Digital Systems Design Automation
Unit 2: Advanced Boolean Algebra
Lecture 2.5: Co-factors of Boolean Functions


Anand Raghunathan
raghunathan@purdue.edu

## Outline

2.1 Boolean algebra: Quick review
2.2 Boolean spaces and functions
2.3 Boolean function representations
2.4 Conversion of Boolean function representations
2.5 Co-factors of Boolean functions
2.6 Boolean difference and Quantification

## Operations on Boolean functions

- The usual suspects...
- Complement
- AND
- OR
- XOR
- ...
- Co-factoring: A new operation on Boolean functions
- Applications of co-factoring
- Shannon's expansion
- Boolean difference
- Existential and Universal quantification


## Co-factors of Boolean Functions

- A co-factor of a function is derived by fixing one of the input variables to a constant (0 or 1), resulting in a new function of $n-1$ variables
- Given a function $f\left(\underline{x_{1} \ldots x_{n}}\right)$
- Positive co-factor w.r.t. $x_{i}$ is defined as

$$
\begin{aligned}
& \left(f_{x_{j}}\left(x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n}\right)=\right. \\
& \left.f\left(x_{1} \ldots x_{i-1} x_{i}=1\right) x_{i+1} \ldots x_{n}\right)
\end{aligned}
$$

- Negative co-factor w.r.t. $x_{i}$ is defined as

$$
\begin{aligned}
& f_{x_{i}}\left(x_{1} \ldots x_{i-1}, x_{i+1} \ldots x_{n}\right)= \\
& f\left(x_{1} \ldots x_{i-1}, x_{i}=0, x_{i+1} \ldots x_{n}\right)
\end{aligned}
$$

## Examples

$f=a b+b c+a c t$
$f_{a}=1 . b+b c+1 . c=\underline{b+c}$
$\mathrm{f}_{\mathrm{a}}=\mathrm{b}_{\mathrm{o}}$
$f_{b}=a+c$
$f_{b},=a c$
$f_{c}=a+b$
$\mathrm{f}_{\mathrm{c}^{\prime}}=a b$

$g_{a}=\left(b(-c)^{\prime}=b c+b^{\prime} c^{\prime}\right.$
$g_{a^{\prime}}=b \oplus c=b^{\prime} c+b c^{\prime}$
$g_{b}=$
$g_{b}$,
$g_{c}=$
$\mathrm{g}_{\mathrm{c}}{ }^{\prime}=$

## Co-factors of Boolean Functions

- Also called
- Shannon co-factors
- Restriction of a function on a variable
- Can be applied on multiple variables

$$
f_{x_{i} x_{j}^{\prime}}=f\left(x_{1} \ldots x_{i}=1 \ldots \underline{x_{j}=0} \ldots x_{n}\right)
$$

- Order does not matter

$$
f_{\underline{x_{i} x_{j}}}=\left(f_{\underline{x_{i}}}\right)_{x_{j}}=\left(f_{x_{i}}\right)_{x_{i}}
$$

- Co-factor w.r.t. a cube


## Examples:

$$
\left.\begin{array}{l}
\mathrm{f}=\mathrm{ab}+\mathrm{bc}+\mathrm{ac} \\
\mathrm{f}_{\mathrm{ab}}=1 \\
\mathrm{f}_{\mathrm{ab}^{\prime}}=C \\
\mathrm{f}_{\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}^{\prime}}=0 \\
\mathrm{f}_{\mathrm{ab}^{\prime} \mathrm{c}}=1
\end{array}\right\}
$$

## Properties of Co-factors

- Given two functions $f(x)$ and $g(x)$
- How can we compute co-factors of a function $h$ that is derived from $f$ and $g$ ?


> The co-factor operation distributes over any binary operator

## OK, so why do we need Co-factors?

- Many applications... for example:
- Recall Taylor series from high-school math?
- A representation of a (real or complex) function as a sum of polynomial terms ( $1, \mathrm{x}, \mathrm{x}^{2}, \mathrm{x}^{3}, \mathrm{x}^{4}$,
...)
- Example: $\mathrm{e}^{\mathrm{x}}=1+\mathrm{x}+\mathrm{x}^{2} / 2!+\mathrm{x}^{3} / 3!+\ldots$
- Question: Is there a similar concept for Boolean functions?


Animation of Taylor series for $\mathrm{e}^{\mathrm{x}}$
(Source: Wikipedia)

- Can we express a Boolean function in terms of "simpler" functions?


## Shannon's (Boole's) Expansion Theorem

- Given a Boolean function $f\left(x_{1} \ldots x_{n}\right)$ and any variable $x_{i}$

$$
f=x_{i} f_{x_{i}}+x_{i^{\prime}} f_{x_{i}^{\prime}}
$$

Structural view of Shannon Expansion


## Shannon Expansion

- Can be applied recursively to "decompose" a function into simpler functions
- In the extreme case, just a network of multiplexers
- Also called Shannon Decomposition


Shannon Expansion

- Example

$$
\left.\begin{array}{l}
f=x y+z w^{\prime}+x^{\prime} w^{\prime} \quad f_{w}=x y \quad f_{w^{\prime}}=x y+z+x^{\prime}=y+z+x^{\prime} \\
f
\end{array}=\omega^{\prime} f_{w^{\prime}}+\omega f_{w}=\omega^{\prime}\left(y+z+x^{\prime}\right)+w^{\prime}\left(x^{\prime}\right)\right]+\omega\left[x^{\prime} \cdot 0+x^{\prime} \cdot y\right] .
$$

