> Digital Systems Design Automation
> Unit 2: Advanced Boolean Algebra
> Lecture 2.2: Boolean Spaces and Functions

Anand Raghunathan
raghunathan@purdue.edu

Outline

2.1 Boolean algebra: Quick review
2.2 Boolean spaces and functions
2.3 Boolean function representations
2.4 Conversion of Boolean function representations
2.5 Co-factors of Boolean functions
2.6 Boolean difference and Quantification

Boolean Spaces

- Boolean space of n variables is the set of all possible combinations of values that the variables can assume
- Many representations
- e.g., K-map, ndimensional unit hypercube

Boolean space Karnaugh Map Boolean Hypercube

$$
\begin{aligned}
& \mathrm{B}^{1}=\{0,1\} \\
& \begin{array}{l}
\mathrm{B}^{2}=\mathrm{B} \times \mathrm{B}= \\
\{00,01,10,11\}
\end{array} \\
& \begin{array}{l}
\mathrm{B}^{3}=\mathrm{B} \times \mathrm{B} \times \mathrm{B} \\
=\{000,001,010, \\
011,100,101, \\
110,111\}
\end{array} \\
& \begin{array}{l}
B^{4}=\mathrm{B} \times \mathrm{B} \times \mathrm{B} \times \mathrm{B} \\
=\{0000, \ldots 1111
\end{array} \\
& \hline
\end{aligned}
$$

Boolean Functions

- Boolean function (a.k.a. logic function) is a mapping from one Boolean space to another
- E.g., f(x): $\mathrm{B}^{\mathrm{n}} \rightarrow \mathrm{B}$
$-\mathrm{x}=\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}$ are variables, $\mathrm{x}_{\mathrm{i}} \in \mathrm{B}$
- On-set of f
$-\left\{\underline{x \mid f(x)=1\}}=\underline{f}^{1}=\underline{f^{-1}(1)}\right.$
- Off-set of f
$-\{x \mid f(x)=0\}=\underline{f^{0}=f^{-1}(0)}$

Example: $f(x): B^{2} \rightarrow$

On-set: $\{01,10\}$
Off-set: \{00, 11\}

Boolean Functions (contd.)

- If $\mathrm{f}^{1}=\mathrm{B}^{\mathrm{n}}$, i.e., $\mathrm{f}(\mathrm{x})=1, \mathrm{f}$ is a tautology

- If $f^{0}=B^{n}$, i.e., $f(x)=0$, f is unsatisfiable
- If $f(x)=g(x)$ for all $x \in B^{n}$, then f and g are equivalent
- Question: How many distinct logic functions of n variables exist?
- Hint: Think of how many ways you can color the vertices of a Boolean hypercube with two colors

The Set of Boolean Functions

- There are 2^{n} vertices in input space B^{n}
$\rightarrow 2^{2^{n}}$ distinct logic functions.
- Assigning each distinct subset of vertices as the on-set $\left(f^{1} \subseteq B^{n}\right)$ results in a distinct logic function

Boolean Functions: A Compositional View

- Another way to think about Boolean functions
- Compose them using atomic functions and operators
- Atomic functions

- Constant functions ($\mathrm{f}=0, \mathrm{f}=1$)
- Literals
- A literal is a variable (x_{1}) or its complement ($\mathrm{x}_{1}{ }^{\prime}$)
- Litera x_{1} represents the logic function $f=\{x \mid$ $\left.x_{1}=1\right\}$

- Literal x_{1} 'represents the logic function $\mathrm{g}=$ $\left\{x \mid x_{1}=0\right\}$

Operations on Boolean Functions

Given two Boolean functions:
Interpretation in terms of
$f: B^{n} \rightarrow B$
$g: B^{n} \rightarrow B$

- AND operation

$$
f \cdot g=\{x \mid f(x)=1 \wedge g(x)=1\}
$$

- The OR operation

$$
f+g=\{x \mid f(x)=1 \vee g(x)=1\}
$$

- The NOT operation $\left(f^{\prime}\right)$

$$
f^{\prime}=\{x \mid f(x)=0\}
$$

The Algebra of Boolean Functions

- The set of all Boolean Functions together with the operations \{AND, OR, NOT\} also satisfy the laws of Boolean Algebra

