𝒅𝒅𝒅𝒅

𝒅𝒅𝜽𝜽

Feed training data to
model

Compute forward
pass

Compute loss & backward
pass

Update
params

next “epoch”

𝑀𝑀𝑜𝑜𝑀𝑀𝑀𝑀𝑀𝑀, 𝑓𝑓(𝒙𝒙𝒊𝒊; 𝜽𝜽) → �𝑦𝑦𝑖𝑖

Ramprasad Research Group, Georgia Institute of Technology

TRAINING A NEURAL NETWORK: Part 2

11

T: 𝒙𝒙𝒊𝒊 → 𝒙𝒙𝒊𝒊𝟐𝟐

𝑓𝑓(𝒙𝒙𝒊𝒊; 𝜽𝜽)
𝐶𝐶(𝑓𝑓) = 1

T: 𝒙𝒙𝒊𝒊 → 𝒙𝒙𝒊𝒊𝟐𝟐 + |𝒙𝒙𝒊𝒊|

𝑓𝑓(𝒙𝒙𝒊𝒊; 𝜽𝜽)
𝐶𝐶(𝑓𝑓) = 3

T: 𝒙𝒙𝒊𝒊 → 𝒙𝒙𝒊𝒊𝟐𝟐

+ 𝒙𝒙𝒊𝒊
max(𝒙𝒙𝒊𝒊)

𝑓𝑓(𝒙𝒙𝒊𝒊; 𝜽𝜽)

𝐶𝐶(𝑓𝑓) = 5

Capacity matters!

Ramprasad Research Group, Georgia Institute of Technology

TRAINING A NEURAL NETWORK: Part 3

12

Find enough capacity, then regularize

regularization

Ramprasad Research Group, Georgia Institute of Technology

DEBUGGING: “Do not go gentle into
that good night”

13

Expect: 4? 3.7? -100?

Ramprasad Research Group, Georgia Institute of Technology

DEBUGGING: “Do not go gentle into
that good night”

14

Expect: 5%? ~0%?
Get: 107.15%

Silent Failure

Ramprasad Research Group, Georgia Institute of Technology

NetDebugger

15

Contains five tests
• Inspired by Andrej Karpathy’s blog post, “A Recipe for Training Neural

Networks”
• Buggy scripts that fail tests, will have a helpful error message returned
• Written for PyTorch

Ramprasad Research Group, Georgia Institute of Technology

NetDebugger: Test #1, Output Shape

16

Test 1: Passes if the shape of the model
output matches the shape of the training
labels

𝐿𝐿(�𝒚𝒚,𝒚𝒚) =
1
𝑁𝑁
�
𝑖𝑖=0

𝑁𝑁

|�𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖|

�𝒚𝒚 = 1,2
𝒚𝒚 = 1,2

�𝒚𝒚 − 𝒚𝒚 = 0,0
𝐿𝐿 = 0

�𝒚𝒚 = 1,2
𝒚𝒚 = 1], [2

�𝒚𝒚 − 𝒚𝒚 = 0 1
−1 0

𝐿𝐿 = 1 ≠ 0

Why does this happen? …
Broadcasting!

Image credit: https://www.tutorialspoint.com/numpy/numpy_broadcasting.htm

Case 1: Matching shapes

Case 2: Mismatching shapes

Ramprasad Research Group, Georgia Institute of Technology

NetDebugger: Test #2, Input
Independent Baseline

17

Test 2: Passes if 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 << 𝐿𝐿𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 after several epochs

𝑓𝑓(𝒙𝒙𝒊𝒊; 𝜽𝜽)

Case 1: Use real features of entire data
𝒙𝒙𝒊𝒊 𝑦𝑦𝑖𝑖
0
1
2

0
1
4

There exist many functions that
correctly
relate this data, so we should be able
to find some model that has a low loss
𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Case 2: Zero out the features of entire data
𝒙𝒙𝒊𝒊 𝑦𝑦𝑖𝑖
0
0
0

0
1
4

There is no function that can
correctly
relate this data, so all models should
have a relatively high loss
𝐿𝐿𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝒙𝒙𝒊𝒊 𝑦𝑦𝑖𝑖
0
1
2

0
1
4

Ramprasad Research Group, Georgia Institute of Technology

ℎ

𝑚𝑚

NetDebugger: Test #3, Overfit Small
Batch

18

Test 3: Passes if a small batch of data (e.g., 10 points) can be completely overfit

Case 1: Sigmoid non-Linearity

ℎ(𝒙𝒙𝒊𝒊) = 𝑁𝑁𝑜𝑜𝑁𝑁𝐿𝐿𝑁𝑁𝑁𝑁𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁𝑜𝑜𝑦𝑦(𝑀𝑀𝑇𝑇𝑜𝑜𝑀𝑀𝑜𝑜𝑀𝑀 𝒙𝒙𝒊𝒊,𝜽𝜽)

𝜽𝜽𝟐𝟐 ← 𝜽𝜽𝟏𝟏 − 𝜶𝜶 𝒅𝒅𝒅𝒅
𝒅𝒅𝜽𝜽

We need non-negligible gradients so
that the model can improve

ℎ(𝒙𝒙𝒊𝒊)𝒅𝒅𝒅𝒅
𝒅𝒅𝜽𝜽

= 𝟎𝟎 → 𝜽𝜽𝟏𝟏 = 𝜽𝜽𝟐𝟐

Ramprasad Research Group, Georgia Institute of Technology

NetDebugger: Test #3, Overfit Small
Batch

19

Test 3: Passes if a small batch of data (e.g., 10 points) can be completely overfit

Case 2: ReLU non-Linearity
ℎ

𝑚𝑚
Saturation at both limits leads to bad gradients

ℎ

𝑚𝑚
One limit is not saturated, better

gradients

Case 1: Sigmoid non-Linearity

𝜽𝜽𝟐𝟐 ← 𝜽𝜽𝟏𝟏 − 𝜶𝜶 𝒅𝒅𝒅𝒅
𝒅𝒅𝜽𝜽

We need non-negligible gradients so
that the model can improve

𝒅𝒅𝒅𝒅
𝒅𝒅𝜽𝜽

= 𝟎𝟎 → 𝜽𝜽𝟏𝟏 = 𝜽𝜽𝟐𝟐

ℎ(𝒙𝒙𝒊𝒊) = 𝑁𝑁𝑜𝑜𝑁𝑁𝐿𝐿𝑁𝑁𝑁𝑁𝑀𝑀𝑇𝑇𝑁𝑁𝑁𝑁𝑜𝑜𝑦𝑦(𝑀𝑀𝑇𝑇𝑜𝑜𝑀𝑀𝑜𝑜𝑀𝑀 𝒙𝒙𝒊𝒊,𝜽𝜽)

ℎ(𝒙𝒙𝒊𝒊)

Ramprasad Research Group, Georgia Institute of Technology

NetDebugger: Test #4, Chart
Dependencies

20

𝑋𝑋 = 10 8
5 4 ; 𝜃𝜃 = 1 2 2

1 2 2

𝑀𝑀 = 𝑋𝑋𝜃𝜃 = 10 ∗ 1 + 8 ∗ 1 − −
5 ∗ 1 + 4 ∗ 1 − − 𝑀𝑀 = 𝑋𝑋𝑇𝑇𝜃𝜃 = 10 ∗ 1 + 5 ∗ 1 − −

8 ∗ 1 + 4 ∗ 1 − −

Test 4: Passes if information from separate instances are not
mixed

Ramprasad Research Group, Georgia Institute of Technology

NetDebugger: Test #5, Overfit Entire
Training Data

21

Test 5: Returns the capacity of “smallest” model that can
overfit the entire training data

Ramprasad Research Group, Georgia Institute of Technology

Accessing NetDebugger tutorial on
nanoHUB

22

https://nanohub.org/tools/netdebugger

Ramprasad Research Group, Georgia Institute of Technology

SUMMARY

• Neural networks offer great flexibility but this flexibility leads to
silent failure. Efficiently debugging NNs requires forward thinking on
what could go wrong during training.

• Some of this forward thinking has been encoded in NetDebugger

• NetDebugger is useful but by no means comprehensive. More
checks and flexibility can be added.

23

https://github.com/rishigurnani/nndebugger

Ramprasad Research Group, Georgia Institute of Technology

ACKNOWLEDGEMENTS
Past Group Members: Rohit Batra (Argonne), Arun M.K. (Purdue), Ghanshyam Pilania
(LANL), Vinit Sharma (ORNL), Chenchen Wang (Amgen), Venkatesh Botu (Corning),
Deya Das (Mahindra), Anurag Jha (IIT-K), Abhirup Patra (U. Penn), Anand
Chandrasekaran (Schrodinger)

Special Thanks To: Rampi Ramprasad

https://rishigurnani.wordpress.com/ rgurnani96@gatech.edu

24

	Debugging Neural Networks�
	WHY DO WE NEED ML? … DESIGN CHALLENGES!
	POLYMER CHEMICAL UNIVERSE
	COMPLEX PROPERTIES
	AGENDA
	WHAT IS MACHINE LEARNING (ML)?
	TRAINING A NEURAL NETWORK
	TRAINING A NEURAL NETWORK
	TRAINING A NEURAL NETWORK
	TRAINING A NEURAL NETWORK: Part 1
	TRAINING A NEURAL NETWORK: Part 2
	TRAINING A NEURAL NETWORK: Part 3
	DEBUGGING: “Do not go gentle into that good night”
	DEBUGGING: “Do not go gentle into that good night”
	NetDebugger
	NetDebugger: Test #1, Output Shape
	NetDebugger: Test #2, Input Independent Baseline
	NetDebugger: Test #3, Overfit Small Batch
	NetDebugger: Test #3, Overfit Small Batch
	NetDebugger: Test #4, Chart Dependencies
	NetDebugger: Test #5, Overfit Entire Training Data
	Accessing NetDebugger tutorial on nanoHUB
	SUMMARY
	ACKNOWLEDGEMENTS

