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A Closer Look at the Logic Design Flow
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Logic Synthesis

Register-Transfer Level Specification
Logic Extraction (Elaboration)

Technology-Independent Optimization

Technology Mapping
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A Quick Tour Through Logic-Level Design Automation

Two-level combinational circuit synthesis

Input: Set of Boolean equations

Output: Minimal two-level implementation

Used for Programmable Logic Array (PLA) implementations

Two-level implementations are not very scalable, but synthesis techniques are

useful in multi-level context as well Product terms
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A Quick Tour Through Logic-Level Design Automation

e Multi-level combinational circuit synthesis

 Input: Set of Boolean equations OR un-optimized Boolean network
elaborated from HDL

e Output: Optimized multi-level implementation (network of gates)
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A Quick Tour Through Logic-Level Design Automation

e Technology Mapping
 Input: Technology-independent implementation, Cell library
e Output: Implementation mapped to cells in library
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A Quick Tour Through Logic-Level Design Automation

* Sequential Logic Optimization: (1010, 011011

FSM Synthesis 5.
e Input: Finite State Machine '\ 7

specification -

¢ Output: Optimized implementation & —
(circuit consisting of logic gates and State Minimization
storage elements)

State Encoding

Combinational
Logic Synthesis
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A Quick Tour Through Logic-Level Design Automation

e Sequential Logic Optimization: Retiming
e Input: Structural implementation consisting of gates and FFs

e Output: Optimized implementation with improved area / speed /
power.
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A Closer Look at the Logic Design Flow
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A Quick Tour Through Logic-Level Design Automation

Verification: Equivalence Checking

Input: Specification (RTL, Boolean equations), Optimized
implementation (netlist)

Output: Proof that specification == implementation OR
counterexample demonstrating otherwise

Verification
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A Quick Tour Through Logic-Level Design Automation

 Verification: Property Checking
e Input: Specification or implementation, properties that must hold (e.g., assertions)
 Output: Proof that property holds OR counterexample demonstrating otherwise

Property: Both lights never
green at the same time
AG 7 (G1 AG2)

a
— —

Verification

FSM of a traffic light controller 011001...




