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Simulating Unpaired Electrons in Open-shell Systems

From Cramer Section 6.3.3:
When simulating a closed-shell singlet, a spin-up (α) and spin-down (β)
electrons will occupy the same spatial orbital (wavefunction).

When simulating an open-shell system, choices must be made:

Unrestricted Hartree-Fock (UHF)

Restricted open-shell Hartree-Fock (ROHF)

Restricted Hartree-Fock (RHF)

The methyl radical, ROHF wavefunction

Ψ = |C1s2σ2CHa
σ2CHb

σ2CHc
C2p1z |

All electrons are paired, except for the one in the 2pz orbital on the carbon.
Otherwise, the same spatial orbitals are used for the α and β electrons.
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Comparing ROHF and UHF

The methyl radical, ROHF wavefunction

Ψ = |C1s2σ2CHa
σ2CHb

σ2CHc
C2p1z |

The methyl radical, UHF wavefunction

Ψ = |C1sαC1s ′βσαCHa
σ′βCHa

σαCHb
σ′βCHb

σαCHc
σ′βCHc

C2p1z |

See Cramer section 6.3.3!
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Comparing ROHF and UHF - Benefits

ROHF

In restricted HF, the α and β electrons share spatial orbitals. In the
restricted - open shell HF, the same spatial orbitals are used for paired
electrons and additional half filled orbitals are included for the unpaired
electrons. The benefit is the resulting wavefunctions are eigenfunctions of
the Ŝ2 operator, giving reliable values of the total spin magnetic moment.

UHF

UHF separately computes spatial wavefunctions for the α and β electrons,
givng reliable information about spin polarization.
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Comparing ROHF and UHF - Drawbacks

ROHF

ROHF does not calculate spin polarization correctly. In the methyl radical,
there is NO spin density (ρα − ρβ) in the molecular plane.

UHF

The total spin magnetic moment,S , is often incorect, due to ‘spin
contamination’ from excited state with higher spin magnetic moments.

There should be spin density in the plane due to the ‘Fermi hole’ around
the unpaired α electron in the pz orbital. This exchange correlation effect
allows more ρα above and below the plane and more ρβ in the plane.
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Exchange Energy and the Fermi Hole
The interaction of the charge and spin of electrons causes their density to
be different than if they were charge-less and spin-less. The effect is
thought of in terms of exchange and correlation holes.

Hole Definitions

Coulomb Hole: The dynamical correlation (Coulomb repulsion) gives
rise to an area around the electron where other electrons are less likely
to be found. But they are more likely to be found farther away.

Fermi Hole: A static reduction in the probability of finding an electron
with the same spin near a ”fixed electron”, due to the exchange
energy, a quantum correction to the classical Coulomb repulsion.

Fermi Hole Effects

For the methyl radical: ”The Fermi hole that surrounds the unpaired
electron allows other electrons of the same spin to localize above and
below the molecular plane slightly more than electrons of opposite spins.”
This same spin density is pulled from the molecular plane.

Nicole Adelstein (SFSU) Quantum Calculations in CHEM 870 Spring 2020 7 / 21



Exchange Energy and the Fermi Hole

The interaction of the charge and spin of electrons causes their density to
be different than if they were charge-less and spin-less. The effect is
thought of in terms of exchange and correlation holes.

Fermi Hole Effects - Cramer section 6.3.3

For the methyl radical: ”The Fermi hole that surrounds the unpaired
electron allows other electrons of the same spin to localize above and
below the molecular plane slightly more than electrons of opposite spins.”
This same spin density is pulled from the molecular plane.
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Bigger Basis Sets = Wait Expotentially Longer
For polyatomic molecules, there are basis functions centered on each
nuclei. The electron-electron interaction integrals (Coulomb and exchange)
contain basis functions centered on more than two nuclei. Multicentered
integrals are difficult to evaluate, especially with Slater orbitals.

Slater Orbitals

Snlml
(r , θ, φ) = Nnl r

n−1e−ζrYml
l (θ, φ) (1)

Nnl is the normalization constant, ζ can be fit, but is often pre-optimized.

Gaussian Functions Ease Integral Evaluation

gs(r , α) = Nsαe
−αr2 gx(r , x , α) = Npαxe

−αr2

gy (r , y , α) = Npαye
−αr2 gz(r , z , α) = Npαze

−αr2

For d orbitals, you can have x2, y2, z2, xy , xz , or yz multiplied by eαr
2
.
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The Cost/Benefit Analysis of Gaussian functions

Benefit: Gaussian functions centered at two different nuclei can be
combined into a single Gaussian centered at on position (like reducing the
actual basis set size).

Cost: Gaussian functions do not look like Slater orbitals, and thus do not
model radial electon probability!
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Solution: Fit Slater with many Gaussian functions

Contracted Gaussian functions - S1s example

S1s(r) =
3∑

i=1

c1sigs(r , α1si )

= 0.44gs(r , 0.10982) + 0.54gs(r , 0.40577) + 0.15gs(r , 2.2277)
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Solution: STO-NG

Contracted Gaussian functions, Definition = Sum of Primitives

Slater Type Orbital (STO) fit with N Gaussians.
A contraction of 3 Gaussians for each basis function gives STO-3G:

S1s(r) =
3∑

i=1

c1sigs(r , α1si )

Each gs is called a primitive Gaussian.

Minimal basis sets include enough STO-NG orbitals to accomodate all the
electrons, but are usually not sufficient. Addition of gp(r , α) orbitals
improves simulations of atoms or molecules with H - Be.

The Gaussians are fit to Slater-type orbitals with ζ = 1 and then scaled.
The linear coefficients from the fit are unchanged.
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Solution: STO-NG
The Gaussians are fit to Slater-type orbitals with ζ = 1 and then scaled.
The linear coefficients from the fit are unchanged.

Figure: from McQuarrie Chapter 12
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A Better Solution: Multiple ζ and Split-Valence
”One inadequacy of a minimal basis set is due to the fact that the orbital
exponents are fixed, and so an orbital is unable to contract or expand in
different molecular environments. The fixed orbital exponents simply make
the orbitals too rigid.” - McQuarrie 12.3

Use Linear Combinations of Slater Type Orbitals

Example, 2s

φ2s(r) = S2s(r , ζ1) + dS2s(r , ζ2)

Each S2s is made of contracted Gaussians and d will be optimized in the
Hartree-Fock procedure.

Why even bother with Slater? Use Pople 3-21G

The dash represents the split valence. Split-Valence basis sets describe the
inner-shell electrons by a single orbital and the valence shell electrons by a
sum of orbitals.
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Pople contracted Gaussian functions N-MPG

Why even bother with Slater? Use Pople 3-21G

Example of Hydrogen:
For the valence electrons (21), use a linear combintion of two orbitals
(both 1s), {′} with M=2 primitive Gaussians and {′′} with only P=1 .

φ
′
1s(r) =

∑2
i=1 d

′
1sigs(r , α

′
1si ) and φ

′′
1s(r) = gs(r , α

′′
1s)

Example of Lithium:
The non-valence electrons are represented by a sum of N=3 primitive
Gaussians. φ

′
1s(r) =

∑3
i=1 d

′
1sigs(r , α

′
1si )

The valence electrons are split (21) and require orbitals for 2s and 2p.
These will look similar to the hydrogen valence format above.

Pople 6-31G basis sets are very popular, as is adding more orbitals to
account for polarization.
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The benefits of More Orbitals!

In Tutorial 2, you tested three basis sets: SVP, TZVP, and cc-pVTZ and
whether they improved the ground state energy of the helium atom (and
hence the ionization energy).

Using more than the minimal basis set gives better bond lengths and bond
angles, as we will see in Tutorial 4.

We also need to cover Configuration Interaction to get the correct
dissociation energy for molecules.
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Configuration Interaction (CI) is needed

Consider using only the ground state wavefunction to describe H2.

The single Slater determinant wavefunction for H2

ψ(1, 2) =
1√
2

∣∣∣∣σbα(1) σbβ(1)
σbα(2) σbβ(2)

∣∣∣∣ (2)

= σb(1)σb(2)

{
1√
2

[α(1)β(2)− α(2)β(1)]

}
(3)

ψMO =
1

2(1 + S)
[1sA(1) + 1sB(1)][1sA(2) + 1sB(2)] (4)

Where we drop the spin part and recall the bonding orbital is a lienar
comition of atomic 1s orbitals.

The energy EMO = 〈ψMO|Ĥ|ψMO〉 depends on ζ and R, the H-H bond
distance.
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CI is needed to fix bond dissociation - example H2

Consider the using only the ground state wavefunction to describe H2.

The single Slater determinant overestimates the ionic terms.

ψMO =
[1sA(1) + 1sB(1)][1sA(2) + 1sB(2)]

2(1 + S)

=
[1sA(1)1sB(2) + 1sA(2)1sB(1) + 1sA(1)1sA(2) + 1sB(1)1sB2]

2(1 + S)

= ψVB + ψionic

Figure: Ionic components of single determinant from McQuarrie
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CI is needed: H2 dissociation E (R =∞) and ζ are wrong

Figure: Ionic components of single determinant from McQuarrie

Figure: The energy should go to -1 Eh. ζ should go to 1.
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CI uses multiple Slater Determinants!

From all configurations, we keep ψ1 and ψ2

σb =
1sA + 1sB√

2(1 + S)
σa =

1sA − 1sB√
2(1− S)

ψ1 =
1√
2

∣∣∣∣σbα(1) σbβ(1)
σbα(2) σbβ(2)

∣∣∣∣
ψ1 = σb(1)σb(2)

ψ2 = σa(1)σa(2)

ψ3, ψ4, ψ5 = σb(1)σa(2)− σa(1)σb2)

ψ6 = σb(1)σa(2) + σa(1)σb(2)

ψCI = c1ψ1 + c2ψ2
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CI can be exact using an infinite basis set

Optimize c1 and c2 during the Hartree-Fock SCF

ψCI = c1ψ1 + c2ψ2

ψ2 is an excited-state configuration. A linear combition with the ground
state is called configuration interaction.

The larger the basis set, the greater the number of virtual orbitals, which
can contribute to the configuration interaction.

Configuration interaction converges very slowly (as basis functions are
added) and is expensive.

The coupled-cluster (CC) method is more accurate than CI and is built on
a similar principle, adding excited state wavefunctions (configurations).
We’ll use CC because it’s included in many quantum codes (ORCA).
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