CO, capture is required to
mitigate climate change

Inorganic solids have potential to capture CO,, but
they are not yet economically viable. ®
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Test many MOFs, many linkers
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(SH);  -(NH,),  -(H), -(NO,),  -(CH3);  -(F); -(F)a -(CF3)y  -(Br);  -(Br),



DFT binding energies and geometries

* DFT can estimate exchange-correlation energy

* A self consistent field method is still used to find the energies and
wavefunctions.
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The calculation is pretty good

* CO, loading = mole of CO, per

mole of MOF

e GCMC = Grand canonical
Monte Carlo, a computational

method to statistically

investigate a reaction (such as

CO, adsorption)

Normalized GCMC CO, loading @ 1bar
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The DFT functional for systems with dispersion forces!

e Literature: M06-L with Def2SVP

* | suggested: B3LYP and 6-31+G(d,p) because | got errors
when | tried to run

#P MO06L/def2SVP opt iop(1/7=30) integral=ultrafine

* However, the benzene and CO, molecules did not
“bind” with B3LYP and 6-31+G(d,p)!
e Eureka! MO6-L is better than B3LYP for dispersion.
e With testing, | found the error was Def2VSP (not MO6-L).

* Please run MO6L and 6-311+G(d,p) or 6-31+G(d,p).

* | think the larger basis set will be more accurate, but it takes
twice the amount of time (I tested on benzene geo opt).

* New input files and analysis script is on iLearn.



Locations of CO, binding in MOF
o irobabilitidensity igh




Finding the best MOFs and linkers
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