

#### **Digital Systems Design Automation**

Unit 2: Advanced Boolean Algebra Lecture 2.2: Boolean Spaces and Functions



# Anand Raghunathan raghunathan@purdue.edu

© Anand Raghunathan

## Outline

- 2.1 Boolean algebra: Quick review
- 2.2 Boolean spaces and functions
- 2.3 Boolean function representations
- 2.4 Conversion of Boolean function representations
- 2.5 Co-factors of Boolean functions
- 2.6 Boolean difference and Quantification

#### **Boolean Spaces**

• Boolean space of **n** variables is the set **Boolean space** Karnaugh Map **Boolean Hypercube** of all possible  $B^1 = \{0, 1\}$ combinations of values that the  $B^2 = B \times B =$ {00,01,10,11} variables can ZZY assume  $B^3 = B \times B \times B$ = {000,001,010, Many ullet011,100,101, representations 110,111} – e.g., K-map, ndimensional unit hypercube  $B^4 = B \times B \times B \times B$ = {0000, ... 1111} http://en.wikipedia.org/wiki/Karnaugh map http://en.wikipedia.org/wiki/Hypercube

#### **Boolean Functions**

 Boolean function (a.k.a. logic function) is a mapping from one Boolean space to another

$$- \text{E.g.}, \underbrace{\mathfrak{f}(\mathbf{x}): B^n \to B}$$

- x = x<sub>1</sub>, x<sub>2</sub>, ...x<sub>n</sub> are variables,  $x_i \in B$
- On-set of f

$$- \{x \mid f(x) = 1\} = f^{-1} = f^{-1}(1)$$

• Off-set of f

$$- \{x \mid f(x) = 0\} = f^{0} = f^{-1}(0)$$



On-set: {01, 10} Off-set: {00, 11}

#### **Boolean Functions (contd.)**

- If  $f^1 = B^n$ , *i.e.*, f(x) = 1, f is a tautology
- If  $f^0 = B^n$ , *i.e.*, f(x) = 0, f is unsatisfiable
- If f(x) = g(x) for all  $x \in B^n$ , then f and g are equivalent
- Question: How many distinct logic functions of n variables exist?
  - Hint: Think of how many ways you can color the vertices of a Boolean hypercube with two colors



#### The Set of Boolean Functions

- There are  $2^n$  vertices in input space  $B^n \rightarrow 2^{2^n}$  distinct logic functions.
  - Assigning each distinct subset of vertices as the on-set  $(f^1 \subseteq B^n)$  results in a distinct logic function



#### **Boolean Functions: A Compositional View**

- Another way to think about Boolean functions
  - Compose them using atomic functions and operators
- Atomic functions
  - Constant functions (f = 0, f = 1)
  - Literals
    - A literal is a variable (  $x_1$  ) or its complement (  $x_1$ ')
    - Literal  $x_1$  represents the logic function  $f = \{x \mid x_1 = 1\}$
    - Literal x<sub>1</sub>' represents the logic function g = {x | x<sub>1</sub> = 0}



#### **Operations on Boolean Functions**

Given two Boolean functions:

 $f: B^n \to B$  $g: B^n \to B$ 

AND operation

 $f \cdot g = \{x \mid f(x) = 1 \land g(x) = 1\}$ 

- The <u>OR operation</u>
   *f* + *g* = {*x* | *f*(*x*)=1 ∨ *g*(*x*)=1}
- The <u>NOT operation</u> (f')
   f' = {x | f(x) = 0}

Interpretation in terms of on-set and off-set?

### The Algebra of Boolean Functions

 The set of all Boolean Functions together with the operations {AND, OR, NOT} also satisfy the laws of Boolean Algebra

| Law            | Description                                                                                                                                                                                                                                                                                                                                           | Law             | Description                                                                                                                                                        |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Commutativity  | $ \mathbf{x} \lor \mathbf{y} = \mathbf{y} \lor \mathbf{x} $ $ \mathbf{x} \land \mathbf{y} = \mathbf{y} \land \mathbf{x} $                                                                                                                                                                                                                             | Complementation |                                                                                                                                                                    |
| Associativity  | $\mathbf{x} \lor (\mathbf{y} \lor \mathbf{z}) = (\mathbf{x} \lor \mathbf{y}) \lor \mathbf{z}$                                                                                                                                                                                                                                                         | Double Negation | ארר <b>x</b> = <b>x</b>                                                                                                                                            |
| Distributivity | $ \mathbf{x} \wedge (\mathbf{y} \wedge \mathbf{z}) = (\mathbf{x} \wedge \mathbf{y}) \wedge \mathbf{z} $ $ \mathbf{x} \wedge (\mathbf{y} \vee \mathbf{z}) = (\mathbf{x} \wedge \mathbf{y}) \vee (\mathbf{x} \wedge \mathbf{z}) $ $ \mathbf{x} \vee (\mathbf{y} \wedge \mathbf{z}) = (\mathbf{x} \vee \mathbf{y}) \wedge (\mathbf{x} \vee \mathbf{z}) $ | De Morgan       | $(\neg \mathbf{x}) \land (\neg \mathbf{y}) = \neg (\mathbf{x} \lor \mathbf{y})$<br>$(\neg \mathbf{x}) \lor (\neg \mathbf{y}) = \neg (\mathbf{x} \land \mathbf{y})$ |
| Identity       | $ \mathbf{x} \lor 0 = \mathbf{x} \\ \mathbf{x} \land 1 = \mathbf{x} $                                                                                                                                                                                                                                                                                 |                 |                                                                                                                                                                    |
| Annihilation   | $ \begin{array}{l} \mathbf{x} \wedge 0 = 0 \\ \mathbf{x} \vee 1 = 1 \end{array} $                                                                                                                                                                                                                                                                     |                 |                                                                                                                                                                    |
| Idempotence    |                                                                                                                                                                                                                                                                                                                                                       |                 |                                                                                                                                                                    |
| Absorption     | $ \mathbf{x} \wedge (\mathbf{x} \lor \mathbf{y}) = \mathbf{x} \\ \mathbf{x} \lor (\mathbf{x} \land \mathbf{y}) = \mathbf{x} $                                                                                                                                                                                                                         |                 |                                                                                                                                                                    |
|                |                                                                                                                                                                                                                                                                                                                                                       |                 |                                                                                                                                                                    |