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Outline

2.1 Boolean algebra: Quick review
2.2 Boolean spaces and functions
2.3 Boolean function representations
2.4 Conversion of Boolean function representations
2.5 Co-factors of Boolean functions
2.6 Boolean difference and Quantification
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Combinations of Co-factors

• Combining fx and fx’ in different ways leads to useful 
new functions
– fx  ⊕ fx’ = ?
– fx . fx’ = ?
– fx+ fx’ = ?
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Another analogy to the “Real” world

• The derivative of a function 
measures how much it changes 
when it’s input changes

• What is the analogy in the case of 
Boolean functions (which only take 
values 0 and 1)?
– Does a function change when it’s 

input changes?
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Boolean Difference

• Boolean difference of a 
function w.r.t. a variable is 
the exclusive-OR of the 
Shannon co-factors w.r.t. the 
variable

• Interpretation: !"
!#
= 1 → f is 

sensitive to the value of x
• A new function that does not 

depend on x
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Example:
f = xy + w’z + x’w’
fx =
fx’ = 

𝜕𝑓
𝜕𝑥

=

𝜕𝑓
𝜕𝑥

= 𝑓# ⊕ 𝑓#*



Boolean Difference

• Examples:
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S = a ⊕ b ⊕ cin

cout = ab + bcin + acin

out = s’a + sb



Application of Boolean Difference

• Manufacturing test
– Apply test vectors to ensure that 

each fabricated instance of an IC is 
functional

– Cannot apply exhaustive test set 
(too big!)

• Fault model: Abstraction of 
physical defects that could 
impact the IC
– Most commonly used: “stuck-at” 

fault model
– Signals in the circuit are stuck-at-0, 

stuck-at-1
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How do you derive a test vector 
to detect the fault c s-a-0?

(i) Set c = 1
(ii) Set other inputs such that 

output of good and faulty 
circuits are different

Looks familiar?



Quantification

• Two more functions of Shannon co-
factors
– fxi

. fxi’
= 1 specifies when f = 1 independent of 

the value of xi

f(x1 … xi-1, xi =1, xi+1 … xn) = 1 AND
f(x1 … xi-1, xi =0, xi+1 … xn) = 1 

– Called Universal quantification or 
Consensus
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Universal Quantification / Consensus: 
Geometric Interpretation
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Keep vertices where f = 1 independent of a in the on-set of consensus 
function
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Universal Quantification / Consensus: 
Circuit interpretation
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Quantification

• Two more functions of Shannon co-
factors
– fxi

. fxi’
= 1 specifies when f = 1 independent of 

the value of xi

f(x1 … xi-1, xi =1, xi+1 … xn) = 1 AND
f(x1 … xi-1, xi =0, xi+1 … xn) = 1 

– Called Universal quantification or 
Consensus

– fx + fx’ = 1 specifies when f = 1 for at least one 
value of xi

f(x1 … xi-1, xi =1, xi+1 … xn) = 1 OR
f(x1 … xi-1, xi =0, xi+1 … xn) = 1

– Called Existential quantification or 
Smoothing
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Existential Quantification / Smoothing: 
Geometric interpretation
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Geometric interpretation: If an off-set vertex has an on-set neighbor in 
the a-dimension, move it into the on-set
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Existential Quantification / Smoothing: 
Circuit interpretation
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Boolean Quantification: Examples

Full
Adder
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S = a ⊕ b ⊕ c
cout = ab + bcin + acin

out = s’a + sb



Properties of Boolean Quantification

• Can be applied w.r.t. multiple 
variables, order does not matter
– Cxy(f) = Cx(Cy(f)) = Cy(Cx(f))

– Sxy(f) = Sx(Sy(f)) = Sy(Sx(f))

• Containment properties
– Consensus of a function f w.r.t. 

variable x is contained in f
– Smoothing of a function f w.r.t. 

variable x contains f

15

)()( fxffx $ÍÍ"

)()( fSffC xx ÍÍ

Hint: For containment, think of
a function in terms of it’s on-set



Unit 2: Summary

• Boolean Algebra: Quick Review
• Advanced Boolean Algebra

– Boolean spaces and functions
– Representations of Boolean functions
– Operations on Boolean functions
– Co-factors and their applications

• Shannon’s expansion
• Boolean difference
• Existential and Universal Quantification
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Reading for Unit 3: Two-level synthesis

• De Micheli, Chapter 7.1-7.4, 7.7
• Hachtel & Somenzi, Chapter 4, Chapter 5
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