Combining new experimental & informatic tools for protein investigation & engineering

Express and analyze chimeric proteins

Assemble libraries of chimeric genes (SPLISO, planned DNA ligation and RoboMix, robotic mixing)

Analyze sequence relationships & Conduct experiment planning (select parents & breakpoints)

Motivation: Understanding the role of Structural Elements & Distant Mutants

- BsoBI restriction enzyme recognizes degenerate GPuGCPyC.
- Structure suggested alterations in active site residues to \uparrow specificity.
- Point mutations do \uparrow specificity, but activity greatly \downarrow .
- Revertants selected with \uparrow activity. Surprise, mutations are all over.

Motivation: Understanding the role of Structural Elements & Distant Mutants II

- How do distant residues have such a role?
- How do those residues (and all the others) interact to create function?
- Related to old question: Why need the entire (large) protein?
- What are the other residues and structural elements good for? What properties do they confer?

Approach: Chimera Generation, Conceptually Simple but Powerful Experiment

Voigt, et al., Nat. Struct. Biol. 9:553

- Figuratively, divide a protein into modules
 - Qualitatively, partially independent elements (smaller than the largely independent domains)
 - Not directly equivalent to secondary structure
- Reassemble the protein using modules from different homologs
 - Homologous pieces close enough to be roughly interchangeable
 - Better division into more independent elements -> greater interchangeability
 - Different homologous parents can provide great sequence diversity
 - Sequence diversity channeled along functional lines ("works" in one homolog)

Approach: Chimera Generation, a Flexible, Multi-Use Experiment

- Chimeric proteins tested to:
 - Probe the origins of structure, stability & the old "natural" activity
 - Search for new desired phenotypes (protein engineering)
- Chimera generation can be optimized to:
 - Probe structure/stability intentional recombine between interactions suspected to lead to structure/stability or
 - Investigate old activity generally maximize retention of structure and stability in library while recombining between hypothetical activity elements or
 - Discover new activities compromise to combine good structure retention and stability with generating diverse new sequences

- Optimize for our goals by selecting parents and selecting recombination sites (breakpoints) -> experimental plan
 - Limits number to select/screen, #chimera = #parents
 - Different parents and breakpoints yield different combinations of sequences
- How do we optimize this selection for different goals?
- And how do we actually carry out these experiments?
- New informatic and experimental technology

Optimized Chimera Generation Requires Multiple Technological Capabilities

- 1. Computational procedures for generating effective experimental plans (breakpoints, parents) targeted to the project goals
- 2. Efficient experimental procedures for assembly of chimeric genes
 - a. Fragment assembly (DNA ligation)
 - b. Library formation, two alternatives:
 - Mixed library
 - Each chimera in an individual vessel (well of a 96 well plate)
- 3. High throughput screening and selection
- 4. Collection and analysis of results
- I'll talk in more detail today about 1 and 2a/b

Capability 1: Computational Analysis to Guide Chimera Planning, Overview

- Analysis of extant sequences in multiple sequence alignment (MSA) reveals sequence relationships (blue, red and green)
 - Relationships defined more precisely later
 - Example green dominated by Ala, Val, Ile
- For maximum structure/stability
 - Choose breakpoints to maximally preserve these groups (pairs/higher order)
 - Algorithms in Ye, et al., RECOMB 2006
 - Avoid parents that lack these groups
- For new activities
 - Choose breakpoints to compromise between preserving groups and recombining them to generate new combinations
 - Select diverse parents with both canonical and variant groups
 - Algorithms in Zheng, et al., CSB2007 & Zheng, et al., submitted RECOMB 2008

Capability 1: Analysis of multiple sequence relationships

- Conservation familiar nonrandom presence of individual residues at particular positions, nearly invariant L
- Correlation (coupling) nonrandom covariation of residues at particular positions, KQ, EP, CM. Mutual information between columns.
- Hyperconservation nonrandom presence of groups of residues at particular sets of positions, AVI. Over and above conservation in individual columns.

Ye, et al., J. Comp. Biol. 14:277 Thomas, et al., IEEE/ACM Trans. 2007

Capability 1: Multiple relationships reveal functional distinctions

- Project of grad student Nick Fico. Collaboration with Jo Davisson
- purE family are homologs that catalyze the same overall step in de novo purine biosynthesis
- Overall: Addition of carboxylate to AIR to form CAIR.
- Bacterial/fungal/plant have distinct mechanism from metazoans
 - Bacterial/fungal/plant mutase that move carboxylate added by purK
 - Metazoan carboxylase that adds CO₂ directly
- Demonstrates value of multiple sequence relationships. Bacterial and metazoan purE distinguished by combination of correlation and conservation, but overlap by either alone.

Capability 2a: Efficient Experimental Procedure for Chimeric Gene Assembly

- Need mechanism for efficiently assembling fragments into chimeric genes
- SPLISO <u>Specific</u> <u>Planned</u> <u>Ligation of</u> <u>Short</u> <u>Overhangs</u>
- Ligation of synthetic or PCR fragments using overhangs that do not change sequence or restrict the combinations.
- Employ type IIS restriction enzymes to generate overhangs of any sequence
- Computerized selection of best overhang sequences and assembly pathway

1.	1. Identification of admissible nucleotide overhangs													
	(a)			(b)			(c)			(d)				
		Asp	Tyr	•••	Glu	Lys	•••	Asp	Ile		•••			
		GAT GAC	TAT TAC		GA A GA <mark>G</mark>	AA A AA G		GAT GAC	ATT ATC ATA					
	•••	Asp	Asn	•••	Arg	Asn	•••	Asp	Leu		•••			
		GAT GAC	AAT AAC		CGT CGC CG A CG G	AA T AA C		GAT GAC	TTA TTG CT*					

2. Choice of tree structure and associated overhangs

Saftalov, et al., Proteins 64:629

Capability 2a: SPLISO I, identify "admissible" overhangs

1. Identification of admissible nucleotide overhangs

	(a)		(b)			(c)			(d)
	Asp	Tyr	•••	Glu	Lys	•••	Asp	Ile	•••
	GAT GAC	TAT TAC		GA A GA G	AA A AA G		GAT GAC	ATT ATC ATA	
•••	Asp	Asn	•••	Arg	Asn	•••	Asp	Leu	•••
	GAT GAC	AAT AAC		CGT CGC CG A CG G	AA T AA C		GAT GAC	TTA TTG CT*	

- Use synonymous codons to identify all alternate methods of coding for the pair of amino acids spanning the breakpoint
- Construct list of overhangs that are "admissible" for all parents
 - Examples focus on 3 nt 5' overhangs
 - Asp/Tyr & Asp/Asn easy, use either Asp codon (GAT or GAC)
 - Glu/Lys & Arg/Asn harder, use AAA or GAA, combining 3rd nt of Glu and Arg (A or G) with first two of Lys and Asn (AA)
- Computer identifies all possibilities

Practicalities: Making overhangs

Fragment for ligation: XXX_Gene_Fragment Gene Fragment

- Making 3 nt 5' overhangs
 - Type IIS enzyme Sap I GCTCTTCN

CGAGAAGNNNN

- Outlined above, leaving XXX as overhang
- Alternative enzyme sites included as backup to clone PCR fragment
- Other Type IIS enzymes leave 0-5 nt overhangs, 5' & 3'.
- If fragment small enough to make synthetically -> any overhang
 - But longer overhangs that are admissible are more difficult to find
- Computer will output PCR primer pairs (matched T_m) or synthetic sequences for each fragment -> IDT

Capability 2a: SPLISO II, Choose best overhangs and associated assembly tree

- Score admissible overhangs in a ligation with other fragments
 - Only one ligation is desired (check mark), rest are not (x's)
 - W-C complementarity in desired ligation automatic
 - Minimize W-C complementarity in undesired pairs by varying the overhangs and/or fragments combined in each step
 - W-C complementarity above a threshold completely avoided
- Calculate best assembly pathway (tree), e.g. dotted versus solid lines
 - Different pathways combine different fragments/overhangs in each ligation
 - Earlier steps "hide" some overhangs, allows reuse of those sequences for later steps
 - Minimize tree height, # ligation steps, undesired W-C complementarity
- "Optimal substructure" allows dynamic programming to select best tree and overhangs
 - Avoids explicitly considering enormous number of possible trees multiplied by all admissible overhangs at each breakpoint

Capability 2a: SPLISO plans multi-parent, multi-breakpoint assemblies

	447 448	482 483	521 522	546 547
E. coli	EV	H L	MP	QII
B. subtilis	κv	н г	МР	QI
N. meningitidis	r v	н г	МР	s M
S. coelicolor	DV	н г	МР	R I
H. ducreyi	ΕV	н г	мр	QI
Y. pestis	ΕV	н г	МР	QΙ
P. aeruginosa	кv	н г	MP	S I
S.solfataricus	RV	H L	МР	R I
M. thermautotrophicus	r v	нг	MP	QI
	GTG(3)	TCT(2)	CCA(3)	GAT(2)

One step assembly (five-way ligation) with nine PurE parents without alteration at any desired breakpoint. No overhang pair has more than 1 complementary nucleotide.

- Somewhat easy test case, sequence identity at 3 out of 4 breakpoints
- The SPLISO-determined five-way ligation not likely to go wrong
 No more than 1 complementary nucleotide out of 3
- Testing efficiency and specificity of planned ligations in progress
- Based on well-studied principles of ligation, but planning algorithm flexible enough to allow alteration based on experimental experience
 - For example, eliminate certain overhangs that don't ligate well (possibly T rich) or restrict number of fragments ligated in one reaction

Capability 2a: Complex Assemblies with Additional Degrees of Freedom

												_	7	\wedge												
			/		\sim																7					
	45	46	61	62	70	71	89	99-10	1 117	118	134	135	144	145	162	163	183	184	223	224	241	242	268	269	283	284
	3	-	3	•			2	-	3	•	3	•	4	3	-	1	3	•	◄ 2	!	•	2	4	3	4	3
D:	V	G	F	R>K	М	S	Q	E>Q	Y	S	R	Е	S	D	E>D	L	E	L	R	Q	R	S	A	L>I	Т	Т
T:	L	G	F	R>K	A	s	Q	L	N	S	R	Е	s	D	G	L	Е	L	R	А	R	A>S	V	L>I	Т	S>T
Q:	L	G	Y	R>K	A	s	S>E	L	Y	S	G	Е	s	D	G	Y>F	Е	L	R	К	R	A>S	V	V>I	S>A	S>T
R:	L	G	Y	R>K	A	s	D>E	L	Y	N	К	Е	s	D	S	L	Е	L	R	Е	R	A>S	I	I	S>A	S>T
X:	I	G	Y	R>K	A	s	D>E	L	Y	S	А	Q>E	s	D	Q>R	Y > F	D	L	К	Т	R	A>S	V	V>I	S>A	Т
G:	L	G	Y	R>K	С	s	R>K	E>Q	Y	Ι	А	Е	s	D	G	I>L	A	L	R	К	R	A>S	V	V>I	S>A	Т
C:	I	G	н	К	S	s	К	E>Q	Y	S	А	Е	s	D	А	L	Е	L	R	Q	R	К	V	М	I	Т
Y:	I	G	Y	Ν	Т	s	К	V>L	Y	S	D>E	D	s	D	G	V>L	D	L	Q	К	R	S	V	V>I	L	A>T
A:	V	G	н	R>K	Ν	s	R>K	L	Y	A>S	D > E	Е	s	D	А	V>L	К	L	R	G	R	A>S	V	I	I	S>T
	AG	G(2)	CAA	A(2)	TCC	C(3)	AAG	C(1)	ATA	A (1)	GGA	A(2)	AGO	C(0)	CTI	(2)	TTG	G(3)	AGG	i(0)	GCA	A (1)	TAT	(2)	AAG	2(2)

Nine parents (diverse beta-lactamases), 14 fragments using conservative substitution & breakpoint shifting allows two-height assembly

- Some experiments too complex (breakpoints too diverse, too many breakpoints, too many parents) to recombine all parents as desired
- Allow additional freedom (user-specified):
 - Conservative amino acid substitutions at the breakpoints
 - Small shifts in breakpoint location
- Additional features:
 - Select maximal possible set of parent proteins (with selection criteria).

Capability 2b: Assembly en masse or in individual wells for screening/selection

- Variants in similar experiments typically generated en masse followed by screening or selection
 - Screening requires substantial oversampling to statistically get most variants
 - Oversampling can be many-fold and assumes non-biased library
 - Selection doesn't recover inactive variants
 - Inactive variants as informative as active ones in learning what combinations don't work
- Alternative assembly in individual vessels allows precise recovery of all desired variants (active and inactive)
- Clint Chapple, "Actually test a hypothesis [about a single combination of fragments]."
- To do this only mix fragments from desired parents in each well
- Repeat for each desired chimera
- Robot can do this (with appropriate direction)

Capability 2b: Robotic implementation of assembly precisely mixes fragments

1234	Well	1	2	3	4	5	6	7	8
\wedge	Row A	A	B	-A	-B	A-	B-	A	B
	Row B	AA - -	AB	BA	BB				
10 24	Row C	AA	AB	BA	BB				
	Row D/E	AAAA	AAAB	AABA	AABB	ABAA	ABAB	ABBA	ABBB
		BAAA	BAAB	BABA	BABB	BBAA	BBAB	BBBA	BBBB
	initiall	y 2.0	of []	1A] iı	n well	l A1			
1 2 3 4	initiall	y 2.0	of []	1B] iı	n well	L A2			
	initiall	y 2.0	of [2	2A] iı	n well	L A3			
A simple tree	initiall	y 2.0	of [2	2B] iı	n well	L A4			
	1.0 of w	ell A	1 into	o well	l B1				
	1.0 of w	ell A	3 into	o well	l B1				
	1.0 of w	ell A	1 into	o well	l B2				
$\land \land \land \land$	1.0 of w	ell A	4 into	o well	l B2				
	1.0 of w	ell A	2 into	o well	l B3				
	1.0 of w	ell A	3 into	o well	l B3				
BBBB	1.0 of w	ell A	2 into	o well	l B4				
	1.0 of w	ell A	4 into	o well	l B4				
Two parents	Comput	or ac	nora	tad a		مممد	ofro	boti	n etar

Computer generated sequence of robotic steps

Avramova, et al., J. Comb. Chem, in press

Robots take EXCEL file aspirate & dispense.

1001

- RoboMix generates command file from assembly tree.
- Able to generate complete set of chimera or subsets

Experimental Systems: PurE, determinants & interactions in mutase vs. carboxylase

Parents

- a Homo sapiens
- b Gallus gallus
- c $-Methanothermobacter\ thermautotrophicus\ str.$ Delta H
- d Escherichia coli K12
- e $Bdellovibrio \ bacteriovorus \ HD100$
- f $Treponema \ denticola \ ATCC \ 35405$

Primers for fragments 1–71 and 77–end

- 1a gccgccaagcttcagtgcagggttgtagtgttgatgggctc
- $2a \qquad {\tt cgtaaggatgacataaacaccgtcaccgtCCActtctcgttcgaaccgccg}$
- $3a \qquad \tt gccgccgaattcgctcttcaTTGggaccagtgatgactgggaacactgc$
- $4a \qquad {\tt ggaacttcgtccgactgttcttttagtctcttaattaatattttcgaaccgccg}$

Synthetic sequences for fragment 72–76

Э	GGTagaagcaatggt	
2	GGTctatcagcccat	
1		

GGTggcgcagcgcat GGTttggctgcccat

GGTagaagcaatgct

- Select carboxylase activity on purK-deficient E. coli
 - Modulate selection stringency by adding varying amounts of Ade
- Select mutase activity on purE⁻, screen for no growth on purK⁻
- Start with placing 70's loop from several variants
 - Some evidence 70's loop is important. Sufficient to make a mutase into carboxylase?
- Advanced: Mix fragments from several carboxylases and mutases, see which (if any) have which activity
 - Identify required individual determinants and required interactions

Experimental Systems: N-ras and K-ras, determinants & interactions determining cellular localization

Ras	Localization	Localization in fib	roblasts (NIH 3T3)	Localization in lymphocytes (Jurkat)					
isoform	determinants	Compartment	Detergent extractible?	Compartment	Detergent extractible?				
K-ras	Polybasic seq.,	Plasma membrane	$Yes \rightarrow non-lipid raft$	Plasma membrane	$No \rightarrow lipid raft$				
	farnesylated at C term.								
N-ras	Palmitoylated at Cys181,	Mixture of plasma	Conflicting literature	Golgi	$Yes \rightarrow non-lipid raft$				
	farnesylated at C term.	membrane and Golgi							

- Collaboration with Marietta Harrison and Misty Handley
- Table describes differential localization of N-/K-ras in different cell types
- What determines plasma membrane versus Golgi localization?
- Swap the C-terminal regions (and parts thereof) to identify determinants and interactions required

 Experiment plan combines 1 and 3 nt overhangs to avoid mutations at the breakpoints in divergent C-terminal region

Experimental Systems: Bioenergy, engineering of variant cytochrome P450's to modify lignin production

- Collaboration with Clint Chapple
- Lignin prevents access to sugars for fermentation into ethanol
- Develop set of lignin modification tools
- Large family of biosynthetic P450's hydroxylate lignin precursors
- Recombine them to generate novel activities
- Coupling sequence relationships from plant biosynthetic P450's determined, visualized right

Your experimental system?

?

- Well-developed expression, screening and selection
- A set of homologs with which to discover sequence relationships and to serve as parents
- Do you desire a new activity?
 - Green synthetic chemistry
 - Bioenergy
 - External and internal biological modifiers
- Or have a basic investigational question?
 - Determinants and interactions

Bigger Picture: Epistemology of mutation and modeling evolution?

- Really these are old genetics questions:
 - Point and regional mutants (or swaps) -> loss of phenotype implies residue/region is a required determinant, either alone or by interaction
 - Point and regional mutants (or swaps) -> gain of phenotype implies residue/region is a "sufficient" determinant, either alone or by interaction
 - Multiple changes can tell whether determinant is acting alone or by interaction ("intramolecular epistasis")
 - Extend to complete combinatorial->identify all interacting parts (if polymorphic)
- Are we modeling natural evolution here?
- Not sure. These are not natural alleles being recombined. Cases where similar recombination between diverse parents may be possible
 - Recombination among genes and pseudogenes
 - Recombination among viral genes in cells multiply infected with phage/viruses
 - Following promiscuous DNA transfer in prokaryotes
 - Similar situation of genes carried between species by retroviruses
- Do these reflect a significant fraction of recombination in molecular evolution?

Capability 1: Analysis of multiple sequence relationships

- Conservation familiar nonrandom presence of individual residues at particular positions, nearly invariant L
- Correlation (coupling) nonrandom covariation of residues at particular positions, KQ, EP, CM. Mutual information between columns.
- Hyperconservation nonrandom presence of groups of residues at particular sets of positions, AVI. Over and above conservation in individual columns.

Ye, et al., J. Comp. Biol. 14:277 Thomas, et al., IEEE/ACM Trans. 2007

Approach: Chimera Generation, Conceptually Simple but Powerful Experiment

Voigt, et al., Nat. Struct. Biol. 9:553

- Figuratively, divide a protein into modules
 - Qualitatively, partially independent elements (smaller than the largely independent domains)
 - Not directly equivalent to secondary structure
- Reassemble the protein using modules from different homologs
 - Homologous pieces close enough to be roughly interchangeable
 - Better division into more independent elements -> greater interchangeability
 - Different homologous parents can provide great sequence diversity
 - Sequence diversity channeled along functional lines ("works" in one homolog)