
© Anand Raghunathan

Digital Systems Design Automation
Unit 2: Advanced Boolean Algebra

Lecture 2.6: Boolean Difference and Quantifiation

Anand Raghunathan
raghunathan@purdue.edu

Outline

2.1 Boolean algebra: Quick review
2.2 Boolean spaces and functions
2.3 Boolean function representations
2.4 Conversion of Boolean function representations
2.5 Co-factors of Boolean functions
2.6 Boolean difference and Quantification

2

Combinations of Co-factors

• Combining fx and fx’ in different ways leads to useful
new functions
– fx ⊕ fx’ = ?
– fx . fx’ = ?
– fx+ fx’ = ?

3

Another analogy to the “Real” world

• The derivative of a function
measures how much it changes
when it’s input changes

• What is the analogy in the case of
Boolean functions (which only take
values 0 and 1)?
– Does a function change when it’s

input changes?

4

x+∆x

f(x)
f(x+∆)

D
-D+

=
®D

)()()(
0

' xfxfLimxf

Boolean Difference

• Boolean difference of a
function w.r.t. a variable is
the exclusive-OR of the
Shannon co-factors w.r.t. the
variable

• Interpretation: !"
!#
= 1 → f is

sensitive to the value of x
• A new function that does not

depend on x

5

Example:
f = xy + w’z + x’w’
fx =
fx’ =

𝜕𝑓
𝜕𝑥

=

𝜕𝑓
𝜕𝑥

= 𝑓# ⊕ 𝑓#*

Boolean Difference

• Examples:

Full
Adder

a
b
cin cout

s

=
¶
¶
a
s

=
¶
¶

in

out

c
c

0
1

s

a

b
out

=
¶
¶
a
out

=
¶
¶
s
out

6

S = a ⊕ b ⊕ cin

cout = ab + bcin + acin

out = s’a + sb

Application of Boolean Difference

• Manufacturing test
– Apply test vectors to ensure that

each fabricated instance of an IC is
functional

– Cannot apply exhaustive test set
(too big!)

• Fault model: Abstraction of
physical defects that could
impact the IC
– Most commonly used: “stuck-at”

fault model
– Signals in the circuit are stuck-at-0,

stuck-at-1

7

a
b

c
d

outs-a-0

How do you derive a test vector
to detect the fault c s-a-0?

(i) Set c = 1
(ii) Set other inputs such that

output of good and faulty
circuits are different

Looks familiar?

Quantification

• Two more functions of Shannon co-
factors
– fxi

. fxi’
= 1 specifies when f = 1 independent of

the value of xi

f(x1 … xi-1, xi =1, xi+1 … xn) = 1 AND
f(x1 … xi-1, xi =0, xi+1 … xn) = 1

– Called Universal quantification or
Consensus

8

')(xx fffx ×="

Cx(f)

Universal Quantification / Consensus:
Geometric Interpretation

9

Keep vertices where f = 1 independent of a in the on-set of consensus
function

a
b

c

f = ab + bc + ac

fa = b + c
fa’ = bc

a
b

c

bcfa =")(

Universal Quantification / Consensus:
Circuit interpretation

10

f

f

x1
x2

0

xn

x1
x2

1

xn

Cxi
(f)

Quantification

• Two more functions of Shannon co-
factors
– fxi

. fxi’
= 1 specifies when f = 1 independent of

the value of xi

f(x1 … xi-1, xi =1, xi+1 … xn) = 1 AND
f(x1 … xi-1, xi =0, xi+1 … xn) = 1

– Called Universal quantification or
Consensus

– fx + fx’ = 1 specifies when f = 1 for at least one
value of xi

f(x1 … xi-1, xi =1, xi+1 … xn) = 1 OR
f(x1 … xi-1, xi =0, xi+1 … xn) = 1

– Called Existential quantification or
Smoothing

11

')(xx fffx ×="

')(xx fffx +=$

Cx(f)

Sx(f)

Existential Quantification / Smoothing:
Geometric interpretation

12

Geometric interpretation: If an off-set vertex has an on-set neighbor in
the a-dimension, move it into the on-set

a
b

c

f = ab + bc + ac

fa = b + c
fa’ = bc

a
b

c

cbfa +=$)(

Existential Quantification / Smoothing:
Circuit interpretation

f

f

x1
x2

0

xn

x1
x2

1

xn

Sxi
(f)

13

Boolean Quantification: Examples

Full
Adder

a
b
cin cout

s

="a(s)

=$)a(cout

0
1

s

a

b
out

=" (s)cin

=$)(cc outin

="a(out)

=$ a(out)

="s(out)

=$s(out)
14

S = a ⊕ b ⊕ c
cout = ab + bcin + acin

out = s’a + sb

Properties of Boolean Quantification

• Can be applied w.r.t. multiple
variables, order does not matter
– Cxy(f) = Cx(Cy(f)) = Cy(Cx(f))

– Sxy(f) = Sx(Sy(f)) = Sy(Sx(f))

• Containment properties
– Consensus of a function f w.r.t.

variable x is contained in f
– Smoothing of a function f w.r.t.

variable x contains f

15

)()(fxffx $ÍÍ"

)()(fSffC xx ÍÍ

Hint: For containment, think of
a function in terms of it’s on-set

Unit 2: Summary

• Boolean Algebra: Quick Review
• Advanced Boolean Algebra

– Boolean spaces and functions
– Representations of Boolean functions
– Operations on Boolean functions
– Co-factors and their applications

• Shannon’s expansion
• Boolean difference
• Existential and Universal Quantification

16

Reading for Unit 3: Two-level synthesis

• De Micheli, Chapter 7.1-7.4, 7.7
• Hachtel & Somenzi, Chapter 4, Chapter 5

17

Acknowledgments

• Prof. Sharad Malik, Princeton
• Prof. Rob Rutenbar, Carnegie Mellon University (now at University of Pittsburgh)
• Prof. Maciej Ciesielski, University of Massachusetts

18

