HYDRODYNAMIC PHENOMENA IN THERMAL TRANSPORT Universitat Autònoma de Barcelona F. Xavier Alvarez

xavier.alvarez@uab.cat

Purdue, July 2022

Universitat Autònoma de Barcelona UAB

UAB

Universitat Autònoma de Barcelona

PURDUE, JULY 2022

□ Introduction.

- □ From the phonons to the moments basis
- □ Hydrodynamic behavior of semiconductors
- □ BTE calculations for hydrodynamic paràmetres
- New phenomena
- Conclusions

INTRODUCTION: THRERMAL TRANSPORT AT THE NANOSCALE

Fourier's law

Mecanical (Hamiltonian) vs Entropic description

The main goal of the talk is to find contact points!

PHONONS VS MOMENTS BASIS

Boltzmann Transport Equation

Boltzmann Transport Equation

From phonons f(k, x, t) to moments $Q^{(n)}(x, t)$

Oth ORDER: Energy

1st ORDER: Heat flux

2nd ORDER: Flux of the flux

Thermodynamic
energy
$$f(\kappa, x, t)$$
$$q(x, t) = \int \hbar \,\omega_k \,\overline{v_k} f(\kappa, x, t) \frac{d^3 k}{(2\pi)^3}$$
$$Q^{(2)}(x, t) = \int \hbar \,\omega_k (\overline{v_k} \cdot \overline{v_k}) f(\kappa, x, t) \frac{d^3 k}{(2\pi)^3}$$

nth ORDER

$$Q^{(n)}(x,t) = \int \hbar \,\omega_k(\overrightarrow{v_k}\cdots\overrightarrow{v_k})f(\kappa,x,t)\frac{d^3k}{(2\pi)^3}$$

From phonons f(k, x, t) to moments $Q^{(n)}(x, t)$

Oth ORDER: Energy

1st ORDER: Heat flux

2nd ORDER: Flux of the flux

Thermodynamic
energy

$$f(x,t) = \int \hbar \omega_k \overline{v_k} f(\kappa, x, t) \frac{d^3 k}{(2\pi)^3}$$

$$Q^{(2)}(x,t) = \int \hbar \omega_k (\overline{v_k} \cdot \overline{v_k}) f(\kappa, x, t) \frac{d^3 k}{(2\pi)^3}$$

nth ORDER

$$Q^{(n)}(x,t) = \int \hbar \,\omega_k (\overrightarrow{v_k} \cdots \overrightarrow{v_k}) f(\kappa, x, t) \frac{d^3k}{(2\pi)^3}$$

T From phonons f(k, x, t) to moments $Q^{(n)}(x, t)$

Oth ORDER: Energy

1st ORDER: Heat flux

2nd ORDER: Flux of the flux

$$c(x,t) = \int_{\text{Phonon}}^{h} \omega_{k} f(\kappa, x, t)$$

Heat flux

$$a(x,t) = \int_{\text{Phonon}}^{h} \omega_{k} \overline{v_{k}} f(\kappa, x, t) \frac{d^{3}k}{(2\pi)^{3}}$$

Phonon
Stress T

$$Q^{(2)}(x,t) = \int_{\text{Phonon}}^{h} \omega_{k} (\overline{v_{k}} \cdot \overline{v_{k}}) f(\kappa, x, t) \frac{d^{3}k}{(2\pi)^{3}}$$

nth ORDER

$$Q^{(n)}(x,t) = \int \hbar \,\omega_k(\overrightarrow{v_k}\cdots\overrightarrow{v_k})f(\kappa,x,t)\frac{d^3k}{(2\pi)^3}$$

From phonons f(k, x, t) to moments $Q^{(n)}(x, t)$

Oth ORDER: Energy

1st ORDER: Heat flux

2nd ORDER: Flux of the flux

$$\epsilon(x,t) = \int \hbar \,\omega_k f(\kappa,x,t)$$

$$a(x,t) = \int \hbar \,\omega_k \overrightarrow{v_k} f(\kappa,x,t) \frac{d^3k}{(2\pi)^3}$$

$$Phonon \\ flux of the flux \\ Q^{(2)}(x,t) = \int \hbar \,\omega_k (\overrightarrow{v_k} \cdot \overrightarrow{v_k}) f(\kappa,x,t) \frac{d^3k}{(2\pi)^3}$$

$$Q^{(n)}(x,t) = \int \hbar \,\omega_k(\overrightarrow{v_k}\cdots\overrightarrow{v_k})f(\kappa,x,t)\frac{d^3k}{(2\pi)^3}$$

Moments are more easily to measure experimentally than phonon abundances: Temperature, fluxes, etc...

> UAB Universitat Autònoma de Barcelona

\Box From phonons f(k, x, t) to moments $Q^{(n)}(x, t)$

Universitat Autònoma de Barcelon

From phonons f(k, x, t) to moments $Q^{(n)}(x, t)$

$$\frac{\partial f}{\partial t} + v \cdot \nabla f = - \frac{f - f_0}{\tau}$$

$$c_V \frac{\partial T}{\partial t} - \nabla \cdot q = 0$$

$$O^{\text{th}} \text{ ORDER: Energy conservation}$$

From phonons f(k, x, t) to moments $Q^{(n)}(x, t)$

$$\begin{aligned} \frac{\partial f}{\partial t} + & v \cdot \nabla f = - & \frac{f - f_0}{\tau} \\ \frac{\partial q}{\partial t} & -\nabla \cdot \mathbf{Q} = & \frac{q}{\tau_q} \\ \end{aligned}$$
1st ORDER: Energy conservation

\Box From phonons f(k, x, t) to moments $Q^{(n)}(x, t)$

(Pseudo)conserved magnitudes

(Pseudo)conserved magnitudes

Universitat Autònoma de Barcelona

(Pseudo)conserved magnitudes

Fourier's law

Guyer and Krumhansl equation

$$\alpha_{1} \frac{\partial T}{\partial t} = -\nabla \cdot q$$

$$\alpha_{2} \frac{\partial q}{\partial t} - \frac{q}{\tau_{q}} = -\nabla \cdot Q^{(2)} -\beta_{1} \nabla T$$

$$\alpha_{3} \frac{\partial Q^{(2)}}{\partial t} - \frac{Q^{(2)}}{\tau_{Q^{(2)}}} = -\nabla \cdot Q^{(3)} -\beta_{2} \nabla q$$

THERMODYNAMIC EQUATIONS

$$c_{v} \frac{\partial T}{\partial t} + \nabla \cdot \boldsymbol{q} = 0$$
$$\boldsymbol{q} = -\lambda \nabla T - A_{1} \nabla \cdot Q^{(2)}$$
$$Q^{(2)} = A_{2} \nabla q$$

12244

$$-\nabla \cdot Q^{(n+1)} - R \nabla O^{(n-1)}$$
BTE DISTRIBUTION FUNCT.

$$f \simeq f_{eq} - \frac{3}{c_v v_g^2} \frac{\partial f_{eq}}{\partial T} q_i v_{gi} + \frac{\tau}{c_v} \frac{\partial q_i}{\partial x_i} \frac{\partial f_{eq}}{\partial T}$$

Guyer and Krumhansl equation

GK-ab initio formalism

Combination of the **Guyer and Krumhansl** equation with ab initio calculations for the parameters in the framework of **Kinetic Collective Model** offers a **full predictive** model for materials like silicon

COMSOL module

 \mathbf{v}

n 🖓

۰÷۰

J/(m³·K)

W/(m·K)

m

s

ĥ 🕅

EFFECTS OF THE GUYER AND KRUMHANSL TERMS

Fourier's law

HEAT-DIFFUSION
EQUATION
$$\frac{\partial T}{\partial t} = \chi \nabla^2 T$$

UAB Universitat Autònoma de Barcelona

Fast excitation changes $T\ll\tau$

Memory term

$$\begin{split} & \mathsf{MAXWELL-CATTANEO}\\ & \mathsf{EQUATION} \end{split}\\ & \tau \frac{\partial^2 T}{\partial t^2} + \frac{\partial T}{\partial t} = \chi \nabla^2 \mathsf{T} \end{split}$$

Steep spatial variations $\mathbf{L} \ll \boldsymbol{\ell}$

TRANSPORT EQUATIONS $c_{v} \frac{\partial T}{\partial t} + \nabla \cdot \boldsymbol{q} = 0$ $\boldsymbol{q} = -\lambda \nabla T + \ell \nabla^{2} \boldsymbol{q}$

Nonlocal term

$$c_{v} \frac{\partial T}{\partial t} + \nabla \cdot \boldsymbol{q} = 0$$
$$\boldsymbol{q} = -\lambda \nabla T + \ell \nabla^{2} \boldsymbol{q}$$

APPLICATIONS

KCM VS KINETIC FORMALISM 1:

SIZE EFFECTS

Hydrodynamic effects I: Boundaries

The boundary condition is applied directly to the heat flux in a consistent way with respect to the transport equation

Applicability of hydrodynamic ab initio model

Beardo et al. *Phys. Rev. Appl.*,

Universitat Autònoma de Barcelona

Curved heat flow in MC, MD and FE

KCM VS KINETIC FORMALISM 2:

THERMAL BOUNDARY RESISTANCE

Thermoreflectance Imaging (TRI)

Experimental Data

We obtain a thermal map of the surface of the sample using the optical setup. Heater line and thermometer are also obtained using electrical measurements.

Fourier's law test (I)

Fourier's law test (II)

using a fitted value of the thermal conductivity of InGaAs to fit the heating line

Fourier's law test (III)

Fourier's law summary

Conclusion: Fourier's law cannot describe thermal transport in this setup. New equation is needed.

GK equation

Kinetic Collective Model + Guyer and Krumhansl

TBR vs hydrodynamics

Ziabari et al.
Nat. Commu

Heat flux (streamlines)

 $q = -\kappa \nabla T + \ell^2 \nabla^2 q$

UNIVERSITAT AUTÒNOMA DE Barcelona

SIZE

 $|q_0|$

heat flux |*q*

0.9

0.8

0.7

0.6

0.5

0.1

0.4 ^{5.0} Normalized ¹

OTHER HYDRODYNAMIC SIGNATURES IN SILICON

2/9 0

Ø

11000010111000100 1100001011100010001000

0101 000

OBSERVATION OF HYDRODYNAMIC TIME SCALES

Beardo, Knobloch et al. ACS Nano 15, 13019 (2021) ==

а

1.6

1.4

1.2

1.0

0.8

0.6

0.4 0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

0

Normalized Diffraction Efficiency

L = 1000nm

KCM Quasi-static

Experimental Error bar

I Experimenta Error bar

500

L = 300nm

CM Quasi-static

500

Delay Time [ps]

KCM Inertial

1000

CCM Inertial

P = 4000nm

Experimental Data

1500

Experimental Data

P = 1200nm

1000

2000

1.0

0.8

0.6

0.4

0.2

0

Delay Time [ps]

B U Universitat Autònoma de Barcelona

Delay Time [ps]

BOULDER, JULY 2022

800

Silicon

L = 30nm

KCM Quasi-static

Experimenta

400

Delay Time [ps]

Error bai

200

P = 400 nm

600

Experimental Data

University of Colorado Boulder

Two Box model – The Dam region

Beardo, Knobloch et al. *ACS Nano 15, 13019* (2021)

Two Box model / TBR and hydrodynamic relaxation times

Two Box model / TBR and hydrodynamic relaxation times

SECOND SOUND

BOULDER, JULY 2022

Universitat Autònoma de Barcelona

Universitat Autònoma de Barcelona

Universitat Autònoma de Barcelona

Beardo et al. *Sci. Adv. 7, eabg4677* (2021)

UNIVERSITAT AUTONOMA de Barcelona

Beardo et al. *Sci. Adv. 7, eabg4677* (2021)

Beardo et al. *Sci. Adv. 7, eabg4677* (2021)

Beardo et al. *Sci. Adv. 7, eabg4677* (2021)

Beardo et al. *Sci. Adv. 7, eabg4677* (2021)

UNIVERSITAT Autònoma de Barcelona

Conclusions

S

My approach is fundamental

I'm pure

He's a phenomenological approach

He's a wrong approximation to the field

Conclusions

H and S approaches are connected!

- Combination of Guyer and Krumhansl equation with ab-initio Kinetic
 Collective Model for the transport properties allows the prediction of a large set of experiments
- The possibility to solve this model in a Finite Element (COMSOL) allows the direct comparison with any experimental setup despite its geometrical complexity
- The large set of experimental data on silicon explained by GK with a single abinitio set of parameters is an evidence in favor of a hydrodynamic regime in silicon

Thank you

