! @ W 9 /

Digital Systems Design Automation
Unit 1: Course Introduction and Overview

Lecture 1.6: A Quick Tour of Logic Level Design Automation

Anand Raghunathan
raghunathan@purdue.edu

Y

© Anand Raghunathan

1.1
1.2
1.3
1.4
1.5
1.6

Outline

Moore’s Law

Design Complexity and need for EDA
Course Overview

Taxonomy of integrated circuits sy
Levels of abstraction in IC design
A quick tour of logic level design automation

KN

A Closer Look at the Logic Design Flow

v ' - 5
\\\\/ / — Specification JConstraints, | | |, e
/ Directives i
f\\ﬂ@?\\ — 1
f&'\/ / \ . ’f’— v ~~\\“\ I
. | ,_’f_i Logic \
i Testbench Design ,1\ Synthesis ,"i :
PEEAN J (Implementation) |
i \ / |- el Verification |
| - ¥ e |
(Design) Netlist
| Verification g g g §
i i Analysis i N
i .4 (Timing, Power, '
| Bug Golden ; Area, ...) |

Logic Synthesis

Register-Transfer Level Specification
Logic Extraction (Elaboration)

Technology-Independent Optimization

Technology Mapping

G

A Quick Tour Through Logic-Level Design Automation

Two-level combinational circuit synthesis

Input: Set of Boolean equations

Output: Minimal two-level implementation

Used for Programmable Logic Array (PLA) implementations

Two-level implementations are not very scalable, but synthesis techniques are

useful in multi-level context as well Product terms

— X0X1 o

Jo = XX + X, AND % .| oRr
— plane > plane
1 = XXXy + X5 + XX, ::> >
A A A
Any combinational logic }\ }\ Y Y
function can be Y Y
expressed in the form of j }\
Boolean equations . ; fo F
X0 X1 X2

Programmable Logic Array

\ &

A Quick Tour Through Logic-Level Design Automation

e Multi-level combinational circuit synthesis

 Input: Set of Boolean equations OR un-optimized Boolean network
elaborated from HDL

e Output: Optimized multi-level implementation (network of gates)

\>

A Quick Tour Through Logic-Level Design Automation

e Technology Mapping
 Input: Technology-independent implementation, Cell library
e Output: Implementation mapped to cells in library

\

A Quick Tour Through Logic-Level Design Automation

* Sequential Logic Optimization: (1010, 011011

FSM Synthesis 5.
e Input: Finite State Machine '\ 7

specification -

¢ Output: Optimized implementation & —
(circuit consisting of logic gates and State Minimization
storage elements)

State Encoding

Combinational
Logic Synthesis

\®

A Quick Tour Through Logic-Level Design Automation

e Sequential Logic Optimization: Retiming
e Input: Structural implementation consisting of gates and FFs

e Output: Optimized implementation with improved area / speed /
power.

— > —
— D> —
—’.

\©

A Closer Look at the Logic Design Flow

\’z T - :
\\\/ / — Specification Jconstraints, | | o e
f\/ A Directives ;

: Logic e
i Testbench Design 5 Smiests ’
S & |(Implementation)
i \ _______ / i { | Verification
ll' (Design) ! Netlist T
| \ | Verification] § ? 5 i
\\\-__ - ’ i Analysis | N
| Y (Timing, Power, |
| Bug Golden ; Area, ...) |

A Quick Tour Through Logic-Level Design Automation

Verification: Equivalence Checking

Input: Specification (RTL, Boolean equations), Optimized
implementation (netlist)

Output: Proof that specification == implementation OR
counterexample demonstrating otherwise

Verification

011001...

A Quick Tour Through Logic-Level Design Automation

 Verification: Property Checking
e Input: Specification or implementation, properties that must hold (e.g., assertions)
 Output: Proof that property holds OR counterexample demonstrating otherwise

Property: Both lights never
green at the same time
AG 7 (G1 AG2)

a
— —

Verification

FSM of a traffic light controller 011001...

