

Digital Systems Design Automation

Unit 2: Advanced Boolean Algebra Lecture 2.5: Co-factors of Boolean Functions

Anand Raghunathan raghunathan@purdue.edu

© Anand Raghunathan

Outline

- 2.1 Boolean algebra: Quick review
- 2.2 Boolean spaces and functions
- 2.3 Boolean function representations
- 2.4 Conversion of Boolean function representations
- 2.5 Co-factors of Boolean functions
- 2.6 Boolean difference and Quantification

Operations on Boolean functions

- The usual suspects...
 - Complement
 - AND
 - OR
 - XOR
 - ...
- Co-factoring: A new operation on Boolean functions
- Applications of co-factoring
 - Shannon's expansion
 - Boolean difference
 - Existential and Universal quantification

Co-factors of Boolean Functions

- A co-factor of a function is derived by fixing one of the input variables to a constant (0 or 1), resulting in a new function of n-1 variables
- Given a function $f(x_1 \dots x_n)$
 - <u>Positive</u> co-factor w.r.t. x_i is defined as $(f_{x_i})x_1 \dots x_{i-1}, x_{i+1} \dots x_n) =$ $f(x_1 \dots x_{i-1}, x_i = 1, x_{i+1} \dots x_n)$
 - Negative co-factor w.r.t. x_i is defined as $(f_{x_i})(x_1 \dots x_{i-1}, x_{i+1} \dots x_n) =$

$$\vec{x}_{1} \dots \vec{x}_{i-1}, \vec{x}_{i} = 0 \quad x_{i+1} \dots x_{n}$$

Examples
$f = ab + bc + ac$ $f_a = 1.b + bc + 1.c = b + c$ $f_{a'} = bc$ $f_b = a + c$ $f_{b'} = ac$ $f_{c} = a + b$ $f_{c'} = a + b$
$a = b = -g$ $g_{a} = b = bc + bc'$ $g_{a'} = b = bc + bc'$ $g_{b'} = bc + bc'$ $g_{b'} = g_{b'} = g_{c'} = g_{c'} = g_{c'} = g_{c'} = g_{c'}$

Co-factors of Boolean Functions

- Also called
 - Shannon co-factors
 - Restriction of a function on a variable
- Can be applied on multiple variables

 $\underbrace{f_{x_i x_j}}_{i} = f(x_1 \dots \underbrace{x_i = 1}_{i} \dots \underbrace{x_j = 0}_{i} \dots x_n)$

- Order does not matter $\underbrace{f_{x_i x_j}}_{f_{\underline{x_i}}} = (\underbrace{f_{x_i}}_{x_j})_{x_j} = (\underbrace{f_{x_j}}_{x_j})_{x_j}$
- Co-factor w.r.t. a cube

Properties of Co-factors

- Given two functions f(x) and g(x)
- How can we compute co-factors of a function h that is derived from f and g?

Function	Co-factors	
h(x) = f'(x)	$h_{x_i} = (f_{x_i})'$ $h_{x_i'} = (f_{x_i'})'$	Co-factor of complement is complement of co-factor
h(x) = f(x) AND g(x)	$ \begin{array}{c} \begin{array}{c} h_{x_i} = f_{x_i} \text{ AND } g_{x_i} \\ h_{x_i'} = f_{x_i'} \text{ AND } g_{x_i'} \end{array} \end{array} $	Co-factor of AND is AND of co-factors
h(x) = f(x) OR g(x)	$h_{x_i} = f_{x_i} OR g_{x_i}$ $h_{x_i'} = f_{x_i'} OR g_{x_i'}$	Co-factor of OR is OR of co-factors
h(x) = f(x) XOR g(x)		Co-factor of XOR is XOR of co-factors

The co-factor operation distributes over any binary operator

OK, so why do we need Co-factors?

- Many applications... for example:
- Recall **Taylor series** from high-school math?
 - A representation of a (real or complex) function as a sum of polynomial terms (1, x, x², x³, x⁴, ...)
 - Example: $e^x = 1 + x + x^2/2! + x^3/3! + ...$
- Question: Is there a similar concept for Boolean functions?
 - Can we express a Boolean function in terms of "simpler" functions?

Animation of Taylor series for e^x (Source: Wikipedia)

- Given a Boolean function $f(x_1 \dots x_n)$ and any variable x_i

Shannon Expansion

- Can be applied recursively to "decompose" a function into simpler functions
 - In the extreme case, just a network of multiplexers
- Also called Shannon
 Decomposition

Shannon Expansion

• Example $f = xy + zw' + x'w' \qquad f_{w} = xy \qquad f_{w'} = xy + z + z' = y + z + z'$ $g = w'f_{w'} + wf_{w} = w'(y + z + z') + w(xy)$ = w'[x' + x(y + z)] + w[x' + w(xy)]