

Digital Systems Design Automation

Unit 2: Advanced Boolean Algebra Lecture 2.3: Boolean Function Representations

Anand Raghunathan raghunathan@purdue.edu

© Anand Raghunathan

Outline

- 2.1 Boolean algebra: Quick review
- 2.2 Boolean spaces and functions
- 2.3 Boolean function representations
- 2.4 Conversion of Boolean function representations
- 2.5 Co-factors of Boolean functions
- 2.6 Boolean difference and Quantification

Representations of Boolean Functions

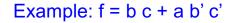
- Truth Table
- Hypercube
- Boolean Formula
 - Sum of Products (SOP) / Disjunctive Normal Form (DNF) / List of Cubes
 - Product of Sums / Conjunctive Normal Form (CNF) / List of Conjuncts
- Network (graph) of Boolean primitives
- Binary Decision Tree, Binary Decision Diagram (BDD)

Representations of Boolean Functions

- Important questions to ask of any representation
 - Scalable (can it represent large functions)?
 - Canonical?
 - If two functions are equivalent, then are their representations isomorphic (structurally identical)?
 - Efficient to manipulate?

Truth Table

- Truth table of a function f: $B^n \rightarrow B$ is a tabulation of its values at each of the 2^n vertices of B^n
- The truth table representation is
 - + Canonical
 - Not scalable (very large for large *n*)

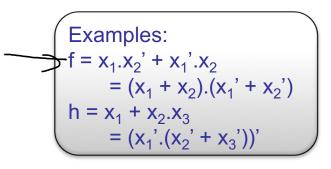

n-zn

Example: f	= b c + a b' c'
abc	f
000	ر ٥
001	0 /
010	0
011	$1 \setminus$
100	$1 \aleph$
101	0
110	0
$1 \ 1 \ 1$	1
\sim	

5

Hypercube

- A function f: Bⁿ → B can be represented by a coloring of the vertices of an n-dimensional hypercube
- The hypercube representation is
 - + Canonical
 - Not scalable (very large for large *n*)

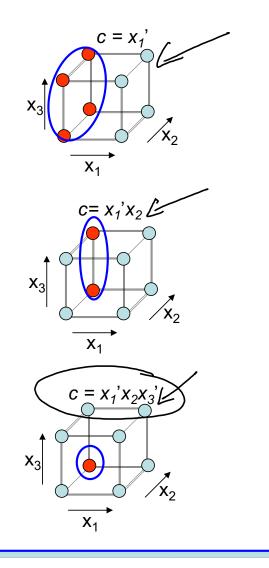


Representations of Boolean Functions

- Truth Table
- Hypercube
- Boolean Formula
 - Sum of Products (SOP) / Disjunctive Normal Form (DNF) / List of Cubes
 - Product of Sums / Conjunctive Normal Form (CNF) / List of Conjuncts
- Network (graph) of Boolean primitives
- Binary Decision Tree, Binary Decision Diagram (BDD)

Boolean Formula

- Boolean functions can be represented by formulae defined as well-formed sequences of
 - Literals: x₁, x₁'
 - Boolean operators: + (OR), . (AND), ' (NOT)
 - NOT: f' = h such that $h^1 = f^0$
 - AND: (f AND g) = h such that h¹ = {x | f(x) = 1 and g(x) = 1}
 - OR: (f OR g) = h such that h¹ = {x | f(x) = 1 or g(x) = 1}
 - Parentheses: ()


Notation: Often the <u>"."</u> symbol for AND is omitted $e.g., x_1x_2 + x_3$

Questions

- How many Boolean formulae can be constructed with n variables?
- How does this compare with the number of unique Boolean functions in n variables?
- Are Boolean formulae canonical? Are they scalable?

Cubes

- A cube (a.k.a. product term) is the conjunction (AND) of a set of literals
 - Also, a collection of vertices that forms a hypercube of lower dimension
- If C ⊆ Bⁿ, and C has k literals, then |C| covers 2^{n-k} vertices
- In an *n*-dimensional Boolean space B^n , a cube with *n* literals is called a minterm
- If a cube C ⊆ f¹ (f is a Boolean function), then C is an implicant of f

10

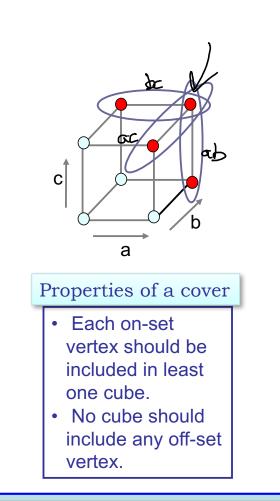
Sum of Products

Sum of Products (SOP)

A disjunction of product terms

f = ab + ac + bc

- Can also be thought of as a set of cubes


F = {*ab, ac, bc*}

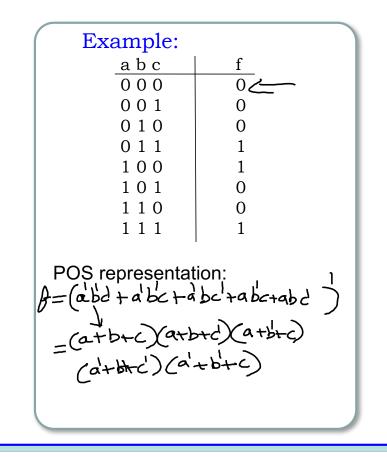
- Any Boolean function can be represented by a sum of products

- A set of cubes that correctly represents *f* is called a *cover* of *f*
- A function may have several different SOP representations or covers
- Example:

 F_1 ={ab, ac, bc} and F_2 ={abc, a'bc, ab'c, abc'} \checkmark are possible covers of the Boolean function

f = ab + ac + bc

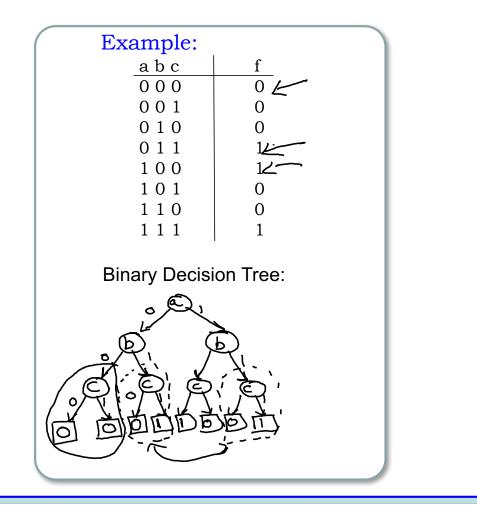
Minterm Canonical Form


- A Sum of Products representation for a function where each product is a minterm
 - A minterm is a product term that has n literals representing all variables

Question: Is the minterm canonical form a scalable representation?

Example:	L L
abc	f
000	0
001	0
010	0
011	K
100	16-
101	0
110	0
111	K
Minterm canonica	l form:

Product of Sums


- Product (conjunction) of terms, each of which is a sum (disjunction) of literals
 - E.g., f = (a + b + c)(a + b + c')(a' + b + c')(a' + b' + c)
- One-to-one transformation from SOP representation for f to POS representation for f' (complement of f)
 - Follows from DeMorgan's law
- From truth table, use off-set to construct POS representation

13

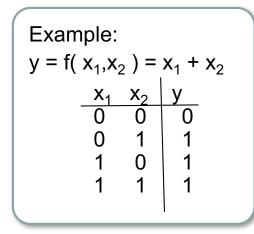
Binary Decision Tree

- Represent the function as a decision tree
- At each node, pick an input variable and branch based on it's value
- Leaves of the tree contain constants (0,1)

Binary Decision Diagram (BDD)

- Binary Decision Tree has large number of nodes
- Key idea: Share subtrees and eliminate redundancy to reduce size
- More about BDDs later in the class

Example:		
a b c	f	
000	0	
001	0	
010	0	
011	1	
100	1	
101	0	
110	0	
111	1	
Binary Decision Diagram: $\begin{array}{c} & & & \\ &$		


Characteristic Functions

• Any sub-set of a Boolean space Bⁿ can be represented as a characteristic function

Suppose
$$A \subseteq B^n$$

 $\chi_A(\mathbf{x}) = 1$ if $\mathbf{x} \in A$
Example:
 $B^2 = \{00,01,10,11\}$
 $A = \{01,10\}$
 $\chi_A(01) = 1$
 $\chi_A(11) = 0$

Characteristic Functions

- Given a Boolean function f : $B^n \rightarrow B^m$
- The characteristic function of f is a function $\chi_f \colon B^{n+m} \to B$ $\chi_f(x,y) = 1$ iff f(x) = y

$$\chi_{f}(x_{1}, x_{2}, y) = \frac{\chi_{1} \chi_{2} y}{\chi_{4}} \chi_{4}$$

$$\frac{\chi_{2} y}{0 0 0} J$$

$$\frac{\chi_{1} y}{0 0 0} J$$

$$\frac{\chi_{1} y}{0 0} J$$

$$\frac{\chi_{2} y}{0 0} J$$

$$\frac{\chi_{4} y}{0 0} J$$

$$\frac{\chi_{4} y}{0 0} J$$

$$\frac{\chi_{4} y}{0 0} J$$

$$\frac{\chi_{4} y}{0 0} J$$