Fundamental Issues in Building A Molecular Electronics Technology

Rationale for A Molecular Electronics Technology I-V Behavior of Molecules Potential Applications and Device Types Selected Issues in Single Molecule Devices Manufacturability Issues Planar Devices: Molecular Level Design & Testing Issues **Conclusions and Perspectives**

Acknowledgements

T. Dunbar (PSU/3M); A. Hooper (PSU/Motorola) P. Harder; J. Stapleton; H. Skulason (PSU, Molecular Electronics Corp.); T. Tighe, M.Reinard, O. Cabarcos, T. Daniel, Y. Selzer

AFOSR

P. Weiss (PSU----STM) [Z. Donhauser; L. Bumm; B. Mantooth] N. Winograd (PSU----ToF-SIMS) [A. Walker] R. Collins (PSU----optical spectroscopy) T Mayer (PSU --- device fab) [M. Cabassi]

J. Tour (Rice----synthesis) R. Opila (Lucent Bell Labs----metal contacts)

M. Reed (Yale ---- EE) R. Tsui (Motorola) J. Seminario (U. S. Carolina ---EE) P. Franzon (NC State U.---EE)

Defense Advanced Research Project Agency Office of Naval Research National Science Foundation Molecular Electronics Corp. Rationale for A Molecular Electronics Technology

I-V Behavior of Molecules

Potential Applications and Device Types

Selected Issues in Single Molecule Devices

Manufacturability Issues

Planar Devices: Molecular Level Design & Testing Issues

Conclusions and Perspectives

Conductance of a Single Molecule via STM

40 x 40 nm

Bumm, Arnold, Cygan, Dunbar, Burgin, Jones, Allara,
Tour, Weiss, *Science*, 271 1705(1996)
Cygan, Dunbar, Arnold, Bumm, Shedlock, Burgin, Jones, Allara,
Tour, Weiss *JACS* 120, 2721(1998)

Conductance of a Single Molecule via A Break Junction

M.A. Reed *et. al*, *Science* <u>278</u>, 252 (1997)

Theory: Di Ventra, Pantelides, and Lang D (E_F - E_{HOMO}) ~ 0.7 eV

Small Molecular Ensembles in A Nanopore Show Device Functions

Small Molecular Ensembles in A Nanopore Show Device Functions

Memory function can be created from these types of device structures Reed, Chen, Rawlett, Price, Tour, *Appl.Phys.Lett.*, 78, 3735(2001)

Chen, Reed, Rawlett, Tour, Appl.Phys.Lett 77 1224 (2000)

Rationale for A Molecular Electronics Technology

I-V Behavior of Molecules

Potential Applications and Device Types

Selected Issues in Single Molecule Devices

Manufacturability Issues

Planar Devices: Molecular Level Design & Testing Issues

Conclusions and Perspectives

Molecular Q-Dot Quantum Computers

¢μ_N

0

Single Molecule Logic Devices-II • large molecules

Molecule-*n*-Particle Logic Blocks

Molecular

Electronics,

Molecular Q-Dot Cellular Automata Computers

Chemical Attachment / Surface Chemistry is Common to All Devices

Rationale for A Molecular Electronics Technology

I-V Behavior of Molecules

Potential Applications and Device Types

Selected Issues in Single Molecule Devices

Manufacturability Issues Planar Devices: Molecular Level Design & Testing Issues Conclusions and Perspectives

Selected Issues in Single Molecule Devices

- Molecules
 - 2-terminal
 - multi-terminal, complex functions
- Molecule-Electrode Attachment
 - chemical bonding
 - molecule-electrode geometry
- Molecule Alignment and Distribution
 - guest-host placement
 - multi-terminal registry

Selected Examples (Zoo) of Molecules with Reported I-V Characteristics

Examples of Proposed Specialized Function Molecules

current theory ineffective in predicting actual device behavior
device measurement feedback: slow - almost non-existent

Selected Issues in Single Molecule Devices

- Molecules
 - 2-terminal
 - multi-terminal, complex functions
- Molecule-Electrode Attachment
 - chemical bonding
 - molecule-electrode geometry
- Molecule Alignment and Distribution
 - guest-host placement
 - multi-terminal registry

Useful Established Attachment Combinations

Г		Base Electrode Metal						1
	Attachment		Da					
	(selected)	Au	Pt	Pd	Cu, etc	GaAs	Si	
	RSH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	RSAc	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
	RNC	\checkmark	\checkmark	\checkmark				
	RSe, -Te	\checkmark				\checkmark		
	RC-			\checkmark		√?	\checkmark	
-								,
 J-SR: Simplest starting combination + well-established chemistry - SAc needed for stability but then Au-S coupling problematic 					Pt(Pd)-CNR: + low junction barriers (~0.2 eV) - preps more difficult - less well known chemistry			
 hiah iur 								

need more effort on molecule attachment group – electrode combinations

- low junction impedance
- chemical stability

A

device operation stability

• Ni, W, Ti, Al?

Diazonium Coupling Chemistry for Direct Aromatic Ring-Electrode Attachment

- direct molecule-electrode bonding via C- bonds ---improved conduction??
- strong bonding precludes self-organization (kinetic vs thermodynamic control)
- extensions to Si, GaAs, C, Pt, etc.

Stewart, Kosynkin, Dirk, Allara, Tour, submitted

Oligomer Alignment and Distribution

Will adsobate-surface bond force δ orientation?

OR

Will π -stacking force **4** orientation?

Can insertion be used to control guest molecule orientation?

Selected Issues in Single Molecule Devices

- Molecules
 - 2-terminal
 - multi-terminal, complex functions
- Molecule-Electrode Attachment
 - chemical bonding
 - molecule-electrode geometry

Molecule Alignment and Distribution

- guest-host placement
- multi-terminal registry

Using Self-Assembled Monolayers (SAMs) as Model Molecule Layers ----- Matrix Isolation of Electronically Active Molecules

Large Molecules Resist Self-Organization --- Can Align via Insertion

Inserted PE5-PS(~12%) in Host C8 SAM

Oligomer Distribution in Host C8 SAM Matrix Defect Regions

Nano-Device Assembly at Planar Surfaces

- * <u>General</u>: Find assembly protocols for orienting multi-functional molecules (e.g., for 3-terminal devices) at planar (Au) surfaces
- * Testing the 3-legged approach for rigid, self-orienting molwire attachment

"caltrops" molecules

Self-Orienting Oligomers at Electrodes?

for assembly?

Selective Assembly of a 3-Terminal Device: Steric Effect Methods

Side-chain Steric Effect

*no insertion until 50 hrs.

Selective Assembly of a 3-Terminal Device: Chemical and Electrochemical Control Methods

Release active thiolate or thiol by base/acid deprotection of thioacetate, etc.

Application of V at selected electrodes:

- induce selective chemisorption [thiosulfate derviatives, (G. Ferguson, Langmuir)]
- induce selective thiolate desorption (M. Porter)

Overall: Intense development needed to allow high yields of selective assembly on large scale multi-terminal device chips Rationale for A Molecular Electronics Technology

- **I-V Behavior of Molecules**
- **Potential Applications and Device Types**
- Selected Issues in Single Molecule Devices

Manufacturability Issues

Planar Devices: Molecular Level Design & Testing Issues

Conclusions and Perspectives

Rationale for A Molecular Electronics Technology
I-V Behavior of Molecules
Potential Applications and Device Types
Manufacturability Issues

Selected Issues in Single Molecule Devices

Planar Devices: Molecular Level Design & Testing Issues

Conclusions and Perspectives

Planar Devices: Molecular Level Design & Testing Issues

- molecules
- bottom contacts
- self-assembly
 - molecular geometry
 - chemistry
- matrix effects in molecule switching
- electron injection states
- top contact metallization issues

Issues in Rigid Molecule Contacts

VS

Multicontact Self-Assembly (e.g., nanorod crossbar)

Molecular tilt changes required gap spacing
Isolated vs bundles

• Electrode topography unpredictable attachment density

Top Contact Metallization

Deposition should be Conformal but:

- Shorts
- Molecule damage

Rationale for A Molecular Electronics Technology

- I-V Behavior of Molecules
- **Potential Applications and Device Types**
- Manufacturability Issues

Planar Devices : Molecular Level Design & Testing Issues

- molecules
- bottom contacts
- self-assembly
 - molecular geometry
 - chemistry
- matrix effects in molecule switching
- electron injection states
- top contact metallization issues

Conclusions and Perspectives

Molecular Assembly

Molecular Packing: a major bottleneck in molecular electronics?

Careful Control of Assembly Procedures Can Produce Ordered Pure MoleSwitch SAMs

Contact Mode AFM Images of Molewire SAMs on Au(111)

4.0 nm x 4.0 nm images; lateral force, unfiltered

100x100 nm STM image pre-surface clean

- SAMs can order
- ~ $(\sqrt{3}x\sqrt{3})$ Au(111) superlattice spacing

Side Reactions May Cause Mixed Composition SAMs

Cleavage method

Typically ~30% -NH2 in SAM

Zinin Reduction: $RNO_2 + RS^- \rightarrow RNH_2$

Stapleton, Daniel, Yao, Tour, Allara, submitted

Planar Devices: Molecular Level Design & Testing Issues

- molecules
- bottom contacts
- self-assembly
 - molecular geometry
 - chemistry
- matrix effects in molecule switching
- electron injection states
- top contact metallization issues

Strategies for Probing Matrix Effects on Switching

Compare I-V behavior:

- Planar devices with dense-packed SAMs (Reed et al)
- STM of inserted moleswitches in alkanethiolate SAMs
- Conducting AFM/STM with nanoparticle contacts to inserted moleswitches in alkanethiolate SAMs
- Single molecule devices

Quasi-2-D Matrix Isolation of Individual Molecules and Bundles

- Control molecular orientation at electrodes for devices
- Control local molecular environment
- Position molecules for precision **local probe** characterization of electrical properties as a function of:
 - molecule structure
 - metal-molecule junction
 - local molecular environment

Quasi-2-D Matrix Isolation of Individual Molecules and Bundles

O_≷N+

Insertion of 1.4 nm Nitro Molecule in a C10 SAM

- Valuable Test System

-NO₂ groups:

- important in switching and memory
- vibrational spectroscopy tag

SAM Defect Sites for Insertion/Exchange in RS/Au{111}

Tightly packed domain:

- 5.0 Å S-S distance; 30° tilt
- 4.6 molecules/nm²

Tilt Domain line defect - II

- conformational disorder along line
- exposed Au atoms along line

Tilt Domain line defect - I

• conformational disorder along line

- on imperfect terraces
- in crystallite grain boundaries

Insertion Rates of Nitro Molecule in Several Host SAMs

The Local Environment of Guest Molecules in Host Matrices: - Effects on Electrical Response

IR Frequency Shifts Show Host Matrix Packed Densely Around Guest Molecules

- IR modes shift to lower frequencies as length of surrounding host alkyl chains exceeds length of guest molecule
- Shifts correlate with DFT(B3LYP/6-31G*; Onsager dipole-sphere medium) calculations for shifts as a function of immersion in hydrocarbon media
- Correlation shows short guest molecules insert into a fully hydrocarbon host environment

JPCB, 104, 4880(2000)

STM of inserted moleswitches in alkanethiolate SAMs

How Does Ensemble Switching (e.g., *n*-pore devices) Scale to The Molecular Level?

-1.0 V tip bias; 1.0 pA current

Donhauser, Mantooth, Kelly, Bumm, Monnell, Stapleton, Allara, Tour, Weiss; Science, 292, 2303-2307(2001)

random

but

-1.0 V tip bias; 1.0 pA current

Donhauser, Mantooth, Kelly, Bumm, Monnell, Stapleton, Allara, Tour, Weiss; *Science , 292, 2303-2307(2001)*

Increase in Film Order by Annealing: 1 mM RSH / EtOH at 75 °C

40 nm x 40 nm; V_{Tip}=+1 V; I=1.0 pA

40 nm x 40 nm V_{Tip}=+1 V; I=10 pA

J. Am. Chem. Soc. 1999, 121, 8017-8021

Switch ON Times Depend on Host Matrix Packing

Low Switch

ON/OFF

Ratio

High

Defect populated SAM (5 min deposition)

Std. SAM (24 hr deposition)

Vapor Annealed SAM (24 hr+)

1.0 pA; V_{tip}=+1.0 V; Frame interval: 30 min

1.0 pA; V_{tip}=-1.5 V

Switching for both isolated and grouped molecules

Switching Mechanism(s)??

STM data suggest Molecular Tilt Change??:

Donhauser, Mantooth, Pearl, Kelly, Nanayakkara & Weiss, unpublished STM-Induced Molecule Switching **Recently Observed in Alkane Chain Molecules**

[Lindsay et al, Science, 300, 1413 (2003)]

HS-C8-SH in C8-S SAM HS-C10-SH in **C10-S SAM** HS-C12-SH in **C12-S SAM** HS-C12-SH in C12-S SAM 1.5 nm Au n-particle

10 nm

effect of toluene medium???

Switching via Au-S bond scission at bottom contact??

- no electronic mechanism for -CH₂- structure
- switching with or without n-particle
- switching with n-particle precludes tilt mechanism?
- Au-S bottom contact scission common to both structures

Conducting AFM with nanoparticle contacts to inserted moleswitches in alkanethiolate SAMs

Conducting AFM Probes of Inserted Nitro OPE Molecule

Au–S–molecule–S–Au junction in alkanethiolate matrix

Full contact simulates 2-terminal device

Results: Nitro-OPE in C12S- SAM

Lindsay et al, APL, 81, 2002

- ~2 nm nanoparticles
- measurement under toluene solvent
- integral i ratios \rightarrow 1 molecule
- very weak NDR at ~1-1.5 V
- no NDR with simple OPE
- currents ~500-1000 pA

Bjordefors, Daniel, Allara

- ~2-5 nm nanoparticles
- measurement in air or Ar
- integral i ratios \rightarrow 1 molecule
- no NDR 0 ± 5 V
- no NDR with simple OPE
- currents ~50-100 pA

Conclusion: NDR extremely sensitive to surrounding matrix and environment

Single molecule devices

nano-Junction Molecule Devices -- Fabrication

- 1. e-beam fab Au nano-wires between contact pads
- 2. Form SAM on Au surface
- 3. Apply V at 10 K --- wire breaks causing nm-scale gap; molecules bridge gap by thermal motion
- 4. ~10% junctions show molecules bridged; typically ~1-3 molecules

[Park, Lim, Park, Alivisatos, McEuen, APL, 75, 301–303 (1999)]

Selzer, Allara, Mayer, Cabassi (submitted)

nano-Junction Molecule Devices -- I-V Data

sharp increase in dl/dV:

onset of new conduction channel

nano-Junction Molecule Devices -- T-Dependence

hopping conduction \vee 40 K:

internal molecular barriers

hopping onset T⁻ as bias V - :

 vibrational scattering "heats" molecule - opens barriers

DE ℝ 0 V ∀ |±0.5 V|

• internal molecular E fields?

No NDR or Switching Effects

nano-Junction Molecule Devices -- Summary

- Through molecule e⁻ tunneling (Inelastic tunneling vibrational spectrum)
- Individual molecule devices (expected values of tunneling current)

- V40 K activated hopping intramolecular conduction (V-dependent barrier from T dependence)
 - Vibrational scattering heats molecule
 - increased conduction via activated conformational transitions?
- Monotonic I-V behavior out to ~±5 V --no NDR - switching effects on repeated cycling
 - Previous nanopore devices (> 10³ molecules) show NDR (Reed et al)

Conclude NDR-switching is function of molecular packing

Switching-NDR Mechanism(s)??

Theoretical	
Approaches	
vary:	

Seminario *et al.*, *J. Am. Chem. Soc.* <u>120</u>, 3970 (1998).
Seminario *et al.*, *J. Am. Chem. Soc.* <u>122</u>, 3015 (2000).
Di Ventra *et al.*, *Phys. Rev. Lett.* <u>86</u>, 288 (2001).
Kornilovitch, Bratkovsky, *Phys. Rev. B* <u>64</u>, 195413 (2001).
Cornil, Karzazi, Bre´das, JACS, 2002, 124, 3516-3517
Taylor, Brandbyge, Stokbro, arXiv:cond-mat/0212191 v1 9 Dec 2002

Overall Conclusion:

effects extremely sensitive to surrounding matrix and environment
predictive theory missing

FIG. 1: Geometry of monolayers A, B, and C connected with two Au (111) surfaces. Color codes: C(green), H(white), O(red), N(blue), S(yellow), Au(gold).

NDR-Switching Mechanism: V excitation of conformational rotation to New conductance state

- locking via intermolecular matrix effects??

K. Stokbro et al, arXiv:cond-mat/0212191 v1 9Dec 2002

NO₂-OPE uniquely shows minima at 60° ring rotation

Planar Devices: Molecular Level Design & Testing Issues

- molecules
- bottom contacts
- self-assembly
 - molecular geometry
 - chemistry
- matrix effects in molecule switching
- electron injection states
- top contact metallization issues

One-Electron Injection States:

- Important in switching?
- Can be made chemically?

- Make SAMs of -NO₂ containing molecules
- Dose with alkali metal atoms (K and Li) in UHV
- Track chemical changes by vibrational spectroscopy
- Possible route to spin ½ array?

1-electron states exist & mostly reversible (2-electron states also)

e⁻ delocalized over NN shell??

Repulsive lattice?? (K/graphite)

contact AFM 4 nm X 4 nm

Bare SAM: Complex lattice -- not a simple $(\sqrt{3}x\sqrt{3})$

DFT calculations of K + 1 Molecule show poor fits to spectra

- HF/(3-21G, 6-31G*); B3PW91/6-31G* level; isolated molecule
- Mode intensities corrected for known surface orientation in SAM

- Results suggest e⁻ delocalized among nearest neighbors
- Similar delocalization in molecule switching?
- Possible electron spin lattice?

Conductance Control via Doping

Doping: A Potential Strategy for Dramatic Changes in Molecular Wire Electronic Responses

Absorbance

Rationale for A Molecular Electronics Technology

- I-V Behavior of Molecules
- **Potential Applications and Device Types**
- Manufacturability Issues

Planar Devices : Molecular Level Design & Testing Issues

- molecules
- bottom contacts
- self-assembly
 - molecular geometry
 - chemistry
- matrix effects in molecule switching
- electron injection states
- top contact metallization issues

Conclusions and Perspectives

Contact Metallization

Top contacts: the major bottleneck in molecular electronics?

Experimental Approach:

- Multi-technique in-situ (real time) analysis: incisive characterization
- SAMs as precision model organic surfaces

Choosing organic groups with representative chemical features

Metal vapor + Typical O-functional groups

Metal vapor + Aromatic-Conjugated Structures

 π -bonds σ -bonds hetero atoms aromatic H

Interface Evolution: AI Deposition on -CH₃ & -CO₂CH₃ Terminated SAMs

Spectroscopic Ellipsometry: Psuedo Dielectric Function Spectra

- 100 Ψ , Δ spectra
- 83 data points

- Real time spectra
 - data collection + transfer in ~ 1 s

Unreactive thiolate SAMs Allow Metal Atom Penetration

AI. Cu, Ag, Au + AuS(CH₂)₁₆OCH₃

- AI
 - <u>penetration stops</u> at 1 adlayer at Au/S interface
 - weak solvation by –OCH₃
 - overlayer film
- Cu, Ag
 - continuous penetration
 - weak solvation by –OCH₃
 - overlayer film
 - Au
 - continuous penetration
 - no solvation by –OCH₃
 - no overlayer film
 - (floating SAM)

- AI: penetration stops after ~1:1 AI:Au adlayer
- Cu, Ag: penetration continues at all coverages
- <u>Au</u> only penetrates (floating SAM)

S atom diffusion

metal-S diffusion

DFT calculations of thermochemistry supports metal-thiolate admolecule diffusion

ToF-SIMS Measurement of T Dependence of Au Penetration Rate In a H₃CO-Terminated C16S- SAM/Au{111}

Au+/CH₃ signals decrease as Au overlayer decreases 3.0e-3 2.5e-3 120 K 155 K 189 K 224 K 258 K Kate (Ås) ^{2.0e-3} ^{1.5e-3} ^{1.0e-3} 1.2 penetration regime starts 1.0 5.0e-4 Au⁺/CH₃⁺ Ratio 0.8 0.0 0.6 90 110 120 80 100 130 140 15 T, K 0.4 0.2 -2.5 0.0 $E_a = 7 \text{ meV}$ -50 50 100 150 200 250 0 -2 -2 -2.8--2.6 A = 28.2 Å/s time, min -2.9 kJ/mol -3.0 0.0072 0.0071 0.0073 0.0074 0.0075 0.007 1/T, K⁻¹ $log(rate) = A \cdot exp(-E_{penetration}^{*}/RT)$

(Haynie, Uppili, Allara, Winograd, in preparation)

Top Contact Metallization ----Conclusions

Metal-organic contacts --- unexpected complexities

Effects on device behavior remain uncorrelated

 Extraordinarily fine control of the metal-molecule interface is possible via fine tuning of chemistry and process dynamics Rationale for A Molecular Electronics Technology
I-V Behavior of Molecules
Potential Applications and Device Types
Manufacturability Issues
Selected Issues in Single Molecule Devices
Planar Devices: Molecular Level Design & Testing Issues

Conclusions and Perspectives

Transitioning: Lab Bench to Manufacturing

- 10-100 nm size
- lab bench processing

- standard lithography scale
- high yield throughput
- high reliability
- high throughput testing diagnostics

Major Apparent Current Challenges scale up of device area

- minimize shorts
- maximize contact stability

Top Metallization

- metal
- deposition method

Molecule Deposition

- optimum molecule for desired device function
- active layer composition (matrix effects)
- solvents, etc. (dense films)
- post-deposition cleaning (clean top contact surface)
- thermal / chemical stability for post-deposition processing

• Parallel with Si-based electronics: step changes often linked to *laborious* materials/chemistry developments

- Surface Characterization/Spectroscopy
- Molecular self-organization
- Organometallic chemistry
- Molecular Surface Science
- Nanofabrication