

Digital Systems Design Automation

Unit 2: Advanced Boolean Algebra Lecture 2.1: Boolean Algebra – Quick Review

Anand Raghunathan raghunathan@purdue.edu

© Anand Raghunathan

Outline

- 2.1 Boolean algebra: Quick review
- 2.2 Boolean spaces and functions
- 2.3 Boolean function representations
- 2.4 Conversion of Boolean function representations
- 2.5 Co-factors of Boolean functions
- 2.6 Boolean difference and Quantification

Reading for Unit 2

- Review basic Boolean algebra (your favorite book)
 - Digital Design: Principles & Practices, 4th Ed., John F. Wakerly, Prentice Hall, 2005
 - Purdue ECE270 course material
 - Module 2: Boolean Algebra and Combinational Logic Circuits
- Advanced Boolean algebra
 - De Micheli, Chapter 2.5
 - Hachtel & Somenzi, Chapter 3 (3.1 3.3)

Boolean Algebra (a.k.a. Boolean Logic)

- A set of two <u>symbols</u> or values ({0,1} or {TRUE,FALSE}, or ...) and a family of <u>operations</u> on them that obey certain <u>laws</u>
- Basic Operations
 - Conjunction / AND $(x \land)$, xy, xy
 - Disjunction / OR : $x \bigvee y, \underline{x+y}$
 - Negation / Complement / NOT : $\neg x, x', \overline{x}$
- Complex operations: Any formula that can be composed of basic operations
 - Exclusive OR / XOR : $x \ {\ensuremath{\oplus}} \ y$
 - Implication : $x \rightarrow y$
- Operations obey certain laws or axioms
- Analogy to the algebra of real numbers
 - $(\mathsf{B}, \, \lor, \, \land, \, \neg, \, 0, \, 1) \leftrightarrow (\mathbb{R}, \, +, \, *, \, -, \, 0, \, 1)$

Boolean Operators as Set Operations

• The operators of Boolean algebra can also be interpreted in terms of sets

Boolean operators

Set interpretation	

 $X \lor Y$

5

Basic Laws of Boolean Algebra

Law	Description
Commutativity	$ \mathbf{x} \lor \mathbf{y} = \mathbf{y} \lor \mathbf{x} \\ \mathbf{x} \land \mathbf{y} = \mathbf{y} \land \mathbf{x} $
Associativity	$ \mathbf{x} \lor (\mathbf{y} \lor \mathbf{z}) = (\mathbf{x} \lor \mathbf{y}) \checkmark \mathbf{z} $ $ \mathbf{x} \land (\mathbf{y} \land \mathbf{z}) = (\mathbf{x} \land \mathbf{y}) \land \mathbf{z} $
Distributivity	$ \begin{array}{c} \mathbf{x} \land (\mathbf{y} \lor \mathbf{z}) = (\mathbf{x} \land \mathbf{y}) \lor (\mathbf{x} \not\triangleleft \mathbf{z}) \\ \mathbf{x} \lor (\mathbf{y} \land \mathbf{z}) = (\mathbf{x} \lor \mathbf{y}) \land (\mathbf{x} \lor \mathbf{z}) \end{array} $
Identity	
Annihilation	$ \mathbf{x} \land 0 = 0 $ $ \mathbf{x} \lor 1 = 1 $
Idempotence	$ \mathbf{x} \lor \mathbf{x} = \mathbf{x} \\ \mathbf{x} \land \mathbf{x} = \mathbf{x} $
Absorption	$ \begin{array}{c} \mathbf{x} \land (\mathbf{x} \lor \mathbf{y}) = \mathbf{x} \\ \mathbf{x} \lor (\mathbf{x} \land \mathbf{y}) = \mathbf{x} \end{array} $

Basic Laws of Boolean Algebra

Law	Description
Complementation	$ \begin{array}{c} \mathbf{x} \land \neg \mathbf{x} = 0 \\ \mathbf{x} \lor \neg \mathbf{x} = 1 \end{array} $
Double Negation	x = x - x
De Morgan	$(\mathbf{x}) \land (\mathbf{y}) = \mathbf{x} \lor \mathbf{x}$ $(\mathbf{x}) \lor (\mathbf{y}) = \mathbf{x} \land \mathbf{x}$

- Duality principle
 - Boolean algebra is unchanged when 0,1 and $\wedge,\,\vee$ are interchanged

Did You Know?

- Boolean logic was the invention of George Boole (1815-1864), an English mathematician and philosopher
- Published his first paper at the age of 24
- Landmark papers
 - "The mathematical analysis of logic," 1847
 - "An Investigation of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and Probabilities," 1854
- Argued that there was a strong analogy between logic (then considered a sub-discipline of philosophy) and mathematics
- Initially, his theory was ignored or criticized by the academic community
- Followed up later by a student at MIT for his M.S thesis in 1937
 - Showed how to use Boolean logic to optimize electromechanical relay networks

- Boole's life was tragically cut short at the age of 49, when he was at the peak of his intellectual abilities
- After walking 2 miles through a drenching rain to get to class and then lecturing in wet clothes, Boole caught a 'feverish cold'
- It is believed that Mary Everest Boole, also a mathematician and Boole's wife, dumped buckets of water on him based on the theory that the remedy for an illness ought to bear resemblance to its cause

That was easy ... what else?

- Quite a bit!
- Basic Boolean algebra helps you design simple digital circuits by hand
- Need more advanced concepts to create design automation algorithms and tools