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Introduction

Virus-like Particles Linker Nanoparticle superlattices
(P22 Bacteriophage) (G6 Dendrimer)
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o Molecular dynamics (MD) simulations are powerful tools for investigating the microscopic
origins of the behavior of a wide range of materials, including soft matter

o Simulations are used everywhere; physics, chemistry, bioengineering, and materials science.

o Simulations enable the understanding of microscopic mechanisms underlying the macroscopic
material and biological phenomena.

o Parallel computing techniques (OpenMP, MPI) are often used with complex systems.



Few examples for MD simulations

Virus like particle - Linker 12-capsomere virus Shape control of charge-
superlattices simulation nanoparticle assembly patterned nano-containers
wall time: ~4 hr wall time: ~ days wall time: ~1 hr

# of cores: 4 nodes 24 cores # of cores: 4 nodes 24 cores # of cores: 2 nodes 24 cores




Why Machine Learning cont.

o In classroom usage, fastest simulations can take about 10 minutes to 3 hours.

o Similarly, for research applications, not having a rapid access to expected overall trends can
make the process of starting new investigations unwieldy and time-consuming (waiting +
runtime).

o we explore the idea of integrating machine learning (ML) layer with simulations to enhance the
performance and improve the usability of simulations for both research and education.
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Machine Learning Surrogates for MD Simulations

o The “ML surrogates for MD simulations™ framework is an approach to use ML to learn from MD

simulations and produce learned surrogates for MD simulations.

o ML surrogates for MD simulations enable several capabilities:
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o learn pre-identified (desired) features associated with the simulation outputs
O generate accurate predictions for unseen design space parameters

O enable instantaneous predictions and improve interactivity

Related Work:

- SorbNet (2019): DNN surrogate for adsorption equilibria

- Chem. Sci. (2019): ANN to predict dissociation timescale of
compounds in ab initio MD simulations

- arXi1v:2001.08055 (2020): CNN based " “emulators" to predict

outcomes of simulations in biochemistry



Application

Apply the ML surrogate 1dea to the case of MD

Ion channels

simulations of ions in nanoconfinement created by
uncharged material surfaces.
Goal: bypass simulations and use ML to extract the

distribution of confined 1ons.

Inputs: confining length, salt conc., 1on valencies,
ion diameter

Outputs: the density profiles of 1ons
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Artificial Neural Network (ANN) Model for Regression

o ANN-based regression model used in the ML

4

surrogate to predict output 1onic density profile 3333
. . . 3
o Generated dataset having 6,864 simulation 292

MD Simulations

configurations for training and testing (0.7:0.3) | oriensin
o ANN was trained to predict ~150 points R R
characterizing (half of) the 10n density profile T : |

Normalization

% Technologies: TensorFlow, Keras and Sklearn 4 Inputs: confining length, salt conc.,

¢ Implementation details: Adam optimizer,
Xavier normal distribution, mean square loss
function, dropout regularization. valency, and 1on diameter

o Outputs: the density profiles of 1ons

positive 1on valency, negative 1on

Kadupitiya, Sun, Fox, Jadhao, J. Comp. Sci. 42, 101107 (2020)



Results

o ANN based regression model predicted Contact density pc , mid-point (center of the slit) density
pm , and peak density pp accurately with a success rate of 95:52% (MSE ~ 0:0000718), 92:07%

(MSE ~ 0:0002293), and 94:78% (MSE ~ 0:0002306) respectively outperforming other non-
linear regression models

Model Contact Density ||Midpoint Density Peak Density

Success %| MSE ||Success %| MSE | Success %| MSE
Polynomial 61.04 ]0.0129300|| 60.84 |0.0187700|| 61.87 ]0.0100400
Kernel-Ridge 78.86 0.0030900|| 76.57 0.0041200|| 75.93 (0.0049800
Support Vector| 80.11 0.0012700( 79.55 (0.0024900|f &81.98 [0.0010600
Decision Tree 68.44 |0.0084600|| 64.54 ]0.0094900|| 62.47 |0.0110700
Random Forest| 74.15 ]0.0045700f 70.85 [0.0078900|| 75.09 0.0040800
ANN based 95.52 |0.0000718|| 92.07 (0.0002293| 94.78 ]0.0002306




Results: Accuracy Comparison

o The success rates A, for systems a, b, ¢, an
(a)

I)
| ML MD| .
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o where i1 indicates the
simulation index,

o P 1s the number of
predictions made

o 0 (X, €) 1s a step function

given by e (x, €)= 1 for x <g,
and o (x, €) =0 for x >=¢.
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Results: Trendlines generated using ML surrogate

o Trendlines generated using ML surrogate to examine variation in 1onic density with positive 1on
valency at salt concentration (a) ¢ = 0.5 M and (b) 0.9 M.
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Results: Speedup (S)

o Traditional speedup formulae associated with parallel computing methods need to be adapted for
evaluating the speedup associated with the ML-enhanced simulations.

L Lsim o tg., 1S sequential run time

ooty +te - Ny /N,

o t, 1s time to do forward propagation/

: L : inference per instance
o S rises with increasing N b

o N, number of predictions/looked ups
o When N, << N, number of S becomes t,, / t, ; For

our MD simulations (t..  ~12 hours) and ANN

S1m

model (t, ~0:25 seconds), we find this ratio to be o t,, 1s average MD simulation walltime to
create one training sample + average

training time per sample

o N, number of training samples

over 105

o When N (4K)> N, (1), For our MD simulations t;
1s 1000s, so S ~ 10-2

oSy =tg,/teandt, ~0,50 S/ Ny =8y, /N

o N, * t,. represents total time to create

the training dataset and the TensorFlow

p training time.



Uncertainty Quantification Using ML surrogate

o Uncertainty Quantification (UQ) 1s a new feature in the nanoconfinement tool.

o Inputs to simulations often have some uncertainty in their values

o Measurement error, Variations in samples, Etc.
o We need to know how these uncertainties propagate to the output(s)

o It would also be nice to know which uncertainties affect the output(s) the most.

o This 1s known as “Sensitivity Analysis”.
o We use a pretrained ML surrogate to run the simulations required for UQ.

o This runs the tool with different combinations of input values using the ML surrogate.

O Since we are using the ML surrogate, running many runs will be instantaneous.



UQ Inputs

o Supported Probability Distributions
o Exact (no UQ) values
o Gaussian (or Normal) distribution
o Uniform distribution

o If any number values were set to probability distributions (Gaussian or Uniform), UQ i1s
performed.

Input controls:

Salt concentration (M):

@ Distribution: | gaussian v | Mean: ‘0.6 31 | Std.: | 0.001 >
lon diameter (nm):

@ Distribution: | gaussian v | Mean: | 0.714 ${ |Std.: | 0.001 e
Samples per input: | 250 5 | Simulate




UQ Outputs-1

o This output allows users to see the output probability density at one point in the 2D density
plot.

o Users can change the “Z point slider” to see density probability distribution at different points

Output controls and distributions:

Select a Z point (nm):

114 o
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UQ Outputs-2: Sensitivity analysis

© When there 1s more than one UQ input, sensitivity analysis will be performed. The values indicate
the relative amount the output changes over the range of each input parameter’s distribution. So,

for example, changing the deviation of a gaussian input parameter will impact the sensitivity.

o Users can change the “Z point slider” to see sensitivity analysis at different points

Sensitivity analysis:

Concentration (C):

Mean(*): @ 0.5365

Std.(Y: | 0.00156°

lon diameter (D):

Mean(*): | 0.5365

Std.(*): | 0.00162
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UQ Outputs-3: Response

o All the output responses are plotted as a 2D probability density. Color represents the probability density.

Salt concentration, and Ion diameter both are
gaussians.

All simulations in a 2D histogram plot :
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Salt concentration, and Ion diameter are uniform

and gaussians, respectively.

All simulations in a 2D histogram plot :
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Conclusion

o Using MD simulations of 1ons in confinement as an example, we illustrated the 1dea of using
ML-based methods to enhance the performance and usability of scientific simulations.

o ML model predicted critical density features with ~94% success rate

o The results demonstrated that the performance gains of parallel computing can be further
enhanced by using machine learning.

o ML enhancement can extend the usability of simulations for both research and education

o Explore extensions to other fields and core issues such as determination of error bars



Nanoconfinement: https://nanohub.org/tools/nanoconfinement
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This app enables users to simulate ions confined between nanoparticle (NP) surfaces in aqueous media. Nanoparticles can be synthetic (such as gold A
ample systems include ion channel proteins of the cell

tem Simulate
=3 NPs) or natural (e.g. proteins) and the length of confinement is of the order of nanomet

membrane, adsorbed ions near surfaces of porous electrodes, and ions confined by NPs and/or colloidal particles. NP surfaces are assumed to be

Confinement  lectrostatics

® o 9 unpolarizable and are modeled as planar interfaces considering the large size difference between the ions and the NPs.
©e (@ o The app facilitates investigations for a wide array of ionic and environmental parameters. Users can extract the fonic structure (density profile) and

study its dependence on salt concentration (c), ion valency (z), and other physical attributes.
Users can explore interesting effects by changing the ¢ parameter from 0.3 to 0.9 M. This increase in density leads to crowding of the channel
(confinement) with a large number of ions. The effect of symmetry breaking caused by the surfaces is seen: to avoid being pushed by ions from both

s users to explore this effect of ion accumulation near the interface

Density Profiles|

ers the interface over the central region (bulk). The a

- the sides, an ion p
i / and make a quantitative assessment of fonic structure in strong confinem
Another rich avenue to explore is to tune the valency of positive ions (parameter z) from 1 to 3. A positively-charged multivalent ion (+3 Fe or +2 Ca)
ce by oppositely charged ions with a stronger force relative to the bulk where the symmetry allows for
of multivalent ions) tend to cause depletion of the ions from the
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Thank you!
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Bio-inspired Design of Ion Separation Membranes

lon channels

Marban, E. Nature 415, 213-218 (2002)

Synthetic lon channels

Jacobson Group at IU Chemistry

O

Biological 1on channels exhibit
remarkable ion selection and
separation efficiency, inspiring the
fabrication of synthetic membranes
and nanofluidic devices

Accurate structural and dynamical
information about 1on behavior in
confinement is critical to
understand many biological and
synthetic phenomena relevant to
separation processes and energy
storage applications

In biological 1on channels,

concentrations of salt can be very
high (excess of 1 M)



Competition between Two Types of Correlations

Confinement ‘ Electrostatics
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Entropic (steric) forces push Electrostatic forces lead to spatial
ions against the boundary preferences between ions

lonic Structure is determined by the competition between
Steric and Electrostatic correlations



Why Machine Learning for Soft Materials Engineering?

O As the utility of simulations in the design of soft materials 1s further demonstrated, it will be
necessary for simulations to be performed at a faster speed and for a large set of parameters.

o However, current simulations of soft materials and their data analysis incur high computational
costs despite the use of optimal parallel computing techniques. We need new approaches to
efficiently explore the high-dimensional material design space.

o On the other hand, advances in hardware have led to the generation of “big” scientific
computation data. These datasets contain key information to advance the design of complex
materials, but they are high-dimensional and difficult to analyze using standard approaches.

o Machine learning (ML) has the potential to directly address these needs. We employ ML to
o leverage past simulations to rapidly generate accurate predictions
o accelerate molecular dynamics (MD) simulations of soft matter

o expedite simulation data analysis to diagnose structure-property relationships in materials



