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•What is it and Why is it important?
• A very frequently used tool in order to determine

• Crystal structure
• Crystal size
• Internal stress
• Composition

• Elastic scattering (Bragg diffraction) of the X-rays from 
the examined materials are collected. Reflected X-rays 
will interfere and possess information about the 
crystallography. 
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• Examining Interference from two sources separated by a 
distance

• Phet University of Colorado Boulder offers excellent illustrative 
tools to explain how the local positioning of the light sources can 
have an effect on the collected far-field diffraction patterns on a 
screen. This example can be linked to the reflection from the 
periodic atomic configurations: crystals. Wave Interference 
(colorado.edu)

https://phet.colorado.edu/en/simulation/wave-interference
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• Examining Interference from two sources separated by a distance
• Two sources separated by 3,5µm yields interference patterns that 

survive waves in the shown propagation directions (arrows). 
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• Examining Interference from two sources separated by a distance
• Two sources separated by 1,1 µm yields the given intensity profile 

on the screen.

d=1,1µm
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• Examining Interference from two sources separated by a distance
• Students can deduce that d and arrow directions, which constitute 

the diffraction pattern are related to each other. As d increases, 
the arrows make a larger angle (θ) wrt the horizontal axis. 
Accordingly:

d ∝ θ-1 (inversely proportional to each other)
• Similarly, the reflections from planes of arranged atoms scattering 

rays 1-3 in the figure below can also be thought of the same form. 
The collection angle (θ) is related to the separation between these 
planes. 

Image taken from Bragg 
Diffraction | PhysicsOpenLab

https://physicsopenlab.org/2018/01/18/bragg-diffraction/
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• Examining Interference from two sources separated by a distance
• Nanohub offers nanoHUB.org - Resources: MSE educational tool: 

crystal structure and lattice plane visualization with Jmol that helps 
easy visualization of the crystal planes and Bravais lattices.

https://nanohub.org/tools/jmoltool
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• JMOL Exercise1: Counting number of atoms in BCC and FCC unit 
lattices. 

BCC FCC

1/8*8+1=2 atoms 1/8*8+1/2*6=4 atoms
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• JMOL Exercise2: Si crystal structure and shortest distance 
between atoms. 

Diamond lattice
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• JMOL Exercise3: Si crystal structure and shortest distance 
between atoms. 

Shortest Distance: 0.235nm
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• JMOL Exercise4: Draw Miller planes for 
• (211) and (010) planes on BCC lattice. 

(211) (010)
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• XRD simulations:  
• A typical configuration is shown below with the x-ray source on the 

left hand side and the detector on the right hand side. Optical 
elements are used to control the beam divergence. 

Image taken from 
Wikipedia

Image taken from RMS 
Foundation XRD Lecture Notes
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https://myscope.training/
https://myscope.training/


X-Ray Diffraction

15

• XRD simulations: 
• Students get convinced that the planes of reflections will create 

different diffraction cones at the exit side. Crystalline structures 
will generate point inside the diffraction cone. nanoHUB.org -
Resources: MSE educational tool: X-ray diffraction (XRD) pattern

Image taken from Mauro 
Serdala’s XRD lecture notes

https://nanohub.org/tools/xrd
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a

aa/sqrt(2)

• XRD Exercise1: Collect peak locations for BCC and verify for (110) 
plane. 

(100) plane

These reflection planes are separated by 
a distance d of:
d=a/sqrt(2)
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• XRD Exercise1: Collect peak locations for BCC and verify for (110) 
plane. 

According to Bragg formula:
n=1, λ=0.154nm (CuKα), d=a/sqrt(2), a=0.362nm

θ=sin-1(0.154/(2*0.362/sqrt(2)))=17.5 degrees
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• XRD Exercise2: Collect peak locations for FCC
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• XRD Exercise3: Finding alloy ratio of Ni-Cu alloy
• Instructor comes up with a hidden alloy ratio and asks students to 

figure it out by intelligent trials remembering that d and θ are 
inversely proportional to each other. Let us say (220) plane 
2θ=74.6.

Full Ni
a=0.352nm

Full Cu
a=0.362nm

75% Cu
25% Ni
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• nanoHUB.org - Resources: XRD interactive trends plot
• XRD interactive trends enables a simple calculation of the more 

realistic peaks with valid amplitudes. 

https://nanohub.org/tools/xrdinteract
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• nanoHUB.org - Resources: XRD interactive trends plot
• XRD interactive trends enables a simple calculation of the more 

realistic peaks with valid amplitudes. Sherrer’s equation is also 
integrated to take into account the grain sizes (thickness 
parameter)

Image taken from Mauro 
Serdala’s XRD lecture notes

https://nanohub.org/tools/xrdinteract
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• XRD Exercise4: Comparing the grain size effects on FWHM
• Grain size determines the peak broadening 

Image taken from Mauro 
Serdala’s XRD lecture notes
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• XRD Exercise4: Comparing the grain size effects on FWHM
• Students observe the changes when grain size is entered as 2nm 

and 120nm
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•What is it and why is it important?
• Developed in 1960s as a surface analysis technique. 
• Also known as Electron Spectroscopy for chemical 

analysis (ESCA).
• One of the most frequently used chemical analysis tool 

in order to determine
• Elemental composition
• Stoichiometry
• Chemical state (e.g. oxidation state)
• Electronic state of the elements
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• What is it and why is it important?
• Relies on the Photoelectric Effect: Shining a torchlight on any surface 

splashes away some surface electrons due to the acquired energy from 
the incident light. 

Photoelectron Spectrometer (ESCA) | Introduction to 
JEOL Products | JEOL Ltd.

https://www.jeol.co.jp/en/science/xps.html
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• Examining the Photoelectric Effect
• Phet University of Colorado Boulder offers excellent simulations on 

Photoelectric Effect - Light | Quantum Mechanics | Photons - PhET
Interactive Simulations (colorado.edu)

• Explore the rest of the simulation APPs here: Browse - PhET Interactive 
Simulations (colorado.edu)

https://phet.colorado.edu/en/simulation/legacy/photoelectric
https://phet.colorado.edu/en/simulations/browse
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• Examining the Photoelectric Effect

Case1: Illuminating Na 
(Sodium) 

Light impinges on a thin Na 
film.

Electrons are extracted 
thanks to the illumination at 
400nm wavelength with 17% 
intensity.

Displaced electrons go to the 
other electrode and yield 
current conduction of 0.024 
Amperes.

Na film

electrons
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• Examining the Photoelectric Effect

Case1: Illuminating Na 
(Sodium) 

Increased intensity to 100% 
yields more electrons to be 
extracted. Thereby more 
current reading by the 
students. More photons 
impinging on the Na film 
extracts more electrons. 
More Intensity => More Light 
=> More Electrons Extracted 
=> More Current
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• Examining the Photoelectric Effect

Case1: Illuminating Na 
(Sodium) 

Increasing the wavelength of 
impinging light to 579nm. 
There is no electron 
extraction! Higher 
wavelength of light 
possesses lower energy, 
hence less or no electrons 
are extracted. Higher 
Wavelength => Less Energy 
of Light => Less or No 
Electrons Extracted => Less 
or No Current
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• Examining the Photoelectric Effect

Case1: Illuminating Na 
(Sodium) 

Opposite is also generally
true (there are secondary 
effects outside of the 
scope). Lower wavelength 
=> Higher Energy of Light 
=> More Electrons 
Extracted => More 
Current
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• Examining the Photoelectric Effect

Case2: Illuminating Cu 
(Copper) 

At wavelength of 400nm, 
Cu does not yield any 
current. No electrons 
extracted. Cu has higher 
atomic number (Z) and 
requires higher energy to 
extract the electrons. In 
other words, Cu has 
higher binding energy 
(EB)!

Copper
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• XPS tool and exposure for the students
Illuminating the surface with 
x-rays to extract core 
electrons to fulfill an 
elemental analysis. Might be 
challenging to give the 
exposure to the students 
with limited funds. 

Images taken from Wikipedia
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• XPS tool and exposure for the students

Image taken from Teignmouth 
Science and Technology Center

Image taken from X-Ray Photoelectron
Spectroscopy (XPS) Surface Analysis
Technique (phi.com)

A modern XPS operating under Ultra High Vacuum with an X-ray source 
generally emitted from Al or Mg anodes after receiving e-beam emission 
(from a Tungsten or LaB6) filament. Quartz Monochromator produces a thin 
X-ray line width. Hemispherical sector analyzer with an electron lens are 
employed on the receiver side. Charge neutralizer might be needed for 
charging problems. 

https://www.phi.com/surface-analysis-techniques/xps-esca.html
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• SESSA: Simulation of the Electron Spectra for Surface Analysis
• Go to NIST Standard Reference Database 100 | NIST to download the 

proper version to your computer.

https://www.nist.gov/srd/nist-standard-reference-database-100
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• SESSA Exercise1: Cu survey result
• Set up a 10nm (thick) Cu layer on Si substrate from Sample tab. 
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• SESSA Exercise1: Cu survey result
• Go to Peaks tab, you will see that there are various Auger peaks, 

aside from the XPS peaks.
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• SESSA Exercise1: Cu survey result
• Go to Spectrometer and set the lower and upper boundaries as 

300eV and 1.2keV, respectively. 
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• SESSA Exercise1: Cu survey result
• Go to Source and observe the incident X-ray source, which is an 

AlKα source with an incident energy (Ei) of 1486eV. 



X-Ray Photoelectron Spectroscopy

39

• SESSA Exercise1: Cu survey result
• Go to Simulation tab and hit Start Simulation, you should obtain 

the following plot. Students can extract the peak values and 
corresponding energy values with the help of the mouse. 
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• SESSA Exercise1: Cu survey result
• Referring back to the Periodic Table, Cu can be arranged as:
1s22s22p63s23p64s13d10

Image taken from Copper – The 
Element We can Count on : 
Chemical Industry Digest 
(chemindigest.com)

3d10

4s1

3p6

3s2

2p6

2s2

1s2

2eV

75-77eV

123eV

932-952eV

1097eV

8979eVRed labeled energy values are the binding 
EB values of the electrons. 

http://chemindigest.com/copper-the-element-we-can-count-on/
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• SESSA Exercise1: Cu survey result
• Retrieved peaks (photoelectron Energy values) Ee and Eb values 

from the previous slide match? Energy should be conserved.
• 1st peak => Ee=Ei- Eb => 1486eV-1097eV=389eV => This is 2s photoelectron!
• Other shown peaks can be checked and found that they are 2p, 3s and 3p photoelectrons! 

Ee=3.897217e+002eV

Ee=5.340332e+002eV

Ee=5.536865e+002eV

Ee=1.364062e+03eV

Ee=1.411523e+03eV

Ee=1.409180e+03eV
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• SESSA Exercise2: Pd survey result and spin-orbit splitting
• Follow similar steps for 10nm Pd instead of Cu and collect the 

results. Should collect 8 peaks. The peaks are associated with 
orbits.

3d5/2

3d3/2

3p3/2

3p1/2
3s

4s
4p1/2

4p3/2
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• SESSA Exercise2: Pd survey result and spin-orbit splitting
• Pd is a heavy atom with the dominant effect observed as L-S 

Coupling. More detailed reading can be found here: Angular 
Momentum Coupling (gsu.edu)

Image taken from Wikipedia

Inner core electron configuration is
1s22s22p63s23p63d10… will remove an electron from 
3d

Total Angular Momentum:
d orbit => L=2 
S (spin)=1/2
|L-S| and |L+S| splitting will
occur => 3d5/2 and 3d3/2
p orbit => L=1
S=1/2
|L-S| and |L+S| splitting will
occur => 3p1/2 and 3p3/2

http://hyperphysics.phy-astr.gsu.edu/hbase/Atomic/lcoup.html
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• SESSA Exercise3: Escape length, mean free path and surface 
sensing.

• This exercise shows the surface sensing capability of XPS.
• On top of the Pd layer stack a Cu layer with changing thicknesses 

from 1nm, 2nm, 5nm to 10nm. We will quickly lose the peaks from 
Pd layer as the top Cu layer is getting thicker. The photoelectrons 
will not be able to escape the surface.

Image taken from Principles 
of XPS: Effective 
Attenuation Length

Si substrate

10nm Pd

Cu with 1nm-2nm-5nm-10nm 
thickness

https://training.aarc.ua.edu/mod/book/view.php?id=4&chapterid=14
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• SESSA Exercise3: Escape length, mean free path and surface 
sensing.

Pd peaks

Cu peaks

1nm Cu
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• SESSA Exercise3: Escape length, mean free path and surface 
sensing.

Pd peaks

Cu peaks

2nm Cu
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• SESSA Exercise3: Escape length, mean free path and surface 
sensing.

5nm Cu

Pd peaks
Cu peaks
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• SESSA Exercise3: Escape length, mean free path and surface 
sensing.

10nm Cu

Cu peaks
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• SESSA Exercise4: Depth Profiling
• Students can observe the sampling depth changes with the 

modifications done to the angle resolved XPS. The escape depth 
shrinks down with the tilted sample as schematically shown below.

• Change the tilt angle (Theta) from 0 to 30 to 60 degrees from 
Configurations tab.  

90-θImage taken from Teignmouth 
Science and Technology 
Center
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• SESSA Exercise4: Depth Profiling
• Change the tilt angle (Theta) from 0 to 30 to 60 degrees from 

Configurations tab. Observe the changes in the signal intensity.
• Since the detector is already at a position with θ=60 degrees, the 

highest signal intensity will be collected from the underlying Pd layer 
when the sample is also tilted the same amount.  

6090-θ
detector
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• SESSA Exercise4: Depth Profiling
• Focusing on the Pd peaks only

θ=0 degrees
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• SESSA Exercise4: Depth Profiling
• Focusing on the Pd peaks only

θ=30 degrees
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• SESSA Exercise4: Depth Profiling
• Focusing on the Pd peaks only

θ=60 degrees
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• SESSA Exercise5: Chemical Shift
• Students can observe the effect of the electronegativity on the binding 

energy as shown below for the same C atom binding to F as the most 
electronegative partner with the highest binding energy. 

Image taken from Alessandro Kovtun’s PhD thesis: 
2D Graphene-based Materials. Interplay between 
Composition and Electrical Properties 

• Go to Sources tab and change the X-ray 
source to MgKα which is at Ei=1253.6eV

• We will observe the chemical shift as Si is 
oxidized. 

• Go to Sample tab and change the material 
(single layer) to /Si[oxide]/O2/ for oxide

Si substrate SiO2 oxidized state
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• SESSA Exercise5: Chemical Shift
• Go to the Peaks tab and under Si 2p peaks click on the Chemical Shift 

and choose a Good estimation peak for the O bonded Si. 

Image taken from WebElements Periodic Table » Periodicity 
» Electronegativity (Pauling) » Periodic table gallery

https://www.webelements.com/periodicity/eneg_pauling/
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• SESSA Exercise5: Chemical Shift
• Go to the Peaks tab and under Si 2p peaks click on the Chemical 

Shift and choose a Good estimation peak for the O bonded Si. 
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• SESSA Exercise5: Chemical Shift
• Notice that 2p states are very close to each other for Si and yield a 

seemingly single peak. 

Ee=1154eV

Bare Si
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• SESSA Exercise5: Chemical Shift
• Notice that 2p states are shifted by around 5eV to lower values, 

meaning that EB is increased as a result of the O bond to the Si. 

Ee=1149eV

Oxidized Si
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k
m

ω =

The stronger the spring the faster the vibration and the higher the frequency

Masses and springs
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Tacoma Narrows Bridge

Molecules and light
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IR Spectra
FFT example
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63

light

Intensity

x

R

T

Nanohub 
benzene vs 
pyridine



Uvvis

64

64



Uvvis

65

Nanoantennas! => Nanohub Nanosphere Lab

https://nanohub.org/resources/nsoptics
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• XRD => Send X-ray and look at the diffraction patterns
• Crystal structure
• Crystal size
• Internal stress
• Composition

• XPS => Send X-ray and look at the extracted electrons (photoelectrons)
• Elemental composition
• Stoichiometry
• Chemical state (e.g. oxidation state)
• Electronic state of the elements

• FTIR => Send IR light and vibrate the chem. bonds and inspect the 
absorption (loss) of light. Uses Fourier Transform on Interference 
Patterns. 
• Identify bonds
• Identify compounds, organics and polymers
• Identify contamination, oxidation

• UV vis => Send UV and visible spectrum light, look at transmission and 
absorption. Identify how much a substance absorbs light. 



cakmaka@gvsu.edu

mailto:cakmaka@gvsu.edu
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