

nanoHUB's Sim2Ls

getting started guide for tool developers

Make your research reproducible and your workflows and data FAIR

Juan Carlos Verduzo, Steven Clark, Daniel Mejia, Ale Strachan*

<u>*strachan@purdue.edu</u> School of Materials Engineering, Purdue University West Lafayette, Indiana USA

nanoHUB: online apps, tools, & data

Overview

- 1. Why publish tools & apps in nanoHUB?
 - Tools are publications (DOIs and indexed by Web of Science)
 - Share your work with your community (22,000+ annual sim users)
- 2. Various tool and app types
 - Apps, workflows, Jupyter notebooks, commercial codes, X11 GUIs
- 3. Sim2Ls, FAIR workflows and data
 - Develop and publish Sim2Ls
- 4. Developing Apps
 - Connecting Sim2Ls to Jupyter and Web Apps
- 5. Tool Publication process
 - Register, deploy, test, and publish
- 6. Development environment
 - A Unix development environment (Jupyter or Linux desktop)
- 7. Simulation and data as a service
 - Launching tools and querying the ResultsDB

nanoHUB getting started guide for developers

Why Sim2Ls?

- Simulation and data analysis workflows :
 - Are complex and multi-step
 - (often) involve ad-hoc or manual steps
 - (often) only partially described in publications
- Consequently:
 - Reproducing results requires significant effort, even by experts
 - Domain experts (not computational experts) cannot benefit from these workflows
 - Scientific progress and innovation are hindered
- Workflows and the results they generate are not
 - Findable, accessible, interoperable, reusable (FAIR)
 - Reproducible

What are Sim2Ls?

• Full end-to-end computational workflow

- Input(s) \rightarrow workflow \rightarrow output(s)
- Including all pre-processing and post-processing steps

- Simulation as a service. Launch Sim2Ls from:
 - From a GUI or App
 - From AI/ML or high-throughput workflows
 - From inside nanoHUB or outside

Hunt M, Clark S, Mejia D, Desai S, Strachan A (2022) Sim2Ls: FAIR simulation workflows and data. PLoS ONE 17(3): e0264492. https://doi.org/10.1371/journal.pone.0264492

Sim2Ls: key features

- Published Sim2Ls have DOIs and are indexed by Web Of Science
- Services (outputs) & requirements (inputs) are queryable
- Simulation are automatically stored in a cache and not re-run
- Simulation results are indexed in queryable database (ResultsDB)

FAIR workflows and data

Developing a Sim2L – Step 1: register your tool

Step 1 : register your Sim2L: <u>https://nanohub.org/tools/create</u>	REPOSITORY HOST: Host subversion repository on HUB Host GIT repository on HUB
ထိုကာကHUB RESOURCES EXPLORE NANOHUB-U PARTNERS COMMUNITY ABOUT SUPPO	 Host GIT repository on GitHUB
Tools: Create New Tool	PUBLISHING OPTION:
	Rappture or Linux-GUI based tool
This short name will be in	O Jupyter notebook Sim2L
Tool Name: Required the URL when published	SimTool
Short name, used for the directory containing this tool. Example: qdot	400505
Title: required	ACCESS:
Sim2L demo for developers	Tool Access: REQUIRED
Full name for this tool. Example: Quantum Dot Lab	Anyone can run tool
Version:	Source Code Access: REQUIRED
1.0	Open source (anyone can access code)
Optional version number for this release of the tool. Example: 1.0 or 2.1.5b. Spaces not allowed.	Project Area Access: province
At a glance: required	
This tools shows a simple example of a Sim2L to help developers get started	Cohore of hearing
A one-line description of your tool. Example: Simulate 3-D confined states in simple quantum dot geometries.	Development team: REQUIRED
SUGGESTED SCREEN SIZE	strachan
W 780 × H 600	nanoHUB.org logins for people allowed to modify your code. Example: mylogin, fred, barney, wilma
Specify a screen size for your application in pixels.	

nanoHUB Sim2Ls guide for developers

What should I choose?

What should I choose?

What should I choose?

\$

\$

\$

GIT in nanoHUB

(suggested)

Developing a Sim2L – Step 1: register your tool

Your tool is registered, you can start working on it

https://nanohub.org/tools/sim2ldemo/status

		What's next?
Tool Information e Fitle Arsion At a glance Description //NC geometry Apagetron Host Type	dit Sim2L demo for developers (sim2ldemo - Id #2055) This version 1.0 (under development) This tools shows a simple example of a Sim2L to help developers get started Preview Edit description page 780x6600	The nanoHUB.org team has created the following project area for user tool on the nanoFORGE: https://nanohub.org/tools/sim2ldemo/wiki Follow these steps to start using your project area: Learn more about uploading source code into your project area and how the directories are arranged Learn more About the Rappture toolkit.
Tool execution Source code Project area	open to public open source open to public	Learn about nanoHUB's software development environment When you are ready. Follow these instructions to access the source code repositor for your specific project and upload your code.
Publishing Option Development team	simtool strachan	We are waiting for You Once your source code has been uploaded into your project area with here to let us
Oeveloper Tools ⓒHistory @Wiki 《아Sou	rrce → Timeline 🔎 Message 🛛 Kancel	know: My code is committed, working, and ready to be installed Remaining steps before we can publish your tool Register your tool on nanoHUB.org
		Commit the final code for this version. Ive done this How do I do this? Make the page that describes your tool. Create this page Test and approve your tool

Go to the project area and start working

 When you are done and committed your ready-to-test code click here (you will be able to further test it before it is deployed to the public)

Developing a Sim2L – Step 2: clone your tool's repo

Step 2: clone the git repo in your nanoHUB workspace Instructions at: <u>https://nanohub.org/tools/sim2demo/wiki</u> (click on Getting Started)

wiki: GettingStarted	 Your tool name
New Developers	
Welcome, new developer! This page will help you get started using this site to help us develop Sim2L demo for developers.	
Getting the Code	
First step is to download the Sim2L demo for developers development code. To do this, you'll need [httpsgit-scm.com git], and MacOSX.	Clone the automatically created GIT repo
Once git is installed, you can download Sim2L demo for developers as follows:	
<pre>% git clone https://nanohub.org/tools/sim2ldemo/gt/sim2ldemo</pre>	
The clone command makes a local copy of the entire Sim2L demo for developers source tree into your current working direct	Follow the instructions to make changes
Making Changes	and commit thom using CIT
Once you've downloaded the code, you can make whatever changes you like. For example, you might edit a file to fix a bug or	and commit them using Gri
<pre>% cd sim2ldemo % git add % git commitmessage "fixed my first bug!" % git push</pre>	
It's best to commit at the top of the source treethat's why we said "cd sim2ldemo" in the example above. When you commi Pushing a change makes it permanent. Once pushed, other developers will see the change. If for some reason, you want to thr	
If you want to add a new file or directory to your distribution, you can use the add command:	
<pre>% git add README.txt % git commitmessage "made my first addition"</pre>	
Like any other change, the file is not really added until the next push operation. Similarly, if you want to remove a file or directory from your distribution, you can use the delete command:	velopers 9

Developing a Sim2L – Step 2: clone your tool's repo

Step 2: clone the git repo in your nanoHUB workspace2.1 Launch Jupyter in nanoHUB: <u>https://nanohub.org/tools/jupyter70</u>

Files Running	
elect items to perform actions on them.	Upload New - C
	Natebook: Nat MATLAB 2021a
SugarAidECE202	Python 3.7 (MRSICMS)
□ □ _SugarAidME200	Python 3.8
pp-matsimtk	Python 3.8 (MATERI/ Create a new Python 3.8 (MXMNET)
□ □ app-nmst_dft	Python 3.8 (PSI4)
atomicstructure	Python 3.8 (QISKIT)
□ □ Aug01-07	Python 3.8 (TF2.5)
C Aug02-07	Other:
C Aug10-07	Folder
□ □ Aug8	Terminal
D bayes	9 years ago
🗋 🗅 bin	12 years ago
D blockchain	a year ago

Start a terminal and/or a python kernel

Developing a Sim2L – Step 3: work on your tool

ணூлапонив 💭 Jupyter	
	Cione a
<pre>strachan@nanohub_2092293_14:~\$ git clone https://nanohub.org/tools/sim2ldemo/git/sim2ldemo</pre>	director
Cloning into 'sim2ldemo'	unector
remote: Counting objects: 12, done.	
remote: Compressing objects: 100% (8/8), done.	l template
remote: Total 12 (delta 1), reused 0 (delta 0)	
Unpacking objects: 100% (12/12), done.	
strachan@nanohub_2092293_14:~\$ cd sim2ldemo/	
strachan@nanohub_2092293_14:~/sim2ldemo\$	

nanoHUB Sim2Ls

Clone and check out the directory structure and template files

Two key files are created:

- simtool/sim2ldemo.ipynb (actual Sim2L workflow)
- sim2ldemoExample.ipynb (execution notebook to invoke the Sim2L)

```
ີ ທີ່ nanoHUB
           😇 jupyter
strachan@nanohub_2092293_14:~/sim2ldemo$ ls -ltr
total 8
-rw-r--r-- 1 strachan public 205 Oct 10 12:44 README.md
drwxr-xr-x 2 strachan public
                              27 Oct 10 12:44 bin
drwxr-xr-x 2 strachan public
                               27 Oct 10 12:44 data
drwxr-xr-x 2 strachan public
                               27 Oct 10 12:44 doc
drwxr-xr-x 2 strachan public
                              27 Oct 10 12:44 examples
drwxr-xr-x 2 strachan public
                               28 Oct 10 12:44 middleware
-rw-r--r-- 1 strachan public 1773 Oct 10 12:44 sim2ldemoExample.ipynb
drwxr-xr-x 2 strachan public
                              54 Oct 10 12:44 simtool
drwxr-xr-x 2 strachan public 30 Oct 10 12:44 src
strachan@nanohub 2092293 14:~/sim2ldemo$ ls -ltr simtool/
total 4
-rw-r--r-- 1 strachan public 3087 Oct 10 12:44 sim2ldemo.ipynb
strachan@nanohub 2092293 14:~/sim2ldemo$
```


Developing a Sim2L – Step 3: Sim2L notebook (part 1)

In []:	DESCRIPTION X		
	DESCRIPTION = """This tools shows a simple example of a Sim2L to help developers get started. The example solves the Lorenz system."""		
In []:	ĸ		
	Nload_ext yamlmagic		
In []:	ferr citted invest PB		
	incort nump as no		
	Trom scipy.integrate import solve_ivp		
	Declare inputs 1		
	After importing libraries, developers should define all inputs to the workflows that users will be able to modify. Select the appropriate type of input and include descriptive metadata:		
	Description (this is a queryable field, be clear so others can understand requirements of your tool)		
	Value: use this to set the default value for each input		
	Hange: for cartain inout types, users can specify ranges to limit numberical paramters to meaninul values Units; you can specify units and the Simzla. Bitcary will perform automated unit conversion using plnt (see https://pint.readthedocs.lo/en/stable/		
	A list of all input types can be found in this Sim2L: https://nanohub.org/tools/introlosimtools		
In []:			
	wyan Linvuis		
	attractor_sigma: description: Sigma parameter of the Lorenz attractor		
	type: Number value: 18		
	min: 0.1		
	max: 25		
	attractor_rho: description: Bho parameter of the Lorenz attractor		
	type: Number		
	value: 28 min: 0.1		
	max: 40		
	attractor_beta:		
	description: Beta parameter of the Lorenz attractor type: Number		
	válue: 3		
	max: 50		
	attractor_initial_x:		
	description: Initial X-coordinate		
	value: 5		
	min: -10 max: 10		
	attractor_initial_y:		
	description: Initial Y-coordinate		
	value: 5		
	min: -10 max: 10		
	attractor initial 7		
	description: Initial Z-coordinate		
	type: Number value: 5		
	min: -10		
	max: 10		
	type: Numoer value: 5 min: -10 max: 10		

Sim2L template in the simtool/ folder

1. A description is required and queryable

2. Declare all inputs (include descriptions and units if applicable) (Possible input types: Boolean, Integer, Number, Array, Text, Choice, List, Dictionary, Image, and Element)

Check out https://nanohub.org/tools/introtosimtools for examples of all input types

r developers

Developing a Sim2L – Step 3: Sim2L notebook (part 2)

Declare outputs			
Explicitly declare all outputs for your Sim2Ls. These will be indexed (together with the inputs	s) in nanoHUB's ResultsDB		
₩yaml OUTPUTS			
attractor_x_trajectory: type: Array description: Trajectory over time in X	3. Declare	all outputs (i	nclude descriptions)
attractor_y_trajectory: type: Array description: Trajectory over time in Y	(Same type	es as inputs)	
attractor_z_trajectory: type: Array description: Trajectory over time in Z	4. T	his cell is us	ed to inject the parameters when the Sim2L
		· · · · · · · · · · · · · · · · · · ·	
Parameterize Sim?l	IS IN	ivoked (leave	e It as is)
The cell below needs to be included and tagged "parameters"			
parameters x # The parameters cell should have the code below. This enables the Si	m2Ls library to "inject" the selected paramters	5. Write you	r workflow connecting inputs to outputs
from simtool import getValidatedInputs			
<pre>defaultInputs = getValidatedInputs(INPUTS)</pre>			
globals().update(defaultInputs)		6. Assig	n output variables by creating a database object
		Ŭ	
<pre>#hard coded paramters tmax = 200</pre>			
FILES X			Assign output variables
EXTRA_FILES = []			Initialize the output variables using the DB command Use dhisave to assign values to ALL your output variables
Write your workflow			
			db = DB(OUTPUTS)
.98			db.save('attractor_x_trajectory', x_traj)
ະດີ nanoHUB	nanoHUB Sir	m2Ls guide for develop	db.save('attractor_y_trajectory', y_traj) db.save('attractor_z_trajectory', z_traj)
020			

Developing a Sim2L – Step 3: execution notebook (Part 1)

This is the file that will be launched when the tool is run in nanoHUB This notebook should set inputs, invoke the Sim2L itself, display outputs

Several options:

- A plain notebook that sets inputs and displays outputs
- A GUI (using widgets), see <u>https://ipywidgets.readthedocs.io/en/stable/</u>
- An AI/ML or high throughput workflow that launches the Sim2L as needed

Developing a Sim2L – Step 3: execution notebook (Part 2)

Import the sim2L library and other auxiliary packages from simtool import findInstalledSimToolNotebooks, searchForSimTool from simtool import getSimToolInputs, getSimToolOutputs, Run

import pandas as pd import numpy as np import os import ipywidgets as widgets import plotly.graph_objects as gd

import matplotlib.pyplot as plt

SimTool Inputs and Outputs
Sim2L Instance
demo = searchForSimTool("sim2ldemo")

Creating Inputs Object
inputs = getSimToolInputs(demo)
print(inputs)

Printing Expected Outputs
outputs = getSimToolOutputs(demo)
print(outputs)

Parameterize the Sim2L

- · Default values will be used for inputs not explicitly specified
- Note that the Sim2Ls library checks that all inputs fall within the range established by the developer

Sim2Ls also checks and converts units

inputs.attractor_beta.value = 8/3
inputs.attractor_rho.value = 28
inputs.attractor_sigma.value = 10

inputs.attractor_initial_x.value = 0
inputs.attractor_initial_y.value = 1
inputs.attractor_initial_z.value = 1.05

Run the Sim2L

The simulation cache will be checked and your run either executed or pulled from the cache

r = Run(demo, inputs)
r.getResultSummary()

1. Identify the Sim2L you want to execute The tool can be published or under development

2. Check inputs and outputs Get a list of all inputs and outputs

3. Set parameters The Sim2Ls library checks that parameters fall within the ranges established by the developer

4. Run the Sim2L

Developing a Sim2L – Step 3: execution notebook (Part 2)

Analyze/visualize your results

def plot_attractor(x_traj, y_traj, z_traj):

trace go.Scatter3d(x=x_traj, y=y_traj, z=z_traj, mode='lines+markers', marker=dict(color=list(range(len(x_traj))), cmin = 0, cmax = len(x_traj), colorscale='RdBu', size=1))
fig update_layout(width=600, height=600)

fig.show()

x_t = np.array(r.read('attractor_x_trajectory'))
y_t = np.array(r.read('attractor_y_trajectory'))
z_t = np.array(r.read('attractor_z_trajectory'))

plot_attractor(x_t, y_t, z_t)

5. Get results, analyze, and visualize

Publishing a Sim2L

When you are done, just let the nanoHUB team know

https://nanohub.org/tools/sim2ldemo/status

		What's next?
Tool Information e Title Version At a glance Description VIC geometry Repository Host Type Tool execution Source code Project area	dit Sim2L demo for developers (sim2ldemo - Id #2055) This version 1.0 (under development) This tools shows a simple example of a Sim2L to help developers get started Preview Edit description page 780x600 gitLocal open to public open source open to public	The nanoHUB.org team has created the following project area for your tool on the nanoPORGE: https://nanohub.org/tools/sim2ldemo/wiki Follow these steps to start using your project area: Learn more about uploading source code into your project area and how the directories are arranged Learn more About the Rappture toolkit. Learn about nanoHUB's software development environment When you are ready, Follow these instructions to access the source code repose for your specific project and upload your code.
Publishing Option Development team	simtool strachan	We are waiting for You Once your source code has been uploaded into your project area, click here to let u
Oeveloper Tools ◎History ♥wiki ↔Sot	urce 🕂 Timeline 🔎 Message 🛛 Cancel	Know: My code is committed, working, and ready to be installed Remaining steps before we can publish your took Know Register your tool on nanoHUB.org
		Commit the final code for this version. Ive done this How do I do this? Make the page that describes your tool. Create this page Test and approve your tool

Click here

The nanoHUB team will stage the tool and you will be able to test it and make changes if needed before publication

Workflow and data are FAIR and ML-ready

Sim2L example: MD simulations of melting temperature

Inputs:

- Alloy composition
- Simulation details

Outputs:

- Convergence
- Predicted melting temp
- Confidence interval

https://nanohub.org/tools/meltheas

Sim2L example: launching a Sim2L from an AI/ML workflow

Autonomous ML workflow driving physics-based sims

Find a high-entropy alloy with the highest melting temperature

~15 simulations out of 544

https://nanohub.org/tools/activemeltheas

Sim2L example: an App running a Sim2L

https://nanohub.org/tools/st4pnjunction

Exploring the ResultsDB

nanoHUB.org/tools/meltdashboard

Every successful Sim2L run from published

tools is indexed in the ResultsDB

This App explores the runs of the meltHEAs Sim2L

Temperatures are plotted in a 2D representation of the 5-element space

Panel on the right shows the individual results for each alloy

Documentation on the ResultsDB available at: <u>https://nanohub.org/developer/api/endpoint/dbexplorer</u>

Additional resources

- Sim2Ls: FAIR simulation workflows and data Martin Hunt, Steven Clark, Daniel Mejia, Saaketh Desai, Alejandro Strachan. PLOS ONE. 2022 Mar 10;17(3):e0264492. <u>https://doi.org/10.1371/journal.pone.0264492</u>
- Documentation: <u>https://simtool.readthedocs.io/en/stable/</u>
- Additional information with hands-on information: <u>https://youtu.be/7KHwJdJwtxc</u>

