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Outline

u Technology Roadmap on Semiconductors
u Fundamentals of information processing,
u Fundamental limits to scaling
u Thermal Limits
u Message:  We suggest that the benefits from

nanoelectronics research may, in the --
u Short term lie with the invention of new structures,

materials and processes that extend the CMOS
technology platform
v Radical thermal solutions are needed

u Long term enable invention of entirely new information
processing technologies
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International Technology Roadmap on Semiconductors

u A very detailed industrial perspective on the future
requirements for micro/nano electronic technologies
v Goal is to continue exponential gains in performance/price

for the next fifteen years

u Built on worldwide consensus of leading industrial,
government, and academic technologists

u Provides guidance for the semiconductor industry and for
academic research worldwide

u Content: critical requirements and judgment of status

u Projects that by 2016, half-pitch spacing of metal lines will
be 22 nanometers and device gate lengths will be 9
nanometers
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Moore’s Law: Minimum Feature Size
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Evolution of Electronics

Analog: TV, radio,
communications...

Digital: Computation

DIGITAL
INFORMATION
PROCESSING

General Purpose Computer (GPC) accepts arbitrary types of data and sets of
instructions to perform arbitrary tasks of transmission, processing, and storing
the information

Parameters of GPC:

u Number of components (integration density/functional complexity)

u Speed

u Energy consumption

Controllable
resistor

Switch
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What is Information?

Information is…

u …Measure of distinguishability

u …A function of a priory probability of a given state or
outcome among the universe of possible states.
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Constituents of the Information Theory

u Constituents of the Information Theory
• Sender and recipient

• Symbols (microstates) as elementary units of information

u Information carriers

Information is physical!
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The Abacus, an ancient digital
calculating device

Information is represented in digital form

Each column denotes a decimal digit

Binary representation: two possible positions for each bead

A bead in the abacus is a memory device, not a logic gate



Source: IBM  
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Particle Location is an Indicator of
State

1 1 0 0 1 0
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Two-well bit
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A physical system as a computing
medium
u We need to create a bit first. Information processing always

requires physical carrier, which are material particles.

u First requirement to physical realization of a bit implies
creating distinguishable states within a system of such
material particles.

u The second requirement is conditional change of state.

u The properties of distinguishability and conditional change
of state are two fundamental properties of a material
subsystem to represent information. These properties can
be obtained by creating energy barriers in a material
system.
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Kroemer’s Lemma of Proven
Ignorance

u If in discussing a semiconductor problem,
you cannot draw an Energy-Band-Diagram,
this shows that you don’t know what are you
talking about

u If you can draw one, but don’t, then your
audience won’t know what are you talking
about
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Barrier engineering in semiconductors

n n

p

By doping, it is possible to create a built-in field and energy barriers of
controllable height and length within semiconductor. It allows one to achieve
conditional complex electron transport between different energy states inside
semiconductors that is needed in the physical realization of devices for
information processing.
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Heterojunction barriers
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Example: Field Effect Transistor

Long Channel Short Channel

It is possible to derive MOSFET I-V equation form the
two-well one-barrier model
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Designers and Users want:
u Highest possible integration density (n)

v To keep chips size small and increase yields
v To increase functionality

u Highest possible speed (f=1/t)
v Speed sells!

u Lowest possible power consumption (P)
v Decrease demands for energy
v The generation of too much heat means costly cooling

systems

Ideal von Neumann’s Computer
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Binary Information Throughput (BIT)

BIT is  the maximum number of binary
transition per unit time
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Energetics of Computation

nfEP bit=

Requirements for an ideal computer:

(integration density)  n=max

(switching frequency) f=max

(power)   P=min

BIT=max
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Lowest Barrier:
Distinguishability Barrier
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Distinguishability D implies low
probability  of spontaneous transitions
between two wells (error probability)

D=max, =0 D=0, =0.5 (50%)
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Smallest Size:
The Heisenberg Barrier
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Classic and Quantum
Distinguishability @ =0.5
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Total Distinguishability @ =0.5

Generalized expression for
the minimum energy barrier
to create a bit
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Least Energy Computer
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Total Power Consumption at
Minimal  Energy per bit - {kTln(2)}
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Single Electron Devices Don’t Avoid the Power
Problem
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Power vs. Error trade-off
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Dynamic and Static Power
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Will Spintronics Alleviate the Power
Problem?

u Expectations:
v ultra low power ???
v ultra high density ???

u A quote: “Spintronics would use much less power than conventional electronics,
because the energy needed to change a spin is a minute fraction of what is
needed to push charge around”

u Is the very low energy to change state an advantage (e.g. low dynamic
power) or a disadvantage (e.g. high error probability) for applications of
spin devices in information processing?

0 1 E↑

E↓

B
r

BE B2=∆

∆E=2 µB B = 2_9.27_10-24 J / T_1.5 T =2.78_10-23 J= 1.74_10-4 eV

99.0
2

exp =




−=Π

kT

BB
err

Example:

T=300 K

B=1.5 T
(practically viable) (µB = 9.27_10-24 J / T)



33

How much heat a solid system
can tolerate?…

ITRS 2001 projects 93 W/cm2 for MPU in 2016

Several hundred W/cm2 is close to known limits of
heat removal from a 2-dimensional solid material
structure with Tmax =125°C

Experimental demonstrations of on-Si cooling systems
(without active devices):

680 W/cm2         thermoelectric (Zheng et al.)

790 W/cm2         microchannel  (Tuckerman and Pease)
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…and implications to the Roadmap:
Inflexion of ITRS vectors?

l is the “cell size”:
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Implications for Nanoelectronics
Utilizing ElectronTransport

u Scaling to molecular dimensions may not yield
performance increases
v We will be forced to trade-off between speed and density

u Optimal dimensions (depending on speed/density trade-
offs) for electronic switches should range between 5 and
50 nm, and this may be achievable with silicon technology
v Within the scope of ITRS projections
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Fundamentals of Heat Removal

Quotes from anonymous  scientists working at the frontiers of
nanoelectronics:

“ Heat removal is not an issue. Simply, engineers must  invent
better technologies for heat removal and cooling ”.

“Heat can be dissipated somewhere else”

Three fundamentals of heat removal:

1)The Newton's Law of Cooling: q=h(Th-Ta)
(h-heat transfer coefficient)

2) The Ambient:  Ta=300 K   !!!

3) The Carnot’s theorem:

−−= Q
T

TT
W

c

ca
cool

Heat to be
removed

Work to
be done
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Newton’s law of cooling

 

Cooling method  h, W/cm2·K 
.  
Air, natural convection  0.001 
Air, forced convection  0.01 
.  
Water, natural convection  0.1 
Water, forced convection  1 

. 
Boiling  10 
 

Q=h*A**(Th-Ta) max (Th-Ta)=100K

Max P=1000 W/cm2 ? (A=const)
*h – the heat transfer coefficient
**A - area
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The ambient interface

R1

Q1 Refrigerator

Chip interface Ambient interface

Air
Chip

Q2=Q1+W

R2
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Surface extension is
essential for removal of
high heat fluxes to the
environment
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Thermoelectric cooling

T=125 C

Effect of varying R2 (e.g. changing air’s
humidity, temperature etc.)  on the heat
removal rate and junction temperature, for
a thermoelectric cooler, compared with air
cooling by a fan.

R1

R2

Hot
side

Heat rejection to the ambient is a
universal element of all cooling
methods and requires surface
extension

Chip
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How Much Volume is Needed to Transfer
Chip Heat to the Ambient?

Example:
n=1014 bit/cm2

t=0.01 ps

BIT=104 Tbit/ps

a=1 nm

Ebit=0.08 eV (~4kT)

Πerror=10% /device

P=107 W/cm2

Th

P
A

nc
cold ∆

>

Box size:

 Acold>2x108 cm2

Lbox>141 m

Air: Ta=300 K

h=0.001 W/cm2K
Cold wall:

Q>107 W

Tcold=350 K

Thot=400 K

P=107 W;Ahot=1 cm2

Lbox

Q>P

Very Big Box!

P, W Approx. box dimensions, cm 
1 3x3x0.5

10 10x8x1
100 30x20x8

1000 100x50x40
10000 182x182x182

Example: computer min. size vs power
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Carnot’s Refrigerator and
Cryogenic Computation

−−= Q
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Min. total power needed to run a 100 W chip:

at 77 K - 300 W

at 4.2 K - 7 kW

The efficiency of heat engines dramatically drops at T<<Ta
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Cryogenic Computation with nanodevices
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The barriers dilemma

u Energy barriers are key components to provide Information
Flow

u Energy barriers are negative factor for Heat Flow

u Can we think of radically new ways of heat removal based
on coherent heat flows, e.g. heat lasers or solitons?

Reflection
Transmission

A driver for physical layout?

phonons
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A question – What to do?

Substrate

Gate

Source Drain

IBM CNTFET

Silicon MOSFET 

 

?
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Energy efficiency of CMOS

Does practical CMOS operate far from fundamental limits?

u 2016 ITRS 22-nm Node:

v xmin:  Channel length         9 nm

v Esw: Switching energy       2 x 10-18 J

v Eb: S-Ch barrier height      ~0.4 eV

v Electrons/switching event  ~50

v Energy/electron      4 x 10-20 J~12 kT
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Esw > kTln2 = 3 x 10-21 J

1

3 x 10-21J ~ kT

Fundamental limits
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Can we decrease the energy of
CMOS?

2 x 10-18 J 3 x 10-21J

Decrease the barrier height:

0.4 eV  0.02 eV

Yes (in principle):

Decrease the number of
electron per switching event:

50  1
)exp(

kT

Eb
err −=ΠEb

12kT 0.001%

0.03%8kT

2%4kT

50%kT ln2
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What to do? (Cont’d)

Quantum Computer 

Cellular Non Linear Network

Conventional von Neumann
Architecture

New Information
Processing Architectures

?

Substrate

Gate

Source Drain

Silicon MOSFET 
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2003 ITRS:  Emerging Research
Devices
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transistor 
Density 
(dev/cm2) 

3E9 106 3E9 3E9 6E10 1012 3E10 3E9 

Switch 
Speed 

700 
GHz 

1.2 THz ? 1 THz 1GHz ? 30 MHz 700 GHz 

Circuit 
Speed 

30 
GHz 

400 GHz 30 GHz 30 GHz 100 MHz 1 MHz  1 MHz 30 GHz 

Switching 
energy, J 

2E-18 
2x 10-19 

[>1.4E-17 
2E-18 >2E-18 

10-18 
[>1.5E-17]  

1.3x10-16 
E: [> 10-18 ]  
M:>4x10-17  

2 x 10-18 

Binary 
throughput, 
GBit/ns/cm2 

86 0.4 86 86 10 ? 0.06 86 
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Classic to Quantum transition

u Classic memory bits become indistinguishable, which limits
our ability to use them for computation

BUT

u The  superposition of indistinguishable states is a key
concept of Quantum Computation

u A quantum bit or qbit is a physical system with two
quantum states
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Power of quantum computing

u Quantum information storage
v N quantum bits stores 2N complex numbers

n Consider information in 300 entangled qubits

2300 = 1090

n Compare to the total number of atoms in the Universe:

Natoms=1080

If dramatic improvement of the information throughput can be
 achieved, the cryogenic operation might be affordable
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Neuromorphic Computing

u Implies computational schemes and systems resembling
operation of human brains.
v The potential capabilities of neuromorphic computers could

be close to those of the brain, thus enabling e.g. artificial
intelligence

u Properties of brain:
v Mass – 1.5 kg

v Volume – 1.5 l

v Energy consumption – ~10  W

v Information stored – 1e14 bits

v 1e13 bits/s
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Conclusions

v Fundamental considerations suggest that the potential
benefits from replacing CMOS devices with new types of
electron transport devices may be limited

v Search for radically new methods of heat removal is one of
the most critical research directions

v The exploration of alternative approaches to von Neumann
type computing, such as brain or Reversible/Quantum
Computation, is becoming a strategic imperative.

n We need a concerted effort in these areas because of the long
lead times for the introduction of radically new technologies


