FE SEM TRAINING:

Purdue University

"Hitachi" Bob Passeri Hitachi High Technologies Hitachi S-4800 II

Field Emission Scanning Electron Microscopy

Course contents:

- Basic principle of SEM
- Cold Field Emission theory and tip flashing
- Electron beam formation
- Effect of accelerating voltage change
- Effect of spot size change
- Working distance
- Beam : Sample interaction
- Signal collection detectors (SE upper and lower, BSE, EXB)
- Advanced imaging techniques including low kV, charge suppression and signal mixing
- Deceleration mode
- Set up and daily operation
- S-4800 Practical sessions throughout the 2 days to apply the above

Hitachi S-4800 Field Emission SEM

Hitachi S-4800 Type II specifications:

Cold cathode field emission electron source 1.0nm at 15kV (WD 4mm) 1.4nm 1kV (WD 1.5mm, deceleration mode) 2.0nm at 1kV (WD 1.5mm, Normal mode) Magnification: Low mag mode 20x - 2000x/10,000xHigh mag mode 100 – 800,000x 0.5 kV - 30 kV (V0)0.1 - 2kV (Deceleration) 0 - 6.5 kV (V1) Extraction voltage range Probe current 1pA to 2nA Stage -x = 110mm, y = 110mm, z = 1.5 - 40mm, tilt = -5 - +70degrees Max specimen size (for exchange chamber) 150mm diameter 3 stage electromagnetic lens system 4 position objective lens aperture strip 100, 50, 50 and 30µm (heated), click stop 1x dry scroll vacuum pump, 1x TMP (magnetic bearing type), 3x ion pumps Compressed air line for pneumatic valves

1 - 1.51/min circulating water to cool objective lens

Examples of S-4800 performance:

High resolution SE image of carbon nanotubes – low kV reduces penetration

High resolution SE image at 15kV

HITACHI Inspire the Next

Hitachi High Technologies

S-4800 Resolution

Basic Theory of SEM

Beam Formation: Electron Sources

10 - 20kÅ Beam Diameter 2300°C Operation 1x Brightness 300hrs. Life

10⁻⁵ Torr Vacuum

Thermally-Assisted FE (Schottky)

100 - 250Å Beam Diameter 1500°C Operation 500x Brightness >4000 hrs. Life

10⁻⁹ Torr Vacuum

30 - 50Å Beam Diameter Ambient Temp. 1000x Brightness >10000 hrs. Life

10⁻¹¹ Torr Vacuum

What is Field Emission?

- Work Function Barrier is narrowed
 - Electrons 'tunnel' through the barrier
- External Potential Applied Against Source
 - Voltage controls the emission current without heating the source
- Electrons "Extracted"
 - Simple Control Of Emission Levels
 - Emission diameter is constant, irrespective of emission current set by operator

Field Emission Tip

V₀: Accelerating Voltage

• Computer First Raises This To The Selected Level

V₁: Extraction Voltage

 This Voltage Is Raised Until The Desired Amount Of Emission Current Is Obtained, Then It Is Scaled Against V₀ To Deliver The Requested Electron Speed

CFE "Flashing" Circuit

Cold Field Emission Daily Operation Cycle

Hitachi High Technologies

Beam Formation: Purpose of the lenses

To **<u>demagnify</u>** "the crossover" of the electron beam as it exits the Gun by as much as 10,000 times.

The **<u>condenser lens</u>** adjusts the spot size and beam current impinging on the sample.

The **<u>objective lens</u>** adjusts the beam focus on the sample.

Basic lens system

The Column – Probe Current/Spot Size

OHITACHI High Technologies

Beam Formation: Lens aberrations

Spherical Aberration

Electrons off axis of the centre of the lens, also causes astigmatism

Chromatic Aberration

Electrons of various energies become focused at different plains

Astigmatism

Beam from source not spherical, machining of parts not absolutely symmetrical

Beam Formation: Correcting Astigmatism

Astigmatic beam

Beam Formation: Correcting Astigmatism

Beam Formation: Correcting Astigmatism

UNDER FOCUS CONDITION

YOU MUST FIND CENTER OF FOCUS FIRST, <u>THEN</u> ADJUST STIGMATORS ONE AT A TIME, x then y

CENTRE OF FOCUS

OVER FOCUS CONDITION

NOTE: VERTICAL AND HORIZONTAL EDGES ARE NOW IN FOCUS

HITACHI Inspire the Next

CORRECTLY STIGMATED

Hitachi High Technologies

Hitachi Single-Pole Snorkel Lens

Objective lens field is contained within the pole piece leaving exiting primary and subsequent image electrons vulnerable to local fields and distortion

Beam Formation: Depth of Field

SEM Depth of Field ~500-1000 better than Optical microscope

The column – Objective Aperture

Beam Formation: Resolution limits

What limits SEM resolution?

- The physics which may set the limit to the resolution of the image
- The instrument which may not be properly operated and optimised
- The operator who must use the microscope to its full extent

Beam-Sample Interactions

There is a wide variety of interactions which may occur between the beam electrons and the specimen. The exact interactions which occur are dependent on the sample material and beam conditions

- Secondary Electrons
- Backscattered Electrons
- X-Rays
- Auger Electrons
- Light Cathodoluminescence
- Lattice Phonons / Heating
- Absorbed electrons or EBIC

Beam-Sample Interactions: Interaction volume

Beam-Sample Interactions: Examples of interaction volume

Beam-Sample Interactions: Interaction volume is density dependent

15 kV

HITACHI Inspire the Next

Hitachi High Technologies

Beam-Sample Interactions: Interaction volume summary

- Excellent surface info
- Difficult x-ray analysis
- Less resolution
- Good BSE info but very difficult to collect
- Very low damage to sample

- Poor surface info
- Large x-ray content
- High resolution
- BSE from below the surface, but high energy ,easy to collect
- Possible damage

Beam-Sample Interactions: Interaction volume examples

Thin film on a TEM grid

5kV mag x 900

2kV mag x 900

Beam-Sample Interactions: Interaction volume

 At 20 kV no discernible image information can be seen from the surface

 At 2kV a particle that was missed at 20 kv can now be seen and investigated.
The lower the kV the more surface information is detected

Significance of imaging at low acc. voltage

Sample : Diatom 15kV

E 1

5kV

Observation at low accelerating voltages

Charge-up phenomena

Eliminate Charge-up phenomena using lower kV

Specimen : SiO₂ on Photo Resist Line Pattern

Flexible detection system

Beam-Sample Interactions: Signal Collection, SE

Beam-Sample Interactions: Secondary Electrons

Beam/Specimen Interactions

SE and BSE emitted from solid sample

Energy spectrum of the electrons emitted from a specimen

Lower SE Detector

Secondary electrons collected in the chamber provide images with enhanced topographic effects, minimal charging, and good depth of field (SE+BSE) High efficiency at long working distances required for analysis

Metal Fracture

The fracture pattern of this automotive part tells the story of how the failure happened. The peaks and valleys of the fracture surface are enhanced by the direction nature of the lower detector.

High signal to noise and and good resolution make the secondary fracture plane, in the horizontal direction, stand out even at low magnifications.

Comparison of Upper and Lower SE detectors

Upper SE detector is annular, positioned over sample (top down type of view)

Lower SE detector is offset, a standard Everhart Thornley configuration for directional contrast

Secondary electrons are efficiently collected through-the-lens to provide images with extremely high resolution.

Three main modes of operation utilising the patented Super ExB filter: 1. Pure SE(I)/(II) or 2. SE+Low Angle BSE (Variable ratio) or 3. High Angle BSE

Comparison of Upper SE and Lower SE detectors

Upper SE annular detector for WD 1.5mm – 15mm

Lower SE detector for WD 7mm – 40mm

Beam-Sample Interactions: Signal Collection

Beam-Sample Interactions: Signal Collection, BSE

Primary beam

Because Backscattered electrons are directional the detector must be placed in the path of the escaping electrons.

The detector must be placed very close to the sample to get the best results, 8-25mm.

Backscattered Electrons

Incident beam

The elastic scattered electron may be <u>backscattered</u> without loss of energy Nucleus of atom retards the incident beam energy and deflects the beam. This retarded electron may go on to have many collisions with other atoms or electrons

Inelastic scattering - electron may also have further collision events with other nuclei or orbiting electrons before breaking surface

Beam-Sample Interactions: Signal Collection

Image information from different detectors

Beam-Sample Interactions: Signal Collection

SE detectors are of the scintillation type.

• Used with low and high AccV.

BSE detectors can be of scintillation type or solid state type.

• Normally used for kVs of 5kV plus.

BSE electrons can be converted to SE's and collected using a secondary electron detector.

• Used for low AccV BSEs.

Low kV BSE's can be collected using a channel plate detector.

Hitachi's Patented ExB Filter

Image information: SE & BSE

Secondary Electrons

Topmost surface information

- Electric Potential contrast
- Energy of Electron : <60eV

Backscattered electrons

Composite information

- · Less charge up
- Less edge contrast
- Topography (Low angle BSE)
- Energy of Electron ~ incident beam

Pure SE information using the ExB filter (no BSE)

Topographic contrast

SE + BSE Information

Filtering SE and BSE information to the upper detector provides images with compositional contrast, surface detail, reduced charging, and reduced contamination.

N.B. Enables BSE imaging even at very low accelerating voltages which were not possible with conventional scintillator or solid state BSE detectors (e.g. BSE imaging at 500V)

Catalyst (Pt/C)

SE + BSE(L) Information using ExB filter

BSE(H) Information only (no SE)

BSE Information Primary Beam Filter SE **Detector** HITACHI

Inspire the Nexi

High angle backscattered electrons produce strong compositional contrast.

High energy backscattered electrons strike a conversion plate in the SEM column. This event generates secondary electrons that are then collected by the upper SE detector.

N.B. Enables BSE imaging even at very low accelerating voltages which were not possible with conventional scintillator or solid state BSE detectors (e.g. BSE imaging at 500V)

S-5200 2.0kV x45.0k BSE

1 1 1 1 1 1 1 1 1 1 1 1.00um

Hitachi High Technologies

Nano-wires

Metallic spheres are the initiation points of the nano-wires' growth. Researchers are interested in the lines and angles of the wires, as well as the position on the metal spheres.

S4800 2.0kV 3.3mm x10.0k SE(U) 8/7/2002 17:21

Backscatter imaging clearly defines the point of connection between the carbon tube and the metal particle.

S4800 5.0kV 3.3mm x50.0k SE(U,LA100) 8/7/2002 17:27

1.00um

OHITACHI High Technologies

MEMS Application

Good depth of field makes imaging the surface of this xsection and the deep-trench walls possible.

The HA backscattered resolution provides accurate measurements of the various silicon layers and clear interface locations of layers. Notice the beautiful granular structure of the polysilicon as well.

MEMS Application

and a second S-4800 3.0kV 4 1mm S-4800 3,0kV 4, 1mm x25 0k SE(U,HA) More MEMS images. The roughness of the walls (on a micro-scale) and the thickness of the layers (on a nanoscale) determine the efficiency of the product and the success of the manufacturing process. S-4800 3.0kV 4.1mm x1.00k SE(U,HA) 8-4800 3.0kV 2 1mm x150k SE(U,LA20) HITACTI Inspire the Next Hitachi High Technologies

Why Low Voltage SEM?

- Better image quality (minimum edge effect, visibility of surface details...)
- minimum beam damage artefacts
- observation of non-conductive material (plastics, ceramics...) without preparation artefacts
- saving of sample preparation time/technique
- Iateral EDX resolution below 100nm

Beam Deceleration

S-4800 Retarding Mode Operation

Free

Membrane Filter

This membrane filter is uncoated. Under normal imaging conditions the sample would charge significantly. By imaging at 100 volts charging does not occur and the ribbed surface structure of the fiber clusters is visible.

Observation at 100V

Deceleration ON 1600 – 1500 = 100V

Photo Resist

Hitachi's Beam Deceleration technology enhances fine surface features and nanosize details as seen in this comparison of photo resist with Beam Deceleration OFF and ON.

Observation at 500V

Beam Deceleration **OFF**

Beam Deceleration ON

ArF Resist

Comparing a 100 volt image to the typical 800 volt image one can see more surface detail and clear definition between the lines and trenches.

Landing voltage : 100V

Accelerating voltage : 800V

Sample courtesy of Canon Inc.

Probe current : 6pA, Magnification : 70kX

Why the increase in SEM-based STEM imaging?

- Enabling technologies like FIB have made thin-section preparation of bulk materials quick and easy
- Research into new nano-materials has demanded high throughput but detailed structural investigation i.e. not just near-surface information from SE and BSE
- The increased use of C-based nano-materials has led to an understanding that high kV is not always required (light C-based material is easily penetrated by less energetic electrons)
- STEM of thin specimens has some potential resolution advantages over SE of thicker specimens as the broadening effect of the interaction volume is reduced. For certain samples moving from SE to STEM gives a quick and simple step-change in resolution (e.g. from 1nm to 0.5nm for in-lens systems)
- The latest ultra-high resolution in-lens SEMs provide <4Å resolution which has pushed the capability of SEM-based STEM closer to that of TEM.

BF/DF STEM (1): A simple STEM configuration

SE and STEM for Nano-materials

HITACHI Inspire the Next

Hitachi High Technologies

STEM Imaging: Brightfield

Inspire the Next

Low voltage STEM imaging at 30kV in an SEM can provide high contrast on low atomic number materials. STEM images of various sample types is possible, from semiconductors to powders to biological samples.

The BF-STEM detector is always mounted to the chamber so it is easy to switch between STEM imaging from other imaging modes. The majority of the following examples have both SE and STEM images so that comparisons can be made.
STEM : Bright Field Imaging

Carbon Nanotube

The SE image below shows excellent surface structure. The structure is also visible in STEM mode. At 800,000x the internal growth structure of the nanotube and internal tube diameter can be accurately measured.

STEM of Semiconductors

STEM of Semiconductors

Hitachi High Technologies

50nm

CoSi₂

500kX

Human Nerve Tissue

S4800 30.0kV 6.2mm x8.00k TE 4/21/2003 14:48

Biological thin section samples imaged with the S-4800 dedicated STEM detector show great contrast and detail. Samples are easily mounted as TEM grids onto the STEM holder. The images here of stained human nerve tissue clearly show the mitochondria, cell walls, and plasma.

HITACHI Inspire the Next

STEM of biological sections

(a) Magnification: ×5,000
(b) Magnification: ×80,000
Fig. 6 Uriniferous tubule of unstained human nephritis kidney, sectioned at about 0.1 μm and recorded at 15 kV

Detailed structure of Cristæ is clearly observed in this mitocondrion

HITACHI Inspire the Next

Hitachi High Technologies

STEM of virus particles

(a) Magnification: ×6,000
(b) Magnification: ×100,000
Fig. 5 A propagating condition of cancer cells in liver, sectioned at about 0.1 μm and recorded at 30 kV

Adenovirus has potential gene-therapy uses for a number of genetic disorders or cancer cells. In this case the propogation of adeno-virus within the cancerous cell is easily monitored without the need for dedicated TEM.

HITACHI Inspire the Next

STEM : Dark Field Imaging

Carbon Nanotubes

Simultaneous collection of BF, DF, and SE imaging is unique to Hitachi's S-4800. This feature utilizes both SE detectors and our dedicated TE detector to provide a variety of high resolution information at one time.

HITACHI

Inspire the Next

Fig. 4 Microscopy of polymers (a) SEM image (b) STEM image (c) X-ray mapping image

HITACHI Inspire the Next

Hitachi High Technologies

SEM-based STEM imaging is developing an increasingly wide range of applications in material and biological sciences

While the technique should not be seen as a replacement for high energy TEM for all applications (due to its lower resolution and lower penetration capabilities) it nonetheless has its own strengths (imaging of low density materials, ability to relate surface and bulk properties, cost, ease of use etc.)