
© Anand Raghunathan

Digital Systems Design Automation
Unit 2: Advanced Boolean Algebra

Lecture 2.5: Co-factors of Boolean Functions

Anand Raghunathan
raghunathan@purdue.edu

Outline

2.1 Boolean algebra: Quick review
2.2 Boolean spaces and functions
2.3 Boolean function representations
2.4 Conversion of Boolean function representations
2.5 Co-factors of Boolean functions
2.6 Boolean difference and Quantification

2

Operations on Boolean functions

• The usual suspects…
– Complement
– AND
– OR
– XOR
– …

• Co-factoring: A new operation on Boolean functions
• Applications of co-factoring

– Shannon’s expansion
– Boolean difference
– Existential and Universal quantification

3

Co-factors of Boolean Functions

• A co-factor of a function is derived by
fixing one of the input variables to a
constant (0 or 1), resulting in a new
function of n-1 variables

• Given a function f(x1 … xn)
– Positive co-factor w.r.t. xi is

defined as
fxi

(x1 … xi-1, xi+1 … xn) =
f(x1 … xi-1, xi =1, xi+1 … xn)

– Negative co-factor w.r.t. xi is
defined as

fxi’
(x1 … xi-1, xi+1 … xn) =

f(x1 … xi-1, xi =0, xi+1 … xn)
4

Examples

f = ab + bc + ac
fa = 1.b + bc + 1.c = b + c
fa’ =
fb =
fb’ =
fc =
fc’ =

a
b
c

g

ga =
ga’ =
gb =
gb’ =
gc =
gc’ =

Co-factors of Boolean Functions

• Also called
– Shannon co-factors
– Restriction of a function on a

variable

• Can be applied on multiple
variables
fxixj’

= f(x1 … xi =1 … xj =0 … xn)

• Order does not matter
fxixj

= (fxi
)xj

= (fxj
)xi

• Co-factor w.r.t. a cube
5

Examples:

f = ab + bc + ac

fab =

fab’ =

fa’b’c’ =

fab’c =

a
b
c

g

gab =

ga’b =

gb’c’ =

gabc’ =

Properties of Co-factors

• Given two functions f(x) and g(x)
• How can we compute co-factors of a function h that is

derived from f and g?

6

Function Co-factors
h(x) = f’(x) hxi

= (fxi
)’

hxi’
= (fxi’

)’
h(x) = f(x) AND g(x) hxi

= fxi
AND gxi

hxi’
= fxi’

AND gxi’

h(x) = f(x) OR g(x) hxi
= fxi

OR gxi
hxi’

= fxi’
OR gxi’

h(x) = f(x) XOR g(x) hxi
= fxi

XOR gxi
hxi’

= fxi’
XOR gxi’

Co-factor of complement is
complement of co-factor
Co-factor of AND is
AND of co-factors
Co-factor of OR is
OR of co-factors

Co-factor of XOR is
XOR of co-factors

The co-factor operation distributes over any binary operator

OK, so why do we need Co-factors?

• Many applications… for example:
• Recall Taylor series from high-school

math?
– A representation of a (real or complex) function

as a sum of polynomial terms (1, x, x2, x3, x4,
…)

• Example: ex = 1 + x + x2/2! + x3/3! + …

• Question: Is there a similar concept for
Boolean functions?
– Can we express a Boolean function in terms of

“simpler” functions?
7

Animation of Taylor
series for ex

(Source: Wikipedia)

Shannon’s (Boole’s) Expansion Theorem

• Given a Boolean function f(x1 … xn) and any variable xi
f = xi fxi

+ xi’ fxi’

8

Structural view of
Shannon Expansion

f
x1
x2
xi

xn

f

f

0
1

xi

x1
x2

0

xn

x1
x2

1

xn

Specialized circuit
that realizes f when
xi = 0

Specialized circuit
that realizes f when
xi = 1

Shannon Expansion

• Can be applied recursively to
“decompose” a function into
simpler functions
– In the extreme case, just a network

of multiplexers

• Also called Shannon
Decomposition

9

MUX
network

2k co-factors

n

k

n-k

Shannon Expansion

• Example
f = xy + zw’ + x’w’

10

