
© Anand Raghunathan

Digital Systems Design Automation
Unit 1: Course Introduction and Overview

Lecture 1.6: A Quick Tour of Logic Level Design Automation

Anand Raghunathan
raghunathan@purdue.edu

1

Outline

1.1 Moore’s Law
1.2 Design Complexity and need for EDA
1.3 Course Overview
1.4 Taxonomy of integrated circuits
1.5 Levels of abstraction in IC design
1.6 A quick tour of logic level design automation

2

A Closer Look at the Logic Design Flow

Logic
Synthesis

(Design)
Verification

Netlist

Specification

DesignTestbench

Constraints,
Directives

Analysis
(Timing, Power,

Area, …)
Correct?

Bug Golden

Satisfied?

(Implementation)
Verification

Correct?

To P&R
Y

N
Y

N

3

Logic Synthesis

module example(clk, a, b, c, d, f, g, h)
input clk, a, b, c, d, e, f;
output g, h; reg g, h;

always @(posedge clk) begin
g = a | b;
if (d) begin

if (c) h = a&~h;
else h = b;
if (f) g = c; else a^b;

end else
if (c) h = 1; else h ^b;

end
endmodule

Register-Transfer Level Specification

d

a
b
e

f
c

0 h

g

clk

Logic Extraction (Elaboration)
Technology-Independent Optimization

f

g0

h1

a

c

e

g1

h3
h5

H

G
b

d

Technology Mapping

f

d
b
e
a
c

clk

hH

G g

4

A Quick Tour Through Logic-Level Design Automation

• Two-level combinational circuit synthesis
• Input: Set of Boolean equations
• Output: Minimal two-level implementation
• Used for Programmable Logic Array (PLA) implementations
• Two-level implementations are not very scalable, but synthesis techniques are

useful in multi-level context as well

5

Any combinational logic
function can be
expressed in the form of
Boolean equations

x0 x1 x2

AND
plane

x0x1
x2

Product terms

OR
plane

f0 f1

Programmable Logic Array

A Quick Tour Through Logic-Level Design Automation

• Multi-level combinational circuit synthesis
• Input: Set of Boolean equations OR un-optimized Boolean network

elaborated from HDL
• Output: Optimized multi-level implementation (network of gates)

6

f

g0

h1

a

c

e

g1

h3
h5

H

G
b

d

A Quick Tour Through Logic-Level Design Automation

• Technology Mapping
• Input: Technology-independent implementation, Cell library
• Output: Implementation mapped to cells in library

7

AOI21
AO21

NAND3
NAND2

NAND2

Library

A Quick Tour Through Logic-Level Design Automation

• Sequential Logic Optimization:
FSM Synthesis

• Input: Finite State Machine
specification

• Output: Optimized implementation
(circuit consisting of logic gates and
storage elements)

8

A B

1/

1

----/1

(--00, 11-0)/0

(1010, 0110)/1

FF

in1
in2

in3
in4

out 1

State Minimization

State Encoding

Combinational
Logic Synthesis

A Quick Tour Through Logic-Level Design Automation

• Sequential Logic Optimization: Retiming
• Input: Structural implementation consisting of gates and FFs
• Output: Optimized implementation with improved area / speed /

power.

9

A Closer Look at the Logic Design Flow

Logic
Synthesis

(Design)
Verification

Netlist

Specification

DesignTestbench

Constraints,
Directives

Analysis
(Timing, Power,

Area, …)
Correct?

Bug Golden

Satisfied?

(Implementation)
Verification

Correct?

To P&R
Y

N
Y

N

10

A Quick Tour Through Logic-Level Design Automation

• Verification: Equivalence Checking
• Input: Specification (RTL, Boolean equations), Optimized

implementation (netlist)
• Output: Proof that specification == implementation OR

counterexample demonstrating otherwise

11

f

g0

h1

a

c

e

g1

h3
h5

H

G
b

d

NAND3
NAND31i

AOI21
NAND2i

Verification
ü

011001…

A Quick Tour Through Logic-Level Design Automation

• Verification: Property Checking
• Input: Specification or implementation, properties that must hold (e.g., assertions)
• Output: Proof that property holds OR counterexample demonstrating otherwise

12

s2

R1 G2

Y1 R2

G1 R2

R1 Y2

s1

s3

s4 Verification
ü

011001…

Property: Both lights never
green at the same time

AG ¬ (G1 Ù G2)

FSM of a traffic light controller

