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oMolecular dynamics (MD) simulations are powerful tools for investigating the microscopic 
origins of the behavior of a wide range of materials, including soft matter

oSimulations are used everywhere; physics, chemistry, bioengineering, and materials science.


oSimulations enable the understanding of microscopic mechanisms underlying the macroscopic 
material and biological phenomena.


oParallel computing techniques (OpenMP, MPI) are often used with complex systems.

Introduction



Few examples for MD simulations
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Virus like particle - Linker 

superlattices simulation


wall time: ~4 hr


# of cores: 4 nodes 24 cores

Shape control of charge-

patterned nano-containers

wall time: ~1 hr


# of cores: 2 nodes 24 cores


12-capsomere virus 

nanoparticle assembly

wall time: ~ days


# of cores: 4 nodes 24 cores




o In classroom usage, fastest simulations can take about 10 minutes to 3 hours.

oSimilarly, for research applications, not having a rapid access to expected overall trends can 

make the process of starting new investigations unwieldy and time-consuming (waiting + 
runtime).


owe explore the idea of integrating machine learning (ML) layer with simulations to enhance the 
performance and improve the usability of simulations for both research and education. 

Why Machine Learning cont.
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Machine Learning Surrogates for MD Simulations
o The “ML surrogates for MD simulations” framework is an approach to use ML to learn from MD 

simulations and produce learned surrogates for MD simulations. 

o ML surrogates for MD simulations enable several capabilities: 


o learn pre-identified (desired) features associated with the simulation outputs

o generate accurate predictions for unseen design space parameters

o enable instantaneous predictions and improve interactivity

Related Work:

- SorbNet (2019): DNN surrogate for adsorption equilibria 


- Chem. Sci. (2019): ANN to predict dissociation timescale of 

compounds in ab initio MD simulations


- arXiv:2001.08055 (2020): CNN based ``emulators'' to predict 

outcomes of simulations in biochemistry



Application
o Apply the ML surrogate idea to the case of MD 

simulations of ions in nanoconfinement created by 

uncharged material surfaces.


o Goal: bypass simulations and use ML to extract the 

distribution of confined ions. 


o Inputs: confining length, salt conc., ion valencies, 

ion diameter


o Outputs: the density profiles of ions
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Artificial Neural Network (ANN) Model for Regression

o ANN-based regression model used in the ML 
surrogate to predict output ionic density profile


o Generated dataset having 6,864 simulation 
configurations for training and testing (0.7:0.3)


o ANN was trained to predict ~150 points 
characterizing (half of) the ion density profile


❖ Technologies: TensorFlow, Keras and Sklearn

❖ Implementation details: Adam optimizer, 

Xavier normal distribution, mean square loss 
function, dropout regularization.

o Inputs: confining length, salt conc., 

positive ion valency, negative ion 

valency, and ion diameter

o Outputs: the density profiles of ions

Kadupitiya, Sun, Fox, Jadhao, J. Comp. Sci. 42, 101107 (2020)



oANN based regression model predicted Contact density ρc  , mid-point (center of the slit) density 
ρm , and peak density ρp accurately with a success rate of 95:52% (MSE ~ 0:0000718), 92:07% 
(MSE ~ 0:0002293), and 94:78% (MSE ~ 0:0002306) respectively outperforming other non-
linear regression models 

Results



oThe success rates Ai for systems a, b, c, and d are found to be 0.98, 0.91, 0.78, 0.89 respectively. 

Results: Accuracy Comparison

owhere i indicates the 
simulation index,


oP is the number of 
predictions made


o Θ (x, ε) is a step function 
given by Θ (x, ε) = 1 for x < ε, 
and Θ (x, ε) = 0 for x >= ε.



Results: Trendlines generated using ML surrogate
oTrendlines generated using ML surrogate to examine variation in ionic density with positive ion 

valency at salt concentration (a) c = 0.5 M and (b) 0.9 M.



oTraditional speedup formulae associated with parallel computing methods need to be adapted for 
evaluating the speedup associated with the ML-enhanced simulations.

Results: Speedup (S)

oS rises with increasing Np 

oWhen Ntr << Np, number of S becomes tsim / tp ; For 

our MD simulations (tsim ~12 hours) and ANN 
model (tp   ~0:25 seconds), we find this ratio to be 
over 105


oWhen Ntr  (4K)> Np(1), For our MD simulations ttr 
is 1000s, so S ~ 10-2


oST = tsim / ttr and tp  ~ 0, so ST / Ntr  = SML / Np 

ML

o tsim is sequential run time


o tp is time to do forward propagation/
inference per instance


o Np number of predictions/looked ups


o Ntr number of training samples


o  ttr  is average MD simulation walltime to 
create one training sample + average 
training time per sample


o Ntr *  ttr  represents  total time to create 
the training dataset and the TensorFlow 
training time.



Uncertainty Quantification Using ML surrogate

oUncertainty Quantification (UQ) is a new feature in the nanoconfinement tool.

o  Inputs to simulations often have some uncertainty in their values


o Measurement error, Variations in samples, Etc.

oWe need to know how these uncertainties propagate to the output(s)

o  It would also be nice to know which uncertainties affect the output(s) the most. 


o This is known as “Sensitivity Analysis”.

oWe use a pretrained ML surrogate to run the simulations required for UQ. 

oThis runs the tool with different combinations of input values using the ML surrogate.


o Since we are using the ML surrogate, running many runs will be instantaneous.




UQ Inputs
oSupported Probability Distributions


o Exact (no UQ) values

o Gaussian (or Normal) distribution 

o Uniform distribution


o If any number values were set to probability distributions (Gaussian or Uniform), UQ is 
performed.
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UQ Outputs-1
oThis output allows users to see the output probability density at one point in the 2D density 

plot.

oUsers can change the “Z point slider” to see density probability distribution at different points
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UQ Outputs-2: Sensitivity analysis 
oWhen there is more than one UQ input, sensitivity analysis will be performed. The values indicate 

the relative amount the output changes over the range of each input parameter’s distribution. So, 
for example, changing the deviation of a gaussian input parameter will impact the sensitivity.


oUsers can change the “Z point slider” to see sensitivity analysis at different points
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UQ Outputs-3: Response

oAll the output responses are plotted as a 2D probability density. Color represents the probability density.
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Salt concentration,  and Ion diameter both are 
gaussians. 

Salt concentration,  and Ion diameter are uniform 
and gaussians, respectively. 



oUsing MD simulations of ions in confinement as an example, we illustrated the idea of using 
ML-based methods to enhance the performance and usability of scientific simulations.


oML model predicted critical density features with ~94% success rate


oThe results demonstrated that the performance gains of parallel computing can be further 
enhanced by using machine learning.


oML enhancement can extend the usability of simulations for both research and education


oExplore extensions to other fields and core issues such as determination of error bars

Conclusion
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Bio-inspired Design of Ion Separation Membranes

o Biological ion channels exhibit 
remarkable ion selection and 
separation efficiency, inspiring the 
fabrication of synthetic membranes 
and nanofluidic devices 


o Accurate structural and dynamical 
information about ion behavior in 
confinement is critical to 
understand many biological and 
synthetic phenomena relevant to 
separation processes and energy 
storage applications


o In biological ion channels, 
concentrations of salt can be very 
high (excess of 1 M)Jacobson Group at IU Chemistry

Synthetic Ion channelsIon channels

Marbán, E. Nature 415, 213-218 (2002)



Electrostatics

Ionic Structure is determined by the competition between 

Steric and Electrostatic correlations

Electrostatic forces lead to spatial 
preferences between ions 

Confinement

Entropic (steric) forces push 
ions against the boundary 

Competition between Two Types of Correlations



oAs the utility of simulations in the design of soft materials is further demonstrated, it will be 
necessary for simulations to be performed at a faster speed and for a large set of parameters. 


oHowever, current simulations of soft materials and their data analysis incur high computational 
costs despite the use of optimal parallel computing techniques. We need new approaches to 
efficiently explore the high-dimensional material design space. 


oOn the other hand, advances in hardware have led to the generation of “big” scientific 
computation data. These datasets contain key information to advance the design of complex 
materials, but they are high-dimensional and difficult to analyze using standard approaches.


oMachine learning (ML) has the potential to directly address these needs. We employ ML to 

o leverage past simulations to rapidly generate accurate predictions

o accelerate molecular dynamics (MD) simulations of soft matter

o expedite simulation data analysis to diagnose structure-property relationships in materials

Why Machine Learning for Soft Materials Engineering?


