MatCNN In-Class Tutorial

Dr. Tiberiu Stan – <u>tiberiu.stan@northwestern.edu</u>

Northwestern University

MatSci 395 – ML Lecture 5 – March 10, 2021

Introduction

Announcements

• My email: <u>tiberiu.stan@northwestern.edu</u>

MAT_SCI 358 Laboratory VI: Machine Learning

Laboratory VI: Machine Learning

Due: Thursday March 18th at 11:59 pm *via Canvas* upload. Upload a single PDF of your report as well as a zipped file including any pertinent scripts or code!

Tentative Schedule

Monday	Wednesday	Friday
L1 – Introduction to machine learning, imaging, and segmentation	L2 – In-class activity: segmentation using GIMP	L3 – Neural network basics
L4 – Neural network training	L5 – In-class activity: segmentation using MatCNN	L6 – Convolutional Neural Networks

W|21

Introduction

At the end of this lesson you should be able to:

- Access the latest version of MatCNN on Google Colab
- Understand some of the fundamental neural network training parameters
- Train a neural network that segments tomography images

Special thanks to:

 Nathan Pruyne, Jim James, Marcus Schwarting, and Jiwon Yeom

Machine Learning

- Semantic segmentation is the process of assigning a class label to each pixel of an image, usually using Convolutional Neural Networks (CNNs)
- SegNet architecture consists of an encoder network (13 convolutional layers from VGG-16), a decoder network, and a pixel-wise softmax classification layer

Machine Learning Architectures

SegNet

V. Badrinarayan et al. IEEE Trans Pattern Analysis Mach Intell. 2017

U-Net is similar to SegNet but transfers feature maps instead of pooling indices

PixelNet uses hypercolumn descriptors of several pixels from convolutional layers

O. Ronneberger et al. MICCAI 2015

A. Bansal et al. arXiv:1702.06506 2015

U-Net

Segmentation Metrics

Accuracy (Acc)

- Number of correctly classified pixels / total number of pixels
- white+black • Total Acc = ----white+black+green+pink • Dendrite Acc = $\frac{white}{white+pink}$

Intersection over Union (IoU)

- Size of overlap / size of union
- Dendrite IoU = $\frac{white}{white+green+pink}$
- black • Background IoU = black+green+pink • Mean IoU = $\frac{Dendrite IoU + Background IoU}{Dendrite IoU + Background IoU}$

Area of Union

6

Segmentation Metrics

Boundary F1 Score (BF1)

- Fraction of boundary in the NN segmentation that is within some specified number of pixels to a boundary in the ground truth
- Example: BF1 score of 0.981 with a tolerance of 4 means that 98.1% of the dendrite boundaries in the NN segmentation are within 4 pixels of dendrite boundaries in the ground truth
- More details: G. Csurka, D. Larlus, F. Perronnnin, "What is a good evaluation measure for semantic segmentation"?

Segmentation Metrics for the Overlay in (b)

- 99.9% Acc
- 96.9% IoU for the dendrite class
- 98.1% BF1 with tolerance of 4 pixels

MatCNN

Requires ~500 MB of Google Drive storage for:

- Google Colab script (~few kbs)
- Python codes (~few MBs)
- Pre-trained CNN (~185 MB per CNN)
- 42 Image Tomography dataset (~50 MB)

30 Training Pairs

10 Validation Pairs

2 Test Pairs

Create New Google Account?

New Google account steps:

- Chrome New Incognito Widow
- Google.com Sign in Create Account – For Myself
- Create username
- Create Password

When Google Account is ready, go to this link to access MatCNN:

https://colab.research.google.com/driv e/1VzV95t9y52ut3IzYwh1ir5S5mQhSBb 38?usp=sharing

Google

Create your Google Account

One account. All of Google working for you.