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Outline

1.1 Moore’s Law
1.2 Design Complexity and need for EDA
1.3 Course Overview
1.4 Taxonomy of integrated circuits
1.5 Levels of abstraction in IC design
1.6 A quick tour of logic level design automation
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A Closer Look at the Logic Design Flow
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Logic Synthesis

module example(clk, a, b, c, d, f, g, h)
input clk, a, b, c, d, e, f;
output g, h; reg g, h;

always @(posedge clk) begin
g = a | b;
if (d) begin

if (c)  h = a&~h;
else  h = b;
if (f) g = c; else a^b;

end else
if (c) h = 1; else h ^b;

end
endmodule
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A Quick Tour Through Logic-Level Design Automation

• Two-level combinational circuit synthesis
• Input: Set of Boolean equations
• Output: Minimal two-level implementation
• Used for Programmable Logic Array (PLA) implementations 
• Two-level implementations are not very scalable, but synthesis techniques are 

useful in multi-level context as well
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A Quick Tour Through Logic-Level Design Automation

• Multi-level combinational circuit synthesis
• Input: Set of Boolean equations OR un-optimized Boolean network 

elaborated from HDL
• Output: Optimized multi-level implementation (network of gates)

6

f

g0

h1

a

c

e

g1

h3
h5

H

G
b

d



A Quick Tour Through Logic-Level Design Automation

• Technology Mapping
• Input: Technology-independent implementation, Cell library
• Output: Implementation mapped to cells in library
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A Quick Tour Through Logic-Level Design Automation

• Sequential Logic Optimization: 
FSM Synthesis

• Input: Finite State Machine 
specification

• Output: Optimized implementation 
(circuit consisting of logic gates and 
storage elements)
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A Quick Tour Through Logic-Level Design Automation

• Sequential Logic Optimization: Retiming
• Input: Structural implementation consisting of gates and FFs
• Output: Optimized implementation with improved area / speed / 

power.
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A Closer Look at the Logic Design Flow
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A Quick Tour Through Logic-Level Design Automation

• Verification: Equivalence Checking
• Input: Specification (RTL, Boolean equations), Optimized 

implementation (netlist)
• Output: Proof that specification == implementation OR 

counterexample demonstrating otherwise
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A Quick Tour Through Logic-Level Design Automation

• Verification: Property Checking
• Input: Specification or implementation, properties that must hold (e.g., assertions)
• Output: Proof that property holds OR counterexample demonstrating otherwise
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