

Outline

2.1 Boolean algebra: Quick review
2.2 Boolean spaces and functions
2.3 Boolean function representations
2.4 Conversion of Boolean function representations
2.5 Co-factors of Boolean functions
2.6 Boolean difference and Quantification

Combinations of Co-factors

- Combining f_{x} and $f_{x^{\prime}}$ in different ways leads to useful new functions

$$
\begin{aligned}
& -\mathrm{f}_{\mathrm{x}} \oplus \mathrm{f}_{\mathrm{x}^{\prime}}=? \\
& -\mathrm{f}_{\mathrm{x}} \cdot \mathrm{f}_{\mathrm{x}^{\prime}}=? \\
& -\mathrm{f}_{\mathrm{x}}+\mathrm{f}_{\mathrm{x}^{\prime}}=?
\end{aligned}
$$

Another analogy to the "Real" world

- The derivative of a function measures how much it changes when it's input changes
- What is the analogy in the case of Boolean functions (which only take
 values 0 and 1)?
- Does a function change when it's

$$
f^{\prime}(x)=\operatorname{Lim}_{\Delta \rightarrow 0} \frac{f(x+\Delta)-f(x)}{\Delta}
$$ input changes?

Boolean Difference

- Boolean difference of a function w.r.t. a variable is the exclusive-OR of the Shannon co-factors w.r.t. the variable
- Interpretation: $\frac{\partial f}{\partial x}=1 \rightarrow f$ is sensitive to the value of x
- A new function that does not depend on x

$$
\begin{aligned}
& \text { Example: } \\
& \mathrm{f}=x y+w^{\prime} z+x^{\prime} w^{\prime} \\
& \mathrm{f}_{\mathrm{x}}=y+w^{\prime} z \\
& \mathrm{f}_{x^{\prime}}^{\prime}=w^{\prime} z+w^{\prime}=w^{\prime} \\
& \frac{\partial f}{\partial x}=\left(y+w^{\prime} z\right) \oplus w^{\prime} \\
& =\left(y+w^{\prime} z\right)^{\prime}-w^{\prime}+\left(y+w^{\prime} z\right) w \\
& =y^{\prime}\left(w+z^{\prime}\right) w^{\prime}+w y \\
& =w^{\prime} y^{\prime} z^{\prime}+w y
\end{aligned}
$$

Boolean Difference

- Examples:

$$
\begin{aligned}
& S=a \oplus b \oplus c_{\text {in }} \\
& c_{\text {out }}=a b+b c_{\text {in }}+a c_{\text {in }} \\
& \frac{\partial s}{\partial a}=S_{a} \oplus S_{a^{\prime}}^{\prime}=\left(b \oplus c_{\text {m }}^{\prime}\right) \oplus\left(b+\left(b+\alpha_{n}\right)\right. \\
& =1
\end{aligned}
$$

out = s'a + sb

$$
\begin{aligned}
& \frac{\partial o u t}{\partial a}= \\
& \frac{\partial o u t}{\partial s_{\uparrow}}=a \oplus b
\end{aligned}
$$

$$
\begin{array}{c|c}
\frac{\partial c_{\text {out }}}{\partial c_{i n}}=(a+b) \oplus a b & \partial a \\
\left.\stackrel{=}{\prime} a^{\prime} b^{\prime}\right) a b+(a+b)\left(a^{\prime}+b^{\prime}\right) & \frac{\partial o u t}{\partial s}=a \oplus b \\
=O_{a}^{\prime} b+a b^{\prime}=a \oplus b &
\end{array}
$$

Application of Boolean Difference

- Manufacturing test
- Apply test vectors to ensure that each fabricated instance of an IC is functional
- Cannot apply exhaustive test set (too big!)
- Fault model: Abstraction of physical defects that could impact the IC
- Most commonly used: "stuck-at" fault model
- Signals in the circuit are stuck-at-0, stuck-at-1

How do you derive a test vector to detect the fault c s-a-0?
(i) Set $\mathrm{c}=1$
(ii) Set other inputs such that output of good and faulty circuits are different

Looks familiar?

Quantification

- Two more functions of Shannon cofactors
$-f_{x_{i}} \cdot f_{x_{i}^{\prime}}=1$ specifies when $\mathrm{f}=1$ independent of the value of x_{i}

$$
\begin{aligned}
& \text { f(} \left.x_{1} \ldots x_{i-1}, x_{i}=1, x_{i+1} \ldots x_{n}\right)=1 \text { AND } \\
& f\left(x_{1} \ldots x_{i-1}, x_{i}=0, x_{i+1} \ldots x_{n}\right)=1
\end{aligned}
$$

- Called Universal quantification or Consensus

Universal Quantification / Consensus: Geometric Interpretation

Keep vertices where $f=1$ independent of a in the on-set of consensus function

Universal Quantification / Consensus:

 Circuit interpretation

Quantification

- Two more functions of Shannon cofactors
- $f_{x_{i}} \cdot f_{x_{i}}=1$ specifies when $f=1$ independent of the value of x_{i}

$$
\begin{aligned}
& f\left(x_{1} \ldots x_{i-1}, x_{i}=1, x_{i+1} \ldots x_{n}\right)=1 \text { AND } \\
& f\left(x_{1} \ldots x_{i-1}, x_{i}=0, x_{i+1} \ldots x_{n}\right)=1
\end{aligned}
$$

$\forall x(f)=f_{x} \cdot f_{x}$
C_{x} (f)

- Called Universal quantification or Consensus
$-\frac{f_{x}+f_{x}}{\text { value }} 1$ specifies when $f=1$ for at least one value of x_{i}

$$
\begin{aligned}
& f\left(x_{1} \ldots x_{i-1}, x_{i}=1, x_{i+1} \ldots x_{n}\right)=1 \text { OR } \\
& f\left(x_{1} \ldots x_{i-1}, x_{i}=0, x_{i+1} \ldots x_{n}\right)=1
\end{aligned}
$$

- Called Existential quantification or Smoothing

Existential Quantification / Smoothing: Geometric interpretation

Geometric interpretation: If an off-set vertex has an on-set neighbor in the a-dimension, move it into the on-set

Existential Quantification / Smoothing: Circuit interpretation

Boolean Quantification: Examples

$S=a \oplus b \oplus c$
$\mathrm{c}_{\text {out }}=\mathrm{ab}+\mathrm{bc}_{\mathrm{in}}+\mathrm{ac}_{\mathrm{in}}$
$\forall \mathrm{a}(\mathrm{s})=s_{a^{\prime}} \cdot S_{a^{\prime}}=(b \in c)^{\prime} \cdot(b \Theta c)=0$
$\forall \mathrm{c}_{\mathrm{in}}(\mathrm{s})=0$

$$
\forall \mathrm{s}(\text { out })=a b
$$

$\begin{aligned} \exists \mathrm{a}\left(\mathrm{c}_{\text {out }}\right) & =\begin{array}{l}\operatorname{Cowt}_{a}+\operatorname{Cowt}_{a^{\prime}} \\ =b+c_{\text {in }}+b c_{\text {in }}=b+c_{\text {in }}\end{array}\end{aligned}$
$\exists \mathrm{c}_{\text {in }}\left(\mathrm{c}_{\text {out }}\right)=$

$$
\exists \mathrm{s}(\text { out })=a+b
$$

Properties of Boolean Quantification

- Can be applied w.r.t. multiple variables, order does not matter
$\left.-\mathrm{C}_{\mathrm{xy}}(\mathrm{f})=\widehat{\mathrm{C}_{\mathrm{x}}\left(\mathrm{C}_{\mathrm{y}}(\mathrm{f})\right)}=\widehat{\mathrm{C}_{\mathrm{y}}\left(\mathrm{C}_{\mathrm{x}}(\mathrm{f})\right.}\right)$
$-\mathrm{S}_{\mathrm{xy}}(\mathrm{f})=\mathrm{S}_{\mathrm{x}}\left(\mathrm{S}_{\mathrm{y}}(\mathrm{f})\right)=\mathrm{S}_{\mathrm{y}}\left(\mathrm{S}_{\mathrm{x}}(\mathrm{f}) \leftrightharpoons\right.$
- Containment properties

- Consensus of a function f w.r.t. variable x is contained in f
- Smoothing of a function f w.r.t. variable x contains f
$C_{x}(f) \subseteq f \subseteq S_{x}(f)$

Hint: For containment, think of a function in terms of it's on-set

Unit 2: Summary

- Boolean Algebra: Quick Review
- Advanced Boolean Algebra
- Boolean spaces and functions
- Representations of Boolean functions
- Operations on Boolean functions
- Co-factors and their applications
- Shannon's expansion
- Boolean difference
- Existential and Universal Quantification

Reading for Unit 3: Two-level synthesis

- De Micheli, Chapter 7.1-7.4, 7.7
- Hachtel \& Somenzi, Chapter 4, Chapter 5

Acknowledgments

- Prof. Sharad Malik, Princeton
- Prof. Rob Rutenbar, Carnegie Mellon University (now at University of Pittsburgh)
- Prof. Maciej Ciesielski, University of Massachusetts

