Crystal Viewer Tool

Visualize different lattices and planes

Launch Tool

This tool version is unpublished and cannot be run. If you would like to have this version staged, you can put a request through HUB Support.

Archive Version 1.23
Published on 27 Feb 2009, unpublished on 10 Jun 2009 All versions

doi:10.4231/D3P55DG44 cite this



Published on


This tool will help in visualizing various types of Bravais lattices, planes and Miller indices needed for many material, electronics and chemistry courses. Also large bulk systems for different materials (Silicon, InAs, GaAs, diamond, graphene, Buckyball) can be viewed using this tool. The main purpose of this tool is to provide insight about the crystalline structure of various materials. Please feel free to send comments and requests in the nanoHUB help system. Homework material is provided to help the user to understand the crystal structures and to be able to use the tool to get better idea about the crystals which is necessary to understand materials and their properties. Bug Fixes:
  • Graphene atoms were too small to be seen. This has been fixed in the latest release of the tool.
  • Mixup in trigonal and tetragonal bravais lattice resolved. Also angle dependence in trigonal bravais lattice corrected.
New Features:
  • Now it is possible to visualize the atoms in certain planes for the crystal structures.
  • CNTs can be visualized in the tool now.
  • Atoms in Bravais lattices are now bigger by default. To further adjust the atomic size use the setting tool in the rappture output.
Wish List:
  • To make the atomic plane visualization better for clear understanding
  • To show the miller indices in better way
  • Include other crystal systems like Wurtzite, cubic, class etc.
  • Allow to upload PDB files to view simple molecular and atomic structures.

Sponsored by

NCN , Purdue University


  • Kittel, Charles (1996) [1953].Introduction to Solid State Physics (Seventh Edition ed.). New York: John Wiley & Sons. pp. 10. ISBN 0-471-11181-3.

Cite this work

Researchers should cite this work as follows:

  • Abhijeet Paul; Gerhard Klimeck (2016), "Crystal Viewer Tool," (DOI: 10.4231/D3P55DG44).

    BibTex | EndNote