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Vibrational modes and Spectroscopy

Why do we care?

Spectroscopy is how we identify atoms and molecules.

The energy of transitions between vibrational modes are the
FINGERPRINT of the molecule.
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Figure: The infrared (IR) spectrum of formaldehyde, CH,=0

Note: the energies are given in wavenumbers, cm™!.
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Normal Modes - mathematical background

Polyatomic Molecules Vibrate

To describe a molecule with NN atoms, one needs 3N coordinates:

{Xm Yn, zn}

A molecule has 3N degrees of freedom (DOF), as each coordinate is free
to move idependently.

N2 ’\J[s(,,y;)e,,s
(44,20

We can re-assign the DOF to better describe vibrations (and rotations).
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Normal Modes and Degrees of Freedom

There are more vibrational modes for linear molecules.

Re-assign the DOF to count number of vibrational modes.

@ Three coordinates are used to define the center of mass (COM) and
its translational motion.

Two (linear) or three (nonlinear) coordinates are used to define
rotational motion.

The ‘left-over’ DOF are assigned to vibrational modes.

DOF Linear Nonlinear
translational 3 3

rotational 2 3 @%MM MEAsuec
vibrational 3N-5 3N—-6

Linear molecules only rotate about 2 axes.

Nicole Adelstein (SFSU) Quantum Calculations: CHEM 870/353 Spring 2020 5/14



Normal Mode of the nitrogen diatomic molecule

DOF Linear Nonlinear
translational 3 3 N (\J><
rotational 2 3 W canT MEnsuee
vibrational  3N-5 3N—-6

Linear molecules only rotate about 2 axes.

Nitrogen's stretching mode
For No, N = 2 so the vibrational DOF are:

3N -5=3(2)—5=1

There is only one vibrational mode!
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Each Normal Mode has a Fundametal Frequency

For Harmonic Oscillators, the levels are equally spaced
Consider the transition from nto n+1

AE = hvgps = Epy1 — Ep

1 [k
Vobs — % ;(HZ)

Change to wavenumbers:

Remember: Only one energy is needed to identify this vibrational mode!
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Each Normal Mode has a Fundametal Frequency

A molecule with three atoms has three modes: 3N—6=3

Each mode has a different fundametal frequency and thus a characteristic

wavenumber.

With anharmonicity:

G,'yn = (.D,'(n aF %) + )?,'CI),'(H + %)2

Comes from Taylor Expansion of Harmonic Potential:

2
vy =vin+(57)  u-0+5(5a),  0-bP+
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Each Normal Mode has a Fundametal Frequency

A molecule with three atoms has three modes: 3N—6=3

Each mode has a different fundametal frequency and thus a characteristic
wavenumber.

Gi,n = <in(n aF %)

1 [k

Wi 21c E
With anharmonicity:

G,"n = J),-(n T %) ol )"(,-d),-(n = %)2
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Normal Coordinates for the Hamiltonian
The Potential Energy term is now:

Nvl

D¢

J=1

o

VHQ}) =

N =

Qj are the normal coordinates (for each j mode)
N,ip is the number of vibrational DOF (modes).
F; is related to the restoring Force of the mode.

A

The Hamiltonian is now (Kinetic + Potential) :

Nib 22 a2 Noib
— 2;&/(3(2? *3 2 ZE:: Q)

I

vib — —
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The Zero Point Energy of Each Mode

Each vibrational mode has a ground state (n=0)
The total energy due to vibrations is:
Nyip
Eb =Y hvj(nj +3)
j=1

These energies were found using separation of variables:

Wib(Q1, @2, .., Qn) = Yyib1( Q1) Yuib2(Q2)- - YvibN (Qn)

@ Each vibrational mode also has excited states.

@ Usually we measure the fundamental transition (n=0 to n=1) to
identify the mode.

@ High energy, random seeming vibrations of the molecule can be
decomposed into these vibrational modes.
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Infrared and Raman Spectroscopy

The vibrational mode must couple to the electromagnetic field

The transition dipole moment is:
pfi = /Wﬁ?ﬁidT
Where the transition dipole moment operators is:
a= Z Qir;
i

where F; is the displacement of charge Q; from the origin.

v

o If ug is non-zero, the transition is allowed. Otherwise it is ‘forbidden’,
though there are many exceptions.

@ The above equations hold for electronic, vibrational, and rotational
transitions.

@ Each type of transition has it's own selection rules,
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Infrared and Raman Selection Rules

Infrared requires dipole moments

The molecule must have a dipole moment or the vibrational mode must
create a dipole moment.

«— —
OQ—C =0
A

—_ «— —_—
O— C =00
B

Raman requires polarizability

Raman requires that the polarizability changes as the molecule vibrates
Now write the transition dipole moment operators as:

i = a(x)E(t)

where a(x) is the polarizability of the molecule and E(t) is the
electromagnetic field.
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Infrared and Raman Exclusion Rule

For Polyatomic molecules

If a molecule has a center of symmetry, then no modes can be both
infrared AND Raman active. Note, a mode can be inactive in both.

«— — —_— «— —
O— C =0 O—=—C =0
A B

Which of the modes above is Raman active?
Which is IR active?
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