Quantum ESPRESSO with the MIT Atomic Scale Toolkit

ENRIQUE GUERRERO DAVID A. STRUBBE 26 OCT 2022

Overview

* Practice using the Quantum ESPRESSO density functional theory application within the MIT Atomic Scale Modeling Toolkit, especially if integrating this application for classroom use.

Previously... C.U.R.E. (Course Undergraduate Research Experience)

- * Student work computing properties of new material configurations
- * Toolkit removes some teaching overhead (e.g. no need to teach Linux or Bash)

Resources for introduction to density functional theory

- * nanoHUB DFT Users' Group: https://nanohub.org/groups/dft users
- * PBS Space Time (Beginner friendly): https://www.youtube.com/watch?v=55c9wkNmfn0
- "How To Simulate The Universe With DFT" PBS Space Time
- * Lecture series by nanoHUB: https://www.youtube.com/watch?v=DEJwRLHtyqQ
- "nanoHUB-U Atoms to Materials L5.1: Ab Initio Electronic Structure Calculations" nanohubtechtalks
- * D. S. Sholl and J. A. Steckel, Density Functional Theory: A Practical Introduction. Wiley (2009)
- * M. C. Payne et al. "Iterative minimization techniques for *ab initio* total-energy calculations: molecular dynamics and conjugate gradients" Rev. Mod. Phys. **64**, 1046-1077 (1992)

DFT with Quantum ESPRESSO

Schrödinger Equation

* If solved in a material, we know all about the material properties. Difficult to solve because electrons interact with each other.

Hohenberg-Kohn

* You need only the correct electron density, not wavefunctions, to have accurate system energies (and properties that result)

Kohn-Sham

* An auxiliary non-interacting system with a fictitious mean-field can give the same electron density (solvable)

Plane Wave basis set

* Plane waves are a natural basis set for Kohn-Sham wavefunctions in extended/periodic systems

Example density functional theory computations of diamond silicon

- O. Getting acquainted with the MIT Atomic Scale Modeling Toolkit
- 1. Find ideal computation parameters (Kinetic energy cutoff)
- 2. Compute Density of States and Band Structure
- 3. Compute Phonon Frequencies and Raman Intensities

https://nanohub.org/resources/ucb_compnano/supportingdocs

To follow along:

* Go to https://nanohub.org/resources/ucb_comp nano/supportingdocs

- Alternatively
 - Go to nanohub.org and sign into an account
 - Click on "Menu" on the top-right corner
 - "Search" for "MIT Atomic Scale Toolkit"
 - Click on the "Supporting Docs" tabs
- Download
 Quantum_ESPRESSO_guide_26_OCT_22

On to nanoHUB...

https://nanohub.org/resources/ucb_compnano/