

Digital Systems Design Automation

Unit 2: Advanced Boolean Algebra

Lecture 2.3: Boolean Function Representations

Anand Raghunathan raghunathan purdue.edu

Outline

- 2.1 Boolean algebra: Quick review
- 2.2 Boolean spaces and functions
- 2.3 Boolean function representations
- 2.4 Conversion of Boolean function representations
- 2.5 Co-factors of Boolean functions
- 2.6 Boolean difference and Quantification

Representations of Boolean Functions

- Truth Table
- Hypercube
- Boolean Formula
 - Sum of Products (SOP) / Disjunctive Normal Form (DNF) / List of Cubes
 - Product of Sums / Conjunctive Normal Form (CNF) / List of Conjuncts
- Network (graph) of Boolean primitives
- Binary Decision Tree, Binary Decision Diagram (BDD)

Representations of Boolean Functions

- Important questions to ask of any representation
 - Scalable (can it represent large functions)?
 - Canonical?
 - If two functions are equivalent, then are their representations isomorphic (structurally identical)?
 - Efficient to manipulate?

Truth Table

- Truth table of a function f: Bⁿ → B is a tabulation of its values at each of the 2ⁿ vertices of Bⁿ
- The truth table representation is
 - + Canonical
 - Not scalable (very large for large *n*)

Example: f = b c + a b' c'

a b c	f
0 0 0	0
0 0 1	0
0 1 0	0
0 1 1	1
100	1
1 0 1	0
1 1 0	0
1 1 1	1

Hypercube

- A function f: Bⁿ → B can be represented by a coloring of the vertices of an n-dimensional hypercube
- The hypercube representation is
 - + Canonical
 - Not scalable (very large for large *n*)

Example: f = b c + a b' c'

Representations of Boolean Functions

- Truth Table
- Hypercube
- Boolean Formula
 - Sum of Products (SOP) / Disjunctive Normal Form (DNF) / List of Cubes
 - Product of Sums / Conjunctive Normal Form (CNF) / List of Conjuncts
- Network (graph) of Boolean primitives
- Binary Decision Tree, Binary Decision Diagram (BDD)

Boolean Formula

- Boolean functions can be represented by formulae defined as well-formed sequences of
 - Literals: x₁, x₁'
 - Boolean operators: + (OR), . (AND), ' (NOT)
 - NOT: f' = h such that $h^1 = f^0$
 - AND: (f AND g) = h such that h¹ = {x | f(x) = 1 and g(x) = 1}
 - OR: $(f OR g) = h \text{ such that } h^1 = \{x \mid f(x) = 1 \text{ or } g(x) = 1\}$
 - Parentheses: ()

```
Examples:

f = x_1.x_2' + x_1'.x_2

= (x_1 + x_2).(x_1' + x_2')

h = x_1 + x_2.x_3

= (x_1'.(x_2' + x_3'))'
```

Notation: Often the "." symbol for AND is omitted e.g., $x_1x_2 + x_3$

Questions

- How many Boolean formulae can be constructed with n variables?
- How does this compare with the number of unique Boolean functions in n variables?
- Are Boolean formulae canonical? Are they scalable?

Cubes

- A cube (a.k.a. product term) is the conjunction (AND) of a set of literals
 - Also, a collection of vertices that forms a hypercube of lower dimension
- If $C \subseteq B^n$, and C has k literals, then |C| covers 2^{n-k} vertices
- In an n-dimensional Boolean space B^n , a cube with n literals is called a minterm
- If a cube $C \subseteq f^1$ (f is a Boolean function), then C is an implicant of f

Sum of Products

Sum of Products (SOP)

A disjunction of product terms

$$f = ab + ac + \underline{bc}$$

- Can also be thought of as a set of cubes

$$F = \{ab, ac, bc\}$$

- Any Boolean function can be represented by a sum of products
- A set of cubes that correctly represents f is called a cover of f
- A function may have several different SOP representations or covers
- Example:

$$F_1$$
={ab, ac, bc} and F_2 ={abc, a'bc, ab'c, abc'} are possible covers of the Boolean function

$$f = ab + ac + bc$$

Properties of a cover

- Each on-set vertex should be included in least one cube.
- No cube should include any off-set vertex.

Minterm Canonical Form

- A Sum of Products representation for a function where each product is a minterm
 - A minterm is a product term that has n literals representing all variables

Question: Is the minterm canonical form a scalable representation?

Example:	
<u>a b c</u>	f
0 0 0	0
0 0 1	0
0 1 0	0
0 1 1	<u>k</u>
100	16—
1 0 1	0
1 1 0	0
1 1 1	K

Minterm canonical form:

Evample

Product of Sums

- Product (conjunction) of terms, each of which is a sum (disjunction) of literals
 - E.g., f = (a + b + c)(a + b + c')(a' + b + c')(a' + b' + c)
- One-to-one transformation from SOP representation for f to POS representation for f' (complement of f)
 - Follows from DeMorgan's law
- From truth table, use off-set to construct POS representation

Example:	
a b c	f
0 0 0	0
0 0 1	0
0 1 0	0
0 1 1	1
100	1
101	0
1 1 0	0
1 1 1	1
	ı

Binary Decision Tree

- Represent the function as a decision tree
- At each node, pick an input variable and branch based on it's value
- Leaves of the tree contain constants (0,1)

Binary Decision Tree:

1 1 1

Binary Decision Diagram (BDD)

- Binary Decision Tree has large number of nodes
- Key idea: Share subtrees and eliminate redundancy to reduce size
- More about BDDs later in the class

Characteristic Functions

• Any sub-set of a Boolean space Bⁿ can be represented as a characteristic function

Suppose
$$A \subseteq B^n$$

$$\chi_{A}(x) = 1 \text{ if } x \in A$$
Example:
$$B^2 = \{00,01,10,11\}$$

$$A = \{01,10\}$$

$$\chi_{A}(01) = 1$$

$$\chi_{A}(11) = 0$$

Characteristic Functions

- Given a Boolean function $f: B^n \to B^m$
- The characteristic function of f is a function $\mathcal{X}_f \colon B^{n+m} \to B$ $\chi_f(x,y) = 1 \text{ iff } f(x) = y$

Example:

$$y = f(x_1,x_2) = x_1 + x_2$$

 $\begin{array}{c|c} x_1 & x_2 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$

$$\chi_{f}(x_{1},x_{2},y) = \chi_{f}(x_{1},x_{2},y) = \chi_{f}(x_{1},x_{2},y)$$