Digital Systems Design Automation Unit 1: Course Introduction and Overview Lecture 1.1: Moore's Law

Anand Raghunathan raghunathan@purdue.edu

Outline

1.1 Moore's Law
1.2 Design Complexity and need for EDA
1.3 Course Overview
1.4 Taxonomy of integrated circuits
1.5 Levels of abstraction in IC design
1.6 A quick tour of logic level design automation

Integrated Circuits: An Unprecedented Journey

History of Integrated Circuits

A 10,000,000,000 fold increase in 60 years

Moore's Law

Gordon E. Moore Co-founder and Chairman Emeritus Intel

- An empirical observation (and prediction) of the growth in number of transistors in integrated circuits over time

Moore's Law

in his own words

The future of integrated electronics is the future of electronics itself. The advantages of integration will bring about a proliferation of electronics, pushing this science into many new areas.

Integrated circuits will lead to such wonders as home computers - or at least terminals connected to a central computer - automatic controls for automobiles, and personal portable communications equipment.

Cramming more components onto integrated circuits

With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65,000 components on a single silicon chip

By Gordon E. Moore
Director, Research and Development Laboratories, Fairchild Semiconductor
division of Fairchild Camera and Instrument Corp.

The future of integrated electronics is the future of electron ics itself. The advantages of integration will bring about a proliferation of electronics, pushing this science into many new areas.

Integrated circuits will lead to such wonders as home computers - or at least terminals connected to a central com-puter-automatic controls for automobiles, and persona portable communications equipment. The electronic wrist watch needs only a display to be feasible today.

But the biggest potential lies in the production of large systems. In telephone communications, integrated circuit in digital filters will separate channels on multiplex equipment. Integrated circurs wis Computers will be more
Computers will be more powerful, and will be organized of integrated electronics may be distributed throughout the

machine instead of being concentrated in a central unit. In addition, the improved reliability made possible by integrated circuits will allow the construction of larger processin built at lower costs and with faster turn-around
Present and future
By integrated electronics, I mean all the various technologies which are referred to as microelectronics today as well as any additional ones that result in electronics functions supplied to the user as irreducible units. These techject creasingly miniaturize electronics equipment to include inminimy complex electronic functions in limited space microassembly techniques for individual components, thinfilm structures and semiconductor integrated circuits.
Each approach evolved rapidly and converged so that ach borrowed techniques from another. Many researchers believe the way of the future to be a combination of the various approaches.

The advocates of semiconductor integrated circuitry are already using the improved characteristics of thin-film resistors by applying such films directly to an active semiconductor substrate. Those advocating a technology based upon films are developing sophisticated techniques for the attachment of active semiconductor devices to the passive film arrays.
Both approaches have worked well and are being used in equipment today.

The establishment abity, size and weightrequired by some of them is achievonly win inegration. Such programs as Apollo, for manned moon flight, have demonstrated the reliability of inegrated electronics by showing that complete circuit func ions are as free from failure as the best individual transis tors.
Most companies in the commercial computer field have machines in design or in early production employing inte-
grated electronics. These machines cost less and perform grated electronics. These machines cost less and perfor
better than those which use "conventional" electronics.

Instruments of various sorts, especially the rapidly in reasing numbers employing digital techniques, are starting to use integration because it cuts costs of both manufacture and design.
The use of linear integrated circuitry is still restricted primarily to the military. Such integrated functions are exmajor fraction of linear electronics. But the first applicaions are beginning to appear in commercial electronics, particularly in equipment which needs low-frequency amplifiers of small size
Reliability counts
In almost every case, integrated electronics has demonsrated high reliability. Even at the present level of produc ion-low compared to that of discrete components-it of fers reduced systems cost, and in many systems improved erformance has been realized.
Integrated electronics will make electronic techniques nore generally a available throughout all of society, performing many functions that presently are done inadequately by
other techniques or not done at all. The principal advantages wher techniques or not done at all. The principar advantages from a ready supply of low-cost functional packages
For most applications, semiconductor integrated circuits will predominate. Semiconductor devices are the only reasonable candidates presently in existence for the active elements of integrated circuits. Passive semiconductor elements ook attractive too, because of their potential for low cos and high reliability, but they can be used only if precision is not a prime requisite.

Silicon is likely to remain the basic material, although hers will be of use in specific applications. For example, functions. But silicon will predominate at lower frequencies because of the technology which has already evolved around it and its oxide, and because it is an abundant and relatively inexpensive starting material.
Costs and curves
Reduced cost is one of the big attractions of integrated lectronics, and the cost advantage continues to increase as the technology evolves toward the production of larger and larger circuit functions on a single semiconductor substrate. For simple circuits, the cost per component is nearly inversely proportional to the number of components, the result of the
quivalent piece of semiconductor in the equivalent package containing more components. But as components are added, complexity tending to raise the cost per component. Thus there is a minimum cost at any given time in the evolution of he technology. At present, it is reached when 50 components are used per circuit. But the minimum is rising rapidly while the entire cost curve is falling (see graph below). If we look ahead five years, a plot of costs suggests that the minimum cost per component might be expected in circuits with about 1,000 components per circuit (providing such circuit functions can be produced in moderate quantities.) In 1970, he manufacturing cost per component can be expected to be ly a tenth of the present cost
Ted at a rate of roughly a component costs has ingraph on next page). Certainly over the short term this reate can be expected to continue, if not to increase. Over the onger term, the rate of increase is a bit more uncertain, alhough there is no reason to believe it will not remain nearly constant for at least 10 years. That means by 1975 , he number of components per integrated circuit for minimum cost will be 65,000

I believe that such a large circuit can be built on a single wafer
Two-mil squares
With the dimensional tolerances already being employed in integrated circuits, isolated high-performance transistors
can be built on centers two thousandths of an inch apart. Such

Moore's Law in his own words

The complexity for minimum component costs has increased at a rate of roughly a factor of two per year (see graph).

Certainly over the short term this rate can be expected to continue, if not to increase.
Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years. That means by 1975, the number of components per integrated circuit for minimum cost will be 65,000.

a two-mil square can also contain several kilohms of resistance or a few diodes. This allows at least 500 components per linear inch or a quarter million per square inch. Thus, 65,000 components need occupy only about one-fourth a square inch.

On the silicon wafer currently used, usually an inch or more in diameter, there is ample room for such a structure if he components can be closely packed with no space wasted for interconnection patterns. This is realistic, since efforts to achieve a level of complexity above the presently available
integrated circuits are already underway using multilayer integrated circuits are already underway using mutiliayer density of components can be achieved by present optical techniques and does not require the more exotic techniques, such as electron beam operations, which are being studied to make even smaller structures.
Increasing the yield
There is no fundamental obstacle to achieving device yields of 100%. At present, packaging costs so far exceed incentive to improve yields, but they can be raised as high as

is economically justified. No barrier exists comparable to the thermodynamic equilibrium considerations that often limit yields in chemical reactions; it is not even necessary to do any fundamental research or to replace present processes. Only the engineering effort is needed.

In the early days of integrated circuitry, when yields were extremely low, there was such incentive. Today ordinary in tegrated circuits are made with yields comparable with those obtained for individual semiconductor devices. The same pattern will make larger arrays economical, if other consid erations make such arrays desirable.

Will it be possible to remove the heat generated by ten of thousands of components in a single silicon chip? If we could shrink the volume of a standard high-speed digital computer to that required for the components themselves, we would expect it to glow brightly with present power dissipation. But it won't happen with integrated circuits. they have a surface available for cooling close to of heat generation. In addition, power is needed primarily to drive the various lines and capacitances associated with the system. As long as a function is confined to a small area on system. As long as a function is confined to a small area on
a wafer, the amount of capacitance which must be driven is a wafer, the amount of capacitance which must be driven is
distinctly limited. In fact, shrinking dimensions on an integrated structure makes it possible to operate the structure at higher speed for the same power per unit area
Day of reckoning
Clearly, we will be able to build such componentcrammed equipment. Next, we ask under what circumstances we should do it. The total cost of making a particular system we should do it. The total costor making a particular system
function must be minimized. To do so, we could amortize the engineering over several identical items, or evolve flexible techniques for the engineering of large functions so that no disproportionate expense need be bome by a particula array. Perhaps newly devised design automation procedure. could translate from logic diagram to technological realiza tion without any special engineering.

It may prove to be more economical to build large

