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Abstract:

In this tutorial, we will learn about AutoQSAR, a tool for automated creation, validation and
application of QSPR models following a best practices approach. We will demonstrate the use of
AutoQSAR to build and rank order numerical QSPR models, visualize atomic contributions to
property predictions and use these models to make predictions on new, unseen datasets.
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1. Introduction to AutoQSAR
Developing Quantitative Structure-Property Relationships (QSPR), also known as Quantitative
Structure-Activity Relationships (QSAR), is a powerful technique that is widely used in materials
design and drug discovery. QSPR involves finding a mathematical expression that relates the
materials’ structure to its property for a series of compounds. In practice, developing QSPR models is
typically divided into two steps: model training and testing. Model training is when we input the
structures and properties from the training set to generate a QSPR model, whereas model testing is
when we input a set of new, unseen structures from the testing set to evaluate whether the model
could accurately predict properties for novel compounds.

Generating QSPR models for a large range of structures and properties is often time-consuming and
usually requires QSPR expertise. To facilitate the development of QSPR models, Schrödinger has
automated the creation of accurate QSPR models using a tool called AutoQSAR. AutoQSAR allows
the user to modify settings for QSPR modeling, but it does not require the user to have an expert
background in QSPR.

AutoQSAR is designed to provide a ‘QSPR expertise out-of-the-box’ experience by facilitating an
automated creation and application of QSPR models using a set of best practices. The best practices
include the generation of descriptors, feature selection, creation of a large number of QSPR models
with different train/test set splits from multiple machine learning methods, and finally, the performance
based ranking of these QSPR models. Predictions can then be made from a particular top ranked
QSPR model or from a consensus of the top scoring models. The AutoQSAR workflow is summarized
below:

Figure 1. Workflow of AutoQSAR to develop QSPR models. For model training, structures and
properties are inputted into AutoQSAR. Descriptors and fingerprints are then computed based on
the structure and subsequently used to train machine learning models to predict either continuous or
categorical properties. A series of train/test splits and machine learning models are then used to



identify the best QSPR model for the property of interest. For model testing, descriptors and
fingerprints are computed for the unseen structures, which are then inputted into a pre-trained
AutoQSAR model to generate property predictions.

AutoQSAR Key Features

● AutoQSAR takes in 1D, 2D or 3D structures as input and any desired property to create either
numerical or categorical models.

● It uses topology-based descriptors including estate counts (electrotopological state indices),
2D topological descriptors, functional group counts and 4 types of fingerprints (dendritic, linear,
radial and MOLPRINT2D). In addition, you can also add your own descriptors.

● For feature selection, AutoQSAR eliminates descriptors where >90% of the training set has the
same value. AutoQSAR also ensures that no pair of descriptors are linearly correlated by
eliminating descriptors with an absolute Pearson’s r correlation coefficient greater than 0.8 to
another descriptor. Additionally, for the fingerprints, only the most significant 10,000 bits with
the greatest variance over the training set are employed.

● For numerical models, the machine learning methods employed are Partial Least Squares
regression (PLS), best subset Multiple Linear Regression (MLR), kernel-based PLS (kPLS)
and Principal Components Regression (PCR).

● For categorical models, AutoQSAR uses Naive Bayes classification and ensemble recursive
partitioning.

● AutoQSAR rank orders all the QSPR models by their predictive accuracy and retains only the
top 10 models by default. The total number of top models retained is editable by the user.

● When predicting properties of new structures, AutoQSAR estimates whether the new structure
falls within the applicability domain by comparing the structural similarity between the new
structure and the original training set. AutoQSAR will output a domain score to indicate
whether the new structure lies within or outside the applicability domain. Domain alert of one
indicates the new structure is outside the applicability domain of the model.

● AutoQSAR does not create neural network models as they are found to overfit too easily for
small datasets.

Data Curation Recommendations for AutoQSAR:

A few considerations are summarized below with respect to the input structures used in AutoQSAR:

● There should be a consistency in the input structures, such as consistent representations for
dative or other special type(s) of bonds for organometallic species. Also, ensure removal of
duplicates and salts.

● Data heterogeneity, such as data from different species/protocols, should be avoided because
that may lead to poor models.

● Data inadequacy should be minimized - the predicted property or descriptors should not span
multiple orders of magnitude. If it does, you can convert the property/descriptor values to a
logarithmic scale prior to QSPR modeling, e.g. frequencies that span over KHz, MHz and GHz
ranges should be converted to logarithmic scale first.

https://pubs.acs.org/doi/pdf/10.1021/ci00028a014


● Ensure the dataset is a reasonable size. An absolute minimum of 20 compounds is
recommended. For a very large dataset (i.e. on the order of >5000 compounds),
DeepAutoQSAR is recommended.

In this tutorial, we will apply the AutoQSAR approach to an example in organic electronic discovery,
specifically the discovery of thermally activated delayed fluorescence (TADFs) molecules. TADFs are
a 3rd generation class of organic light-emitting display (OLED) materials used in everyday displays,
such as smartphones, smartwatches and TVs. These molecules share a common property: a small
energy gap between their singlet and triplet energy states, abbreviated ΔEST. Tuning ΔEST allows for
higher efficiency light emission in the form of delayed fluorescence. Design of new TADFs can lead to
breakthroughs in new emitters that do not require heavy metals and have long lifetimes. This tutorial
focuses on building QSPR models to predict the singlet-triplet splitting energy (ΔEST) for a set of
TADF molecules using the AutoQSAR panel. After training the model, we will then use it to predict
ΔEST for 14 unseen TADFs. While this tutorial example focuses on an OLED example, the workflow is
flexible enough to be applied to different material classes. The workflow of this tutorial is summarized
below:

Figure 2. Tutorial workflow showing a subset of the input TADF structures, AutoQSAR panel, and
the output predicted versus observed ΔEST. After training AutoQSAR models, new structures are
inputted to generate ΔEST predictions of novel compounds.

It is recommended to work through this tutorial first to understand the standard AutoQSAR workflow
before trying more specialized tutorials, such as Polymer Descriptors for Machine Learning and
Periodic Descriptors for Inorganic Solids. Alternative machine learning approaches like active learning
and DeepAutoQSAR are also available: Optoelectronics Active Learning, Cheminformatics Machine
Learning for Homogeneous Catalysis and Machine Learning for Sweetness. To learn about using
pre-built machine learning models to predict properties, please refer to the Machine Learning
Property Prediction tutorial.

https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/deepautoqsar/deepautoqsar_help/deepautoqsar.html
https://www.schrodinger.com/science-articles/organic-electronics
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https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/periodic_descriptors_inorganic/periodic_descriptors_inorganic.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/opto_al/opto_al.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/catalysis_ml/catalysis_ml.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/catalysis_ml/catalysis_ml.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/sweetness_ml/sweetness_ml.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/ml_property_prediction/ml_property_prediction.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/ml_property_prediction/ml_property_prediction.htm


2. Creating Projects and Importing Structures
At the start of the session, change the file path to your chosen Working Directory in MS Maestro to
make file navigation easier. Each session in MS Maestro begins with a default Scratch Project, which
is not saved. A MS Maestro project stores all your data and has a .prj extension. A project may
contain numerous entries corresponding to imported structures, as well as the output of
modeling-related tasks. Once a project is saved, the project is automatically saved each time a
change is made.

Structures can be built in MS Maestro or can be imported using File > Import Structures (or
drag-and-dropped), and are added to the Entry List and Project Table. The Entry List is located to the
left of the Workspace. The Project Table can be accessed by Ctrl+T (Cmd+T) or Window > Project
Table if you would like to see an expanded view of your project data.

1. Launch the tool in the nanoHUB interface
○ Launching the tool will

automatically open up MS Maestro



Figure 2-1. Change Working Directory option.

2. Go to File > Change Working Directory

Figure 2-2. Selecting the Working Directory.

3. Navigate to your Home Directory then the
SCHRODINGER directory

4. Select ml_materialsscience, and click
Choose

○ All files needed to execute this
tutorial are included in this
directory



Figure 2-3. Save Project panel.

5. Go to File > Save Project As
6. Change the File name to

ml_materialsscience_tutorial, click
Save

○ The project is now named
ml_materialsscience_tutorial
.prj

Figure 2-4. The entry list after importing.

We will import a library of 230 TADF molecules:

7. Go to File > Import Structures
8. Navigate to where you downloaded the

provided tutorial files, choose
TADF_train_set.mae and click Open

○ A new entry group is added to the
entry list containing 230 entries

The 230 TADFs comprising the dataset have
experimental ΔEST values in the range of 0.0-1.1.
If you are interested, you can view these values

in the Project Table ( ).



3. Building a Numerical QSPR Model using AutoQSAR
Here, we will use the series of TADF molecules with known ΔEST values as input structures and build
a numerical QSPR model with the AutoQSAR panel.

Figure 3-1. Selecting the entire entry group.

1. Select the entire train_set (230) entry
group by clicking on the group header

○ Recall that selecting means to
highlight the entries in the entry list

Figure 3-2. The AutoQSAR panel.

2. Go to Tasks > Materials > Informatics >
AutoQSAR

○ The AutoQSAR panel opens

Note: This panel is a single entry point for
building a model, viewing the model and making
predictions

Figure 3-3. Building a model in the AutoQSAR
panel.

3. For Choose task, ensure that Build
model is selected

4. In the Build model section of the panel,
next to Use structures from, choose
Project Table (selected entries)

5. Set the Property to be fit to
r_user_Experimental_E(S1T1)

○ These are the experimental ΔEST

values
6. Maintain Property type as Numerical
7. Input 90% for the Random training set

○ This is the percentage of data to
set aside between train and test
sets, where 90% of the data is
used to train the model and 10% of

https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/autoqsar/autoqsar_help/autoqsar.html
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/autoqsar/autoqsar_help/autoqsar.html


the data is used to test the model
○ With this relatively small data set,

the 90:10 split ensures that there is
significantly more data in the
training set than the test set, but
still enough data in the test set to
assess model performance

8. Click Advanced Options

Figure 3-4. AutoQSAR - Advanced Options.

9. Maintain 50 for the Number of models to
build for each model type

10.Change the Maximum allowed correlation
between any pair of individual variables to
0.90

○ A higher correlation threshold
allows AutoQSAR to use
descriptors that are linearly
correlated with each other, which
may obtain better results

Note: Using the Advanced Options panel, we
can select and modify the types of descriptors
that will be used to build the model. The default
descriptors and fingerprints are for molecular
systems only. If interested in using your own
descriptors, you can:

● Check Other properties from… Click
Structures to choose descriptors from
the Project Table. You can uncheck
Binary fingerprints and Numeric
descriptors if only custom numeric
descriptors should be used. Or,

● Read a list of the properties from a plain
text file by locating the file location from
File…. Each property name must be
written on each line, and the name must
be exactly as it appears in the structure
source

10.Click Save to close the Advanced Options
panel



Figure 3-5. The Job Settings panel.

11.Change the Job name to
qsar_build_TADF

12.Adjust the job settings ( ) as needed
○ This job requires a CPU host. The

job can be completed in about 20
minutes on a 12 CPU host

13. If you would like to run the job, click Run.
Otherwise, provided files and instructions
to use them are available in Section 4

14.Close the AutoQSAR panel

Note: AutoQSAR models can also be built from
the command line. Visit the AutoQSAR utility to
view all the available options.

4. Analyzing a QSPR Model for TADF Singlet-Triplet Energy
Splitting
In this section, we analyze the models that were built in the previous section for the ΔEST of the 230
TADF molecules again using the AutoQSAR panel.

Figure 4-1. Viewing the output models.

If you ran the job, when the job is complete, a
banner will appear indicating “Your job
qsar_build_TADF has completed” but no new
entries will be imported into the entry list.
Whether or not you ran the job, you can
proceed:

1. Return to Tasks > Materials >
Informatics > AutoQSAR

○ The AutoQSAR panel opens
2. For Choose task, switch to View model

and make prediction
3. For File name, click on Browse

○ A panel to select the model set file
opens

4. Select the qsar_build_TADF.qzip file
either from the provided files
(Section_04 > qsar_build_TADF >

https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/utilities/program_utility_usage/autoqsar.html
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/autoqsar/autoqsar_help/autoqsar.html
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/autoqsar/autoqsar_help/autoqsar.html


qsar_build_TADF.qzip) or from your job
directory and click Open

○ The models are imported into the
panel

5. In the Model Report section, click the +
button

○ The Model Report section of the
panel shows the ranking score and
Q2 value (the R2 for the test set) for
the best models

Note: Use the Show More/Show Less button to
view additional data columns in the Model
Report section of the panel

For more detail about how the parameters are
calculated, please visit the help documentation.

Figure 4-2. Choosing the top model and viewing
the Report Details.

6. Click to Highlight the best model (the
first row by default), which has Model
Code kpls_desc_44

○ The naming indicates that this is a
QSPR model that was generated
by KPLS fitting with 2D descriptors
using the 44th random split of the
learning set

7. Click the Report Details button

https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/autoqsar/autoqsar_help/autoqsar.html


Figure 4-3. Report Details.

A panel opens with a report containing details of
the selected KPLS model with the respective
experimental and predicted ΔEST values.

8. Click the Scatter Plot button

Figure 4-4. Parity plot showing predicted versus
observed ΔEST for the KPLS QSPR model.

A parity plot of the KPLS QSPR model
performance is displayed. An ideal model would
have train (blue dots) and test (red dots) set
points lie along the red y=x line, indicating that
the predictions match the observables.

9. Close the Scatter Plot panel
10.Close the Report Details panel



5. Visualizing and Analyzing KPLS Models
Interpretability of structure/activity for molecules is highly desirable for any QSPR model. Here we will
visualize atomic level contributions to the machine learning model.

Figure 5-1. Visualizing the model.

1. Return to the AutoQSAR panel and Click
to Highlight the kpls_molprint2D_24
Model Code

○ Fingerprint-based models, such as
MOLPRINT2D, allow for
visualization of atomic
contributions

2. Click Visualize Model
○ The 2D Viewer panel opens

Figure 5-2. 2D Viewer with contribution coloring.

For each structure, each atom that contributed to
a fingerprint used in building the model is
marked with a colored disk that represents the
value of the contribution to the property due to
that atom. The disks are blue (reduced ΔEST) for
negative values and red (increased ΔEST) for
positive values. The color saturation indicates
the magnitude of the contribution. Atoms that did
not appear in any fingerprint are not marked with
a disk.



Figure 5-3. Visualizing individual molecules.

We can visualize the atomic contributions for
each molecule in further detail

3. In the Change view dropdown, choose
Single Structure

○ Molecules are displayed
individually in the 2D viewer

4. Navigate between entries by clicking the
right and left arrows

In addition to the coloring, the experimental and
predicted values are shown below each frame.

Note: Use the More actions dropdown for other
navigational options and to generate a report

Note: Select Link 2D Selection and Inclusion
from the Change view dropdown to select the
viewed molecule in the entry list and include it in
the workspace respectively to interact with MS
Maestro from the 2D Viewer panel.

5. Close the 2D Viewer



6. Using the Model to Make Predictions
In this final section, we will predict ΔEST for 14 TADFs whose ΔEST values are unseen by our QSPR
model, but for which we know the experimental ΔEST values for comparison.

Figure 6-1. Selecting the test data set.

1. Go to File > Import Structures
2. Navigate to where you downloaded the

provided tutorial files, choose
Section_06 > TADF_test_set.mae and
click Open

○ A new entry group is added to the
entry list containing 14 entries

The 14 TADFs comprising the test set have
experimental ΔEST values also in the range of
0.0-1.1. If you are interested, you can view these

values in the Project Table ( )

3. Select the entire  test_set (14) group in
the entry list and return to the AutoQSAR
panel

Figure 6-2. Making predictions.

4. Ensure that Choose task is still set to
View model and make prediction

5. Ensure that the File name still points to
qsar_build_TADF.qzip

6. In the Make Prediction section, ensure
that Use structures from is set to Project
Table (selected entries)

7. Ensure that Model to test is set to All
models (consensus prediction)

○ Consensus prediction averages
the results of the retained models,
which can often increase the
accuracy of the predictions

○ It does not matter which row is
highlighted when performing
consensus predictions

8. For AutoQSAR Prediction, input pred_dE
9. Change the Job name to

qsar_test_predict_dE



10.Adjust the job settings ( ) as needed
○ This job requires a CPU host. The

job can be completed in about 2
minutes on a 12 CPU host

11.Click Run

Figure 6-3. The predicted values in the Project
Table.

When the job is complete, a new entry group is
added to the entry list entitled
qsar_test_predict_dE-out1 (14) containing the
same fourteen structures. These structures now
have the predicted ΔEST values associated with
them.

12.Close the AutoQSAR panel
13.Select the qsar_test_predict_dE-out1

(14) entry group from the entry list

14.Open the Project Table ( )
○ You can view predicted ΔEST

values along with the standard
deviations, domain score and
domain alert values at the end of
the table

To compare these values to the known values
we will draw a scatter plot.

15.Click the Manage Plots ( ) button

Figure 6-4. A scatter plot of the predicted data
versus the known values for the test set.

16.Click New Scatter Plot
17.For X-Axis select Experimental E(S1T1)

○ These are the experimental values
of the property

18.For Y-Axis select Pred pred dE
○ These are the ML predicted values

19.Check Best fit line
○ A regression line and equation is

added

Feel free to stylize the graph as you wish, and to
save an image if you wish.

The best fit line between predicted and actual values shows a reasonable R2 of 0.89 (an ideal



model would have an R2 of 1.00). The results suggest that the ML model derived from the
AutoQSAR panel could generalize to unseen TADF molecules. Furthermore, this workflow
highlights the computational efficiency achieved when using ML approaches as compared to other
computational (e.g. ab initio calculations) or experimental approaches. While this tutorial uses a
relatively small dataset, one could envision a larger training set would further improve prediction
accuracy.

7. Conclusion and References
In this tutorial, we learned how to use AutoQSAR to generate accurate QSPR models for the property
predictions of OLED materials. We further showed how AutoQSAR can be used to visualize atomic
contributions to a particular property. Finally, we showed how AutoQSAR could be used to predict
properties for new, unseen structures. Altogether, AutoQSAR provides an automated way of
generating accurate machine learning models without in-depth expertise, which could be broadly
applied for distinct classes of materials.

For further learning:

For introductory content, focused on navigating the Schrödinger Materials Science
interface, an Introduction to Materials Science Maestro tutorial is available. Please visit
the materials science training website for access to 50+ tutorials. For scientific inquiries or
technical troubleshooting, submit a ticket to our Technical Support Scientists at
help@schrodinger.com.

For self-paced, asynchronous, online courses in Materials Science modeling, including
access to Schrödinger software, please visit the Schrödinger Online Learning portal on
our website.

For some related practice, proceed to explore other relevant tutorials:

● Polymer Descriptors for Machine Learning
● Periodic Descriptors for Inorganic Solids
● Machine Learning for Ionic Conductivity
● Optoelectronics Active Learning
● Cheminformatics Machine Learning for Homogeneous Catalysis
● Machine Learning for Sweetness
● Machine Learning Property Prediction

For further reading:

● AutoQSAR help documentation

https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/intro_maestro_materialsscience/intro_maestro_materialsscience.htm
https://www.schrodinger.com/learn/training/materials-science
mailto:help@schrodinger.com
https://www.schrodinger.com/learn/training/molecular-modeling-materials-science-applications-page
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/polymer_descriptors/polymer_descriptors.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/periodic_descriptors_inorganic/periodic_descriptors_inorganic.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/ml_ionic_conductivity/ml_ionic_conductivity.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/opto_al/opto_al.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/catalysis_ml/catalysis_ml.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/sweetness_ml/sweetness_ml.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/ml_property_prediction/ml_property_prediction.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/autoqsar/autoqsar_help/autoqsar.html


● Design of Organic Electronic Materials With a Goal-Directed Generative Model
Powered by Deep Neural Networks and High-Throughput Molecular Simulations.
DOI:10.3389/fchem.2021.800370

● Active Learning Accelerates Design and Optimization of Hole-Transporting
Materials for Organic Electronics. DOI:10.3389/fchem.2021.800371

● Accelerated design and optimization of OLED materials via active learning.
DOI:10.1117/12.2598140

● DeepAutoQSAR Hardware Benchmark (Schrödinger white paper)

8. Glossary of Terms
Entry List - a simplified view of the Project Table that allows you to perform basic operations such as
selection and inclusion

Included - the entry is represented in the Workspace, the circle in the In column is blue

Project Table - displays the contents of a project and is also an interface for performing operations on
selected entries, viewing properties, and organizing structures and data

Recent actions - This is a list of your recent actions, which you can use to reopen a panel, displayed
below the Browse row. (Right-click to delete.)

Scratch Project - a temporary project in which work is not saved, closing a scratch project removes all
current work and begins a new scratch project

Selected - (1) the atoms are chosen in the Workspace. These atoms are referred to as "the selection"
or "the atom selection". Workspace operations are performed on the selected atoms. (2) The entry is
chosen in the Entry List (and Project Table) and the row for the entry is highlighted. Project operations
are performed on all selected entries

Working Directory - the location where files are saved

Workspace - the 3D display area in the center of the main window, where molecular structures are
displayed

https://www.frontiersin.org/articles/10.3389/fchem.2021.800370/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.800371/full
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11808/118080S/Accelerated-design-and-optimization-of-novel-OLED-materials-via-active/10.1117/12.2598140.short?SSO=1
https://www.schrodinger.com/science-articles/deepautoqsar-hardware-benchmark

