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Operations on Boolean functions

• The usual suspects…
– Complement
– AND
– OR
– XOR
– …

• Co-factoring: A new operation on Boolean functions 
• Applications of co-factoring

– Shannon’s expansion
– Boolean difference
– Existential and Universal quantification
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Co-factors of Boolean Functions

• A co-factor of a function is derived by 
fixing one of the input variables to a 
constant (0 or 1), resulting in a new 
function of n-1 variables

• Given a function f(x1 … xn)
– Positive co-factor w.r.t. xi is 

defined as
fxi

(x1 … xi-1, xi+1 … xn)  =
f(x1 … xi-1, xi =1, xi+1 … xn)

– Negative co-factor w.r.t. xi is 
defined as

fxi’ 
(x1 … xi-1, xi+1 … xn)  = 

f(x1 … xi-1, xi =0, xi+1 … xn)
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Examples

f = ab + bc + ac
fa = 1.b + bc + 1.c = b + c
fa’ =
fb = 
fb’ = 
fc = 
fc’ = 

a
b
c

g

ga =
ga’ =
gb = 
gb’ = 
gc = 
gc’ = 



Co-factors of Boolean Functions

• Also called
– Shannon co-factors
– Restriction of a function on a 

variable

• Can be applied on multiple 
variables
fxixj’

= f(x1 … xi =1 … xj =0 … xn)

• Order does not matter
fxixj

= (fxi
)xj 

= (fxj
)xi

• Co-factor w.r.t. a cube
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Examples:

f = ab + bc + ac

fab =

fab’ =

fa’b’c’ = 

fab’c = 

a
b
c

g

gab =

ga’b =

gb’c’ = 

gabc’ = 



Properties of Co-factors

• Given two functions f(x) and g(x)
• How can we compute co-factors of a function h that is 

derived from f and g?
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Function Co-factors
h(x) = f’(x) hxi

= (fxi
)’

hxi’ 
= (fxi’

)’
h(x) = f(x) AND g(x) hxi

= fxi
AND gxi

hxi’
= fxi’

AND gxi’

h(x) = f(x) OR g(x) hxi
= fxi

OR gxi
hxi’

= fxi’
OR gxi’

h(x) = f(x) XOR g(x) hxi
= fxi

XOR gxi
hxi’

= fxi’
XOR gxi’

Co-factor of complement is 
complement of co-factor
Co-factor of AND is
AND of co-factors
Co-factor of OR is
OR of co-factors

Co-factor of XOR is
XOR of co-factors

The co-factor operation distributes over any binary operator 



OK, so why do we need Co-factors?

• Many applications… for example: 
• Recall Taylor series from high-school 

math?
– A representation of a (real or complex) function 

as a sum of polynomial terms (1, x, x2, x3, x4, 
…)

• Example: ex = 1 + x + x2/2! + x3/3! + …

• Question: Is there a similar concept for 
Boolean functions?
– Can we express a Boolean function in terms of 

“simpler” functions?
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Animation of Taylor 
series for ex

(Source: Wikipedia)



Shannon’s (Boole’s) Expansion Theorem

• Given a Boolean function f(x1 … xn) and any variable xi
f = xi fxi

+ xi’ fxi’
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Structural view of 
Shannon Expansion

f
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Specialized circuit 
that realizes f when 
xi = 0

Specialized circuit 
that realizes f when 
xi = 1



Shannon Expansion

• Can be applied recursively to 
“decompose” a function into 
simpler functions
– In the extreme case, just a network 

of multiplexers

• Also called Shannon 
Decomposition
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Shannon Expansion

• Example
f = xy + zw’ + x’w’
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