Digital Systems Design Automation

Unit 2: Advanced Boolean Algebra
Lecture 2.4: Conversion of Boolean Function Representations

Anand Raghunathan
raghunathan@purdue.edu

Outline

2.1 Boolean algebra: Quick review
2.2 Boolean spaces and functions
2.3 Boolean function representations
2.4 Conversion of Boolean function representations
2.5 Co-factors of Boolean functions
2.6 Boolean difference and Quantification

Converting Between Boolean Function Representations

- All of the previously described representations are functionally equivalent...
- But vary in their complexity (size), and ease of performing various operations
- No single "best" representation
- Need to convert between representations

Conversion: Example \#1

- How do you convert a general Boolean network (multi-level circuit) into SOP form?
- Quick-and-dirty (exhaustive) algorithm

```
For each input vector v \in{00...0 to 11...1} {
    Simulate the circuit for input v;
    If (output == 1) {
        encode input vector as a minterm;
    }
}
```

- Works, but guaranteed to be exponential in the number of inputs
- There should be a better algorithm!

Conversion: Example \#1

- $j=(a b)^{\prime}=a^{\prime}+b^{\prime}$
- $\mathrm{k}=\mathrm{c}^{\prime}$
- $1=d^{\prime}$
- $m=e^{\prime}+f^{\prime}$
- $n=j^{\prime}+k k^{\prime}=\left(a^{\prime}+b^{\prime}\right)^{\prime}+\left(c^{\prime}\right)^{\prime}=a b+$ C
- $\quad o=m^{\prime}=e f$
- $\mathrm{p}=\mathrm{n}^{\prime}+\mathrm{l}^{\prime}=(\mathrm{ab}+\mathrm{c})^{\prime}+\mathrm{d}=\mathrm{a}^{\prime} \mathrm{c}^{\prime}+$
$b^{\prime} c^{\prime}+d$
- $q=o^{\prime}+g^{\prime}=e^{\prime}+f^{\prime}+g^{\prime}$
- $r=q^{\prime}=e f g$
- $\quad s=p^{\prime}+r^{\prime}=(a+c)(b+c) d^{\prime}+e^{\prime}+f^{\prime}$
$+g^{\prime}=a b d^{\prime}+c d^{\prime}+e^{\prime}+f^{\prime}+g^{\prime}$
- $\mathrm{t}=\mathrm{q}^{\prime}=\mathrm{efg}$
- $u=s^{\prime}=\left(a^{\prime}+b^{\prime}+d\right)\left(c^{\prime}+d\right) e f g=$
a'c'efg + b'c'efg + defg
$\mathrm{v}=\mathrm{u}^{\prime}+\mathrm{h}^{\prime}=\mathrm{abd}{ }^{\prime}+\mathrm{cd} d^{\prime}+\mathrm{e}^{\prime}+\mathrm{f}^{\prime}$
$+g^{\prime}+h^{\prime}$
$w=t^{\prime}+i^{\prime}=e^{\prime}+f^{\prime}+g^{\prime}+i^{\prime}$

Notice the similarity to circuit simulation? Only difference is, we are propagating Boolean expressions, not $0 / 1$ values. This is called Symbolic Simulation

Conversion: Example \#2

- How do you convert a general Boolean network (multi-level circuit) into a Boolean formula that is linear in the circuit size?
$-\operatorname{Size}($ formula) $=O(M)$ where $M=$ no. of gates in the circuit
- SOP may be exponential in the worst case
- Hints
- Use variables to represent intermediate signals in the circuit
- Compose the formula using a $1: 1$ mapping from each gate in the circuit into a piece of the formula

Converting a Boolean Circuit into a CNF Formula

- First, let us see how very simple circuits (single gates) can be expressed as a Boolean formula (in CNF form)

$$
\left.\begin{array}{l}
x \rightarrow y \\
\left(x^{\prime}+y\right)
\end{array}\right\}
$$

Converting a Boolean Circuit into a CNF Formula

- Rules for converting various basic gates into CNF equivalent

Gate Type	Function	CNF Formula
NOT	$\mathrm{c}=\mathrm{a}$	$(a+c)\left(a^{\prime}+c^{\prime}\right)$
AND	$\mathrm{c}=\mathrm{ab}$	$\left(a+c^{\prime}\right)\left(b+c^{\prime}\right)\left(a^{\prime}+b^{\prime}+c\right)$
NAND	$\mathrm{c}=\mathrm{a}^{\prime}+\mathrm{b}^{\prime}$	$(a+c)(b+c)\left(a^{\prime}+b^{\prime}+c^{\prime}\right)$
OR	$\mathrm{c}=\mathrm{a}+\mathrm{b}$	$\left(a^{\prime}+c\right)\left(b^{\prime}+c\right)\left(a+b+c^{\prime}\right)$
NOR	$\mathrm{c}=\mathrm{a}^{\prime} \mathrm{b}^{\prime}$	$\left(a^{\prime}+c^{\prime}\right)\left(b^{\prime}+c^{\prime}\right)(a+b+c)$

Converting a Boolean Circuit into a CNF Formula

- Now, we are ready to convert a multi-level circuit into a CNF formula
- Conjunction (AND) of formulae representing each of its gates

$$
\begin{aligned}
& (a+j)(b+j)\left(a^{\prime}+b^{\prime}+j^{\prime}\right) \\
& (c+k)\left(c^{\prime}+k^{\prime}\right) \\
& (d+l)\left(d^{\prime}+l^{\prime}\right) \\
& (e+m)\left(f^{\prime}+m^{\prime}\right)\left(e^{\prime}+f^{\prime}+m^{\prime}\right) \\
& (m+o)\left(m^{\prime}+o^{\prime}\right) \\
& (j+n)(k+n)\left(j^{\prime}+k^{\prime}+n^{\prime}\right) \\
& (n+p)(l+p)\left(n^{\prime}+l^{\prime}+p^{\prime}\right) \\
& (o+q)\left(g^{\prime}+q\right)\left(o^{\prime}+g^{\prime}+q^{\prime}\right) \\
& (q+r)\left(q^{\prime}+r^{\prime}\right) \\
& (p+s)(r+s)\left(p^{\prime}+r^{\prime}+s^{\prime}\right) \\
& (s+u)\left(s^{\prime}+u^{\prime}\right) \\
& (u+v)(h+v)\left(u^{\prime}+h^{\prime}+v^{\prime}\right) \\
& (q+t)\left(q^{\prime}+t^{\prime}\right) \\
& (t+w)(i+w)\left(t^{\prime}+l^{\prime}+w^{\prime}\right)
\end{aligned}
$$

Terminology Checklist

- Boolean Algebra
- Boolean Function
- Tautology
- Satisfiable / Un-satisfiable
- Cube
- Implicant (of a function)
- Minterm
- Cover (of a function)
- Sum-of-products
- Minterm canonical representation
- Product-of-sums

- Conjunctive Normal Form
- Disjunctive Normal Form
- Binary Decision Tree
- Binary Decision Diagram
- Symbolic Simulation
- Tseitin Transformation

