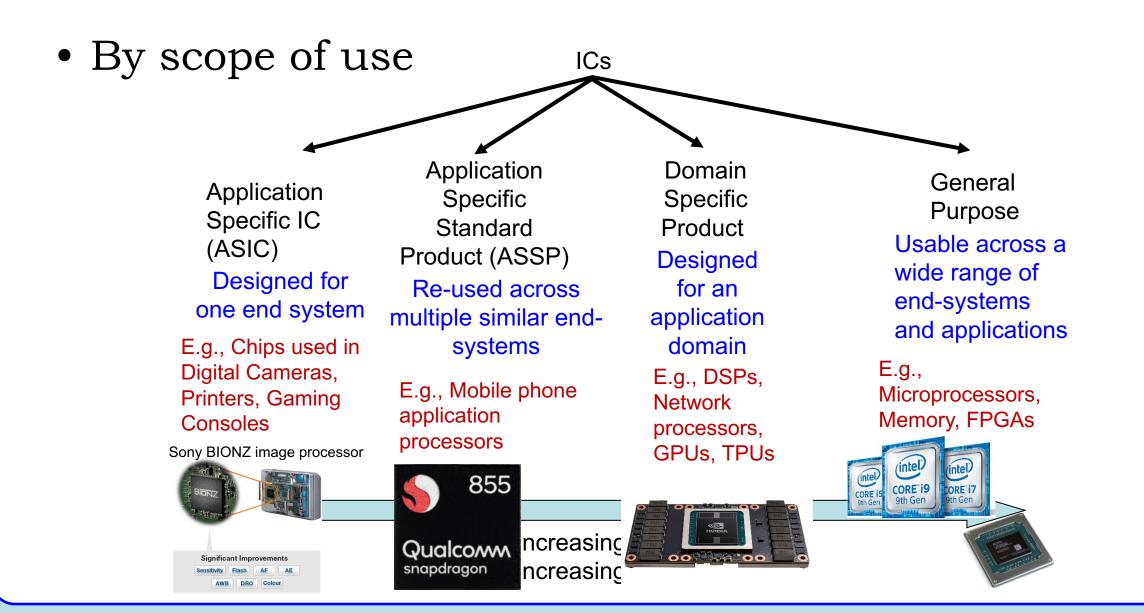
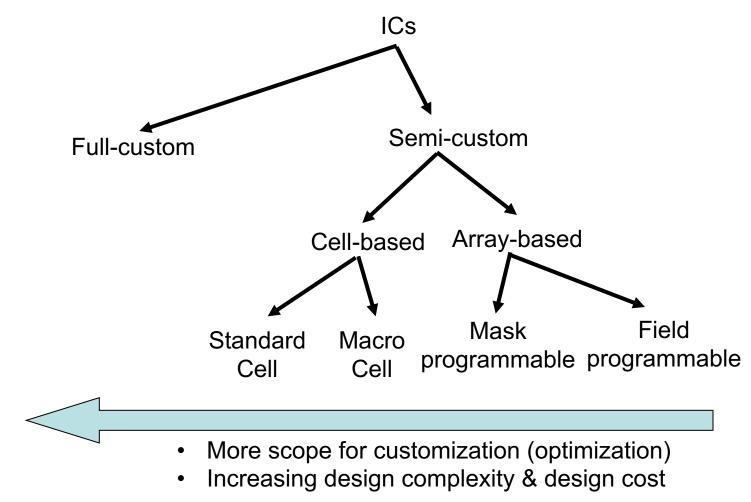


Digital Systems Design Automation Unit 1: Course Introduction and Overview Lecture 1.4: Taxonomy of Integrated Circuits

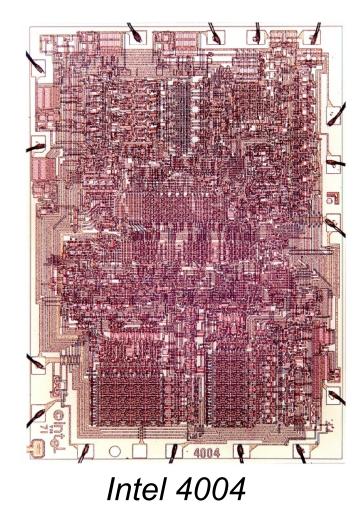


Anand Raghunathan raghunathan@purdue.edu

Outline


- 1.1 Moore's Law
- 1.2 Design Complexity and need for EDA
- 1.3 Course Overview
- 1.4 Taxonomy of integrated circuits
- 1.5 Levels of abstraction in IC design
- 1.6 A quick tour of logic level design automation

Taxonomy of Integrated Circuits

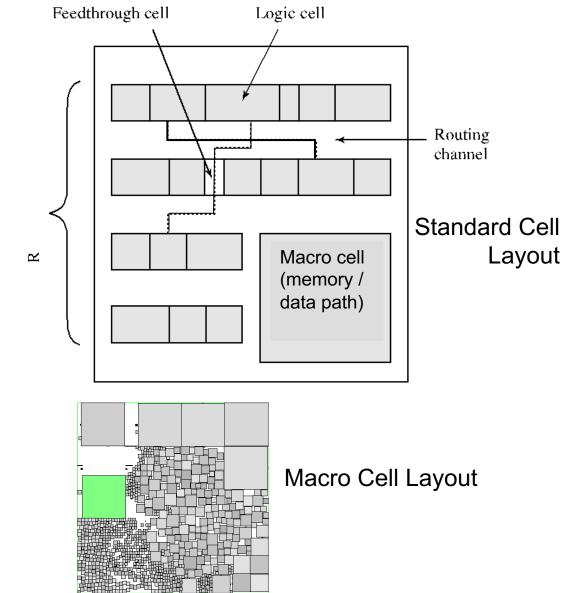

Taxonomy of Integrated Circuits

• By degree of customization during design

Full-Custom Design

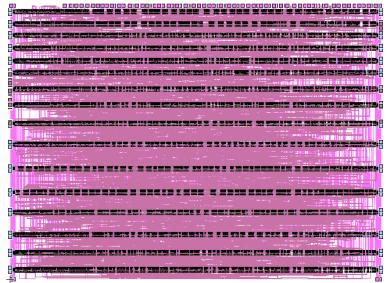
- Very high level of customization down to layout (high efficiency)
- High design effort
- Not feasible for complex (e.g., Billion-transistor) ICs

Cell Based Design

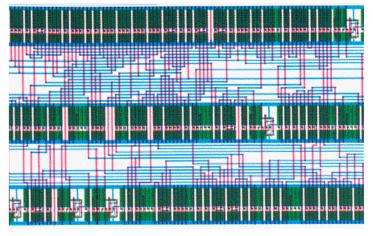

- Cell library contains predesigned and pre-characterized circuit blocks (e.g., gates, latches, flip-flops, I/O buffers)
- Circuits constructed by instantiating and connecting cells from library
 - Design rules ensure that circuits will work once fabricated
- Library contains different views of each cell (logical/transistor/physical)
 - Timing/power/area models to be used by EDA tools

Example: Nangate 15nm open cell library based on FreePDK

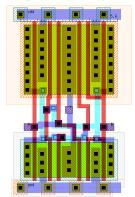
		COMBINATIONAL CELLS	
Cell Name	#In	Boolean Function	Drive Strengths
BUF	1	O = A	X1, X2, X4, X8, X12 and X16
INV	1	O = !A	X1, X2, X4, X8, X12 and X16
AND2	2	O = A * B	X1 and X2
AND3	3	O = A * B * C	X1 and X2
AND4	4	O = A * B * C * D	X1 and X2
OR2	2	O = A + B	X1 and X2
OR3	3	O = A + B + C	X1 and X2
OR4	4	O = A + B + C + D	X1 and X2
NAND2	2	O = !(A * B)	X1 and X2
NAND3	3	O = !(A * B * C)	X1 and X2
NAND4	4	O = !(A * B * C * D)	X1 and X2
NOR2	2	O = !(A + B)	X1 and X2
NOR3	3	O = !(A + B + C)	X1 and X2
NOR4	4	O = !(A + B + C + D)	X1 and X2
MUX2	3	O = A*!Sel + B*Sel	X1
XOR2	2	$O = A \oplus B$	X1
XNOR2	2	$O = !(A \oplus B)$	X1
AOI21	3	O = !((A * B) + C)	X1 and X2
AOI22	4	O = !((A * B) + (C + D))	X1 and X2
OAI21	3	O = !((A + B) * C)	X1 and X2
OAI22	4	O = !((A + B) * (C + D))	X1 and X2
FA	3	$S = A \oplus B \oplus Cin, Cout = A \oplus B * Cin + A * B$	X1
HA	2	$S = A \oplus B, Cout = A * B$	X1
		SEQUENTIAL CELLS	
Cell Name	#In	Description	Drive Strengths
DFFRNQ	3	D flip-flop with asynchronous !reset	X1
DFFSNQ	3	D flip-flop with asynchronous !set	X1
SDFFRNQ	5	D flip-flop with scan and asynchronous !reset	X1
SDFFSNQ	5	D flip-flop with scan and asynchronous !set	X1
LHQ	2	High enable Latch	X1
		ADDITIONAL CELLS	
$Cell \ Name$	#In	Description	Drive Strengths
CLKBUF	2	Clock buffer	X1, X2, X4, X8, X12 and X16
TBUF	2	Tri-state buffer	X1, X2, X4, X8, X12 and X16
FILL	-	Filler cell	X1, X2, X4, X8 and X16
CLKGATETST	3	Clock gate with test pin	X1
ANTENNA	-	Antenna cell	-
FILLTIE	-	Cell to tie the wells	-
TIEH	-	Tie-high cell	-
TIEL	-	Tie-low cell	-


Cell Based Design

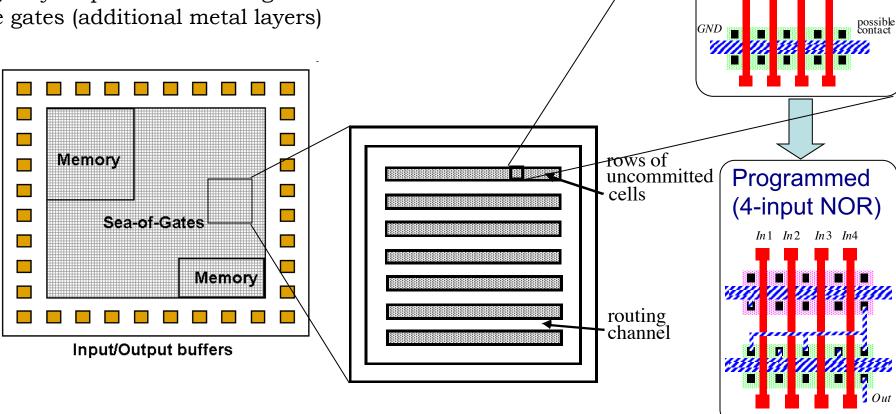
- Standard cells must have the same height
 - Eases physical design
 - Layout organized into rows of cells with routing channels in between them
- Macro cells do not have this restriction
- Common to mix both macro cells (e.g., memories and datapath components) with standard cells (random logic)



Standard Cell Based Design: Examples


32-bit ALU standard cell layout

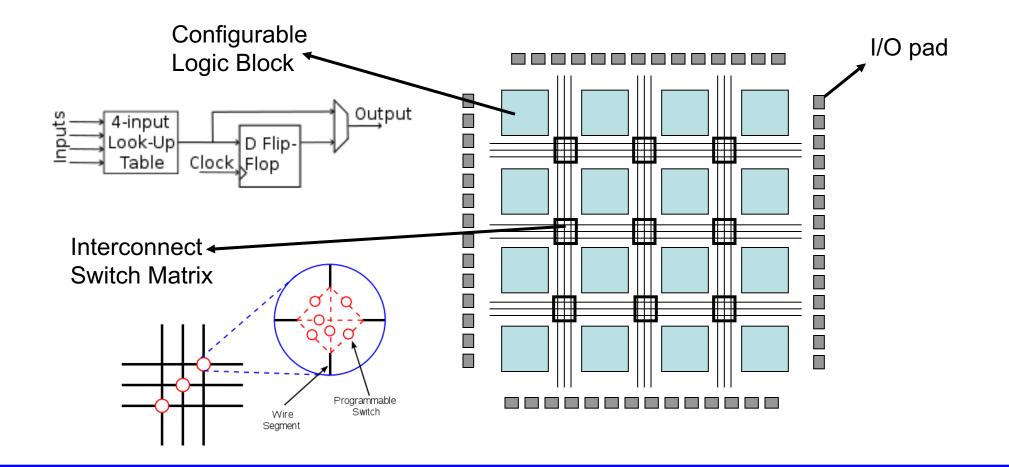
Three rows of standard cells



2-input XOR gate

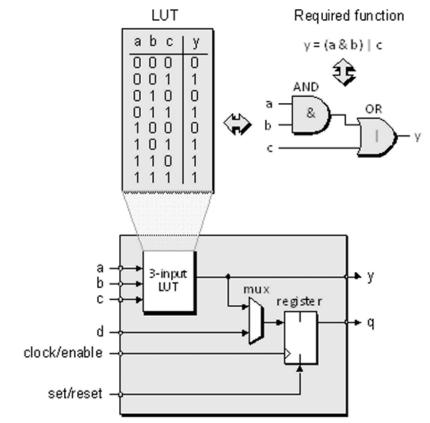
Mask-programmable Gate Array / Sea-of-gates

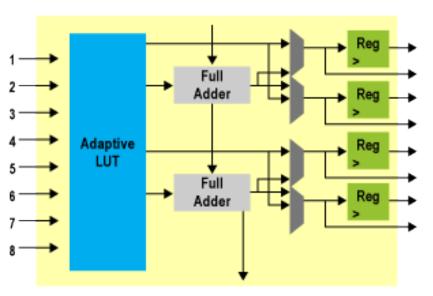
- Sea of uncommitted gates
 - An uncommitted cell or gate is formed by two or more Nchannel and P-channel transistors
- A logic function is realized by customizing uncommitted gates using additional interconnect
- Routing may be performed through dedicated channels or over the gates (additional metal layers)


Uncommitted

Gate

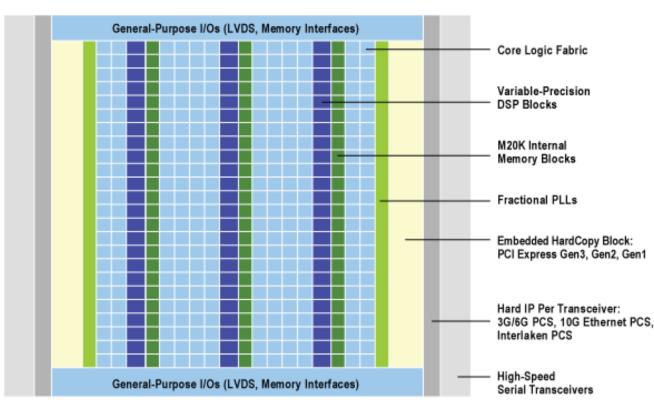
polysilicon


Field Programmable Gate Arrays (FPGAs)


- FPGAs are integrated circuits that can be "programmed" after manufacturing
- Consist of Configurable Logic Blocks (CLBs) and Programmable Interconnect

Configurable Logic Block

- CLB contains a lookup table (LUT) that stores truth table of logic function to be implemented
- More complex CLBs contain an LUT, arithmetic circuits, flip-flop(s), and multiplexers



Stratix V Adaptive Logic Module (Source: Intel)

FGPA: Contemporary Architecture

• Modern FPGAs contain hardwired circuits for arithmetic, memory, I/O, and even microprocessors

Stratix V FPGA architecture (Source: Intel)

Question

- Logic level design automation tools are used for
 - A. Standard Cell based designs
 - B. Macro cell based designs
 - C. Mask programmable gate arrays
 - D. Field programmable gate arrays

Answer: E. All of the above!