Machine Learning for Ionic Conductivity

Machine Learning for Ionic Conductivity

Topics: Energy Capture & Storage, Informatics and Team Collaboration

Methodology: Machine Learning

Products Used: MS Maestro, AutoQSAR, MS Informatics

This tutorial is written for use with a 3-button mouse with a scroll wheel.

Words found in the Glossary of Terms are shown like this: Workspace

Abstract:

In this tutorial, we will learn how to develop machine learning models to predict the experimental ionic conductivity of ionic liquids.

Tutorial Content

- 1. Introduction
- 2. Creating Projects and Importing Structures
- 3. Building Machine Learning Models Using AutoQSAR
- 4. Viewing the Machine Learning Models
- 5. Predicting Ionic Conductivity for an Unseen Test Set
- 6. Conclusion and References
- 7. Glossary of Terms

1. Introduction

Quantitative Structure-Activity Relationships (QSAR) are useful modeling tools to efficiently predict material properties for a wide-range of molecules. Schrödinger's AutoQSAR tools for generating machine learning models are easy to use, facilitating automated generation of accurate QSAR models. For practice, tutorials are available using the <u>Materials Science (MS) Maestro</u> suite to predict properties of small molecules, polymers, and periodic systems: <u>Machine Learning for Materials</u> <u>Science, Polymer Descriptors for Machine Learning, Cheminformatics Machine Learning for Homogeneous Catalysis</u> and <u>Periodic Descriptors for Inorganic Solids</u>.

The current generation of Li-ion batteries use carbonate-based electrolytes mixed with salts, such as lithium hexafluorophosphate, LiPF₆, which are highly volatile and flammable. To address safety concerns arising from hazardous electrolytes, one possible solution is to replace the electrolyte with an ionic liquid (IL). Ionic liquids have good electrochemical and thermal stability, which could result in a safer battery; however, they suffer from low-to-medium ionic conductivity, which dictates how fast a battery can charge or discharge. Significant efforts have been focused on identifying ILs that have high ionic conductivities while maintaining the stability gained from using these electrolytes. In this tutorial, we will use the <u>AutoQSAR</u> panel in <u>MS Maestro</u> and an IL dataset from the NIST IL Thermo Database to create a machine learning model to predict ionic conductivity on a set of ILs at a fixed temperature of ~298.15 Kelvin (see **References**). A total of ~400 ILs are used to train and evaluate the machine learning models.

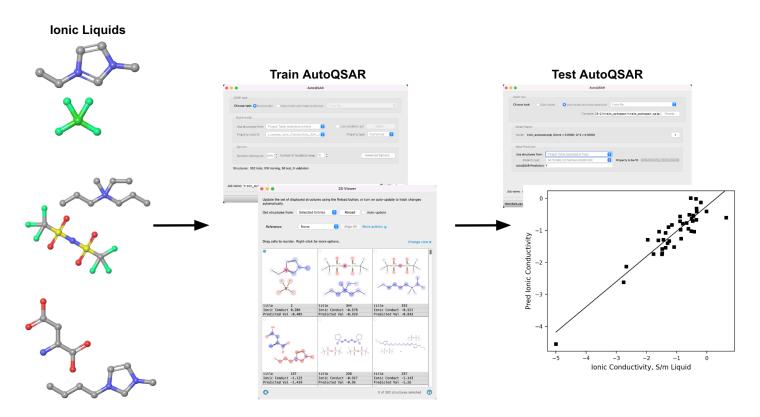
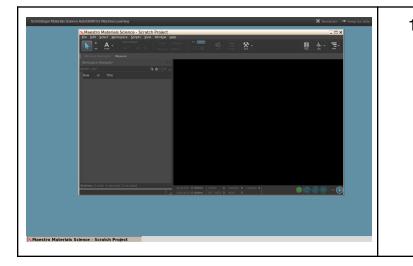
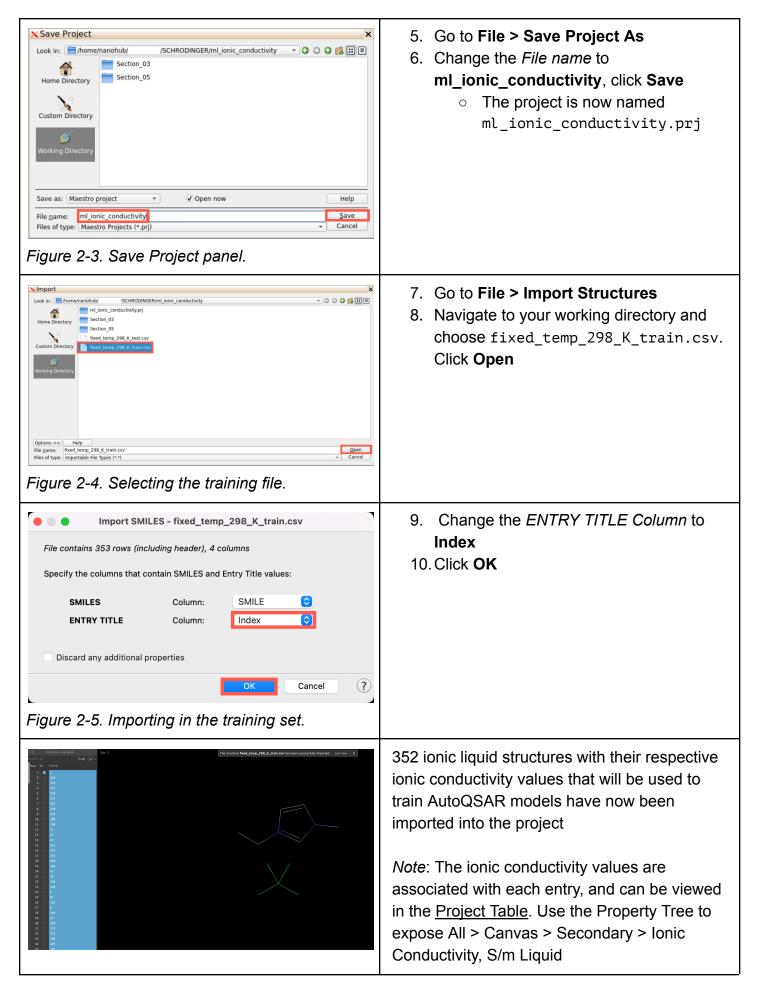



Figure 1. Tutorial workflow showing the 3D structures of ionic liquids in MS Maestro, which are used to train and test machine learning models with the AutoQSAR panel.

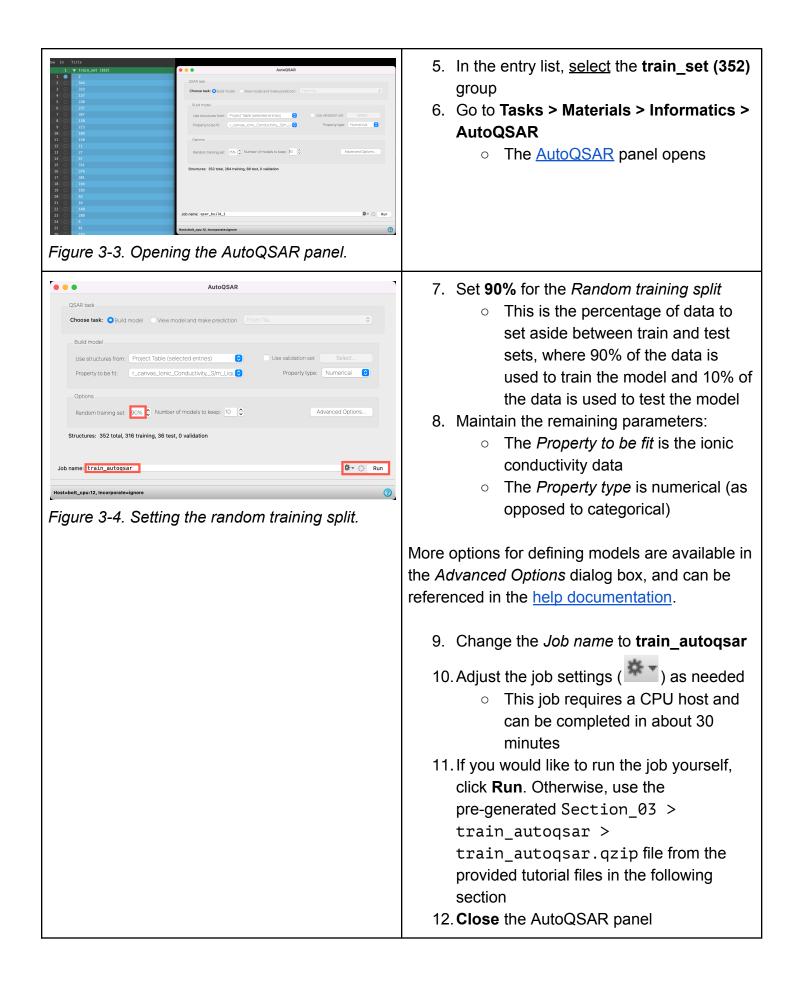
2. Creating Projects and Importing Structures


At the start of the session, change the file path to your chosen <u>Working Directory</u> in MS Maestro to make file navigation easier. Each session in MS Maestro begins with a default <u>Scratch Project</u>, which is not saved. A MS Maestro project stores all your data and has a .prj extension. A project may contain numerous entries corresponding to imported structures, as well as the output of modeling-related tasks. Once a project is saved, the project is automatically saved each time a change is made.

Structures can be built in MS Maestro or can be imported using **File > Import Structures** (or drag-and-dropped), and are added to the <u>Entry List</u> and <u>Project Table</u>. The <u>Entry List</u> is located to the left of the <u>Workspace</u>. The <u>Project Table</u> can be accessed by **Ctrl+T (Cmd+T)** or **Window > Project Table** if you would like to see an expanded view of your project data.

- 1. Launch the tool in the nanoHUB interface
 - Launching the tool will automatically open up MS Maestro

➤ Maestro Materials Science - Scrate File Edit Select Workspace Scripts Main New Project Ctrl+N Open Project Ctrl+O Open Recent Project Ctrl+Shift+S		Go to File > Change Working Directory
<u>C</u> lose Project Ctrl+W		
Import Structures Ctrl+I Import Recent Structures Import From Merge Project Get PDB	•	
E <u>x</u> port Structures Export to LiveDesign		
Change Working Directory Save <u>W</u> orkspace Changes		
<u>B</u> ack Up Project Restore <u>F</u> rom Backup		
S <u>a</u> ve Checkpoint <u>R</u> evert to Checkpoint		
Quit Ctrl+Q		
Figure 2-1. Change Working Directory option		
	X (A) III Choose Cancel	 3. Navigate to your <u>Home Directory</u> then the <u>SCHRODINGER</u> directory 4. Select <i>ml_ionic_conductivity</i>, and click Choose All files needed to execute this tutorial are included in this directory

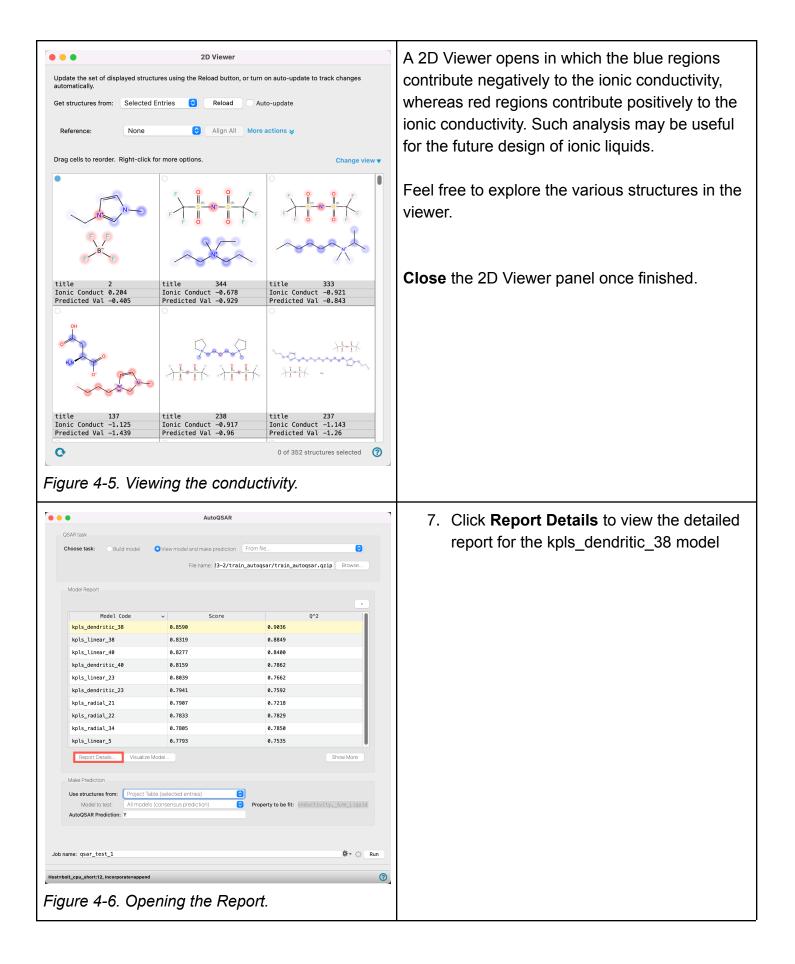


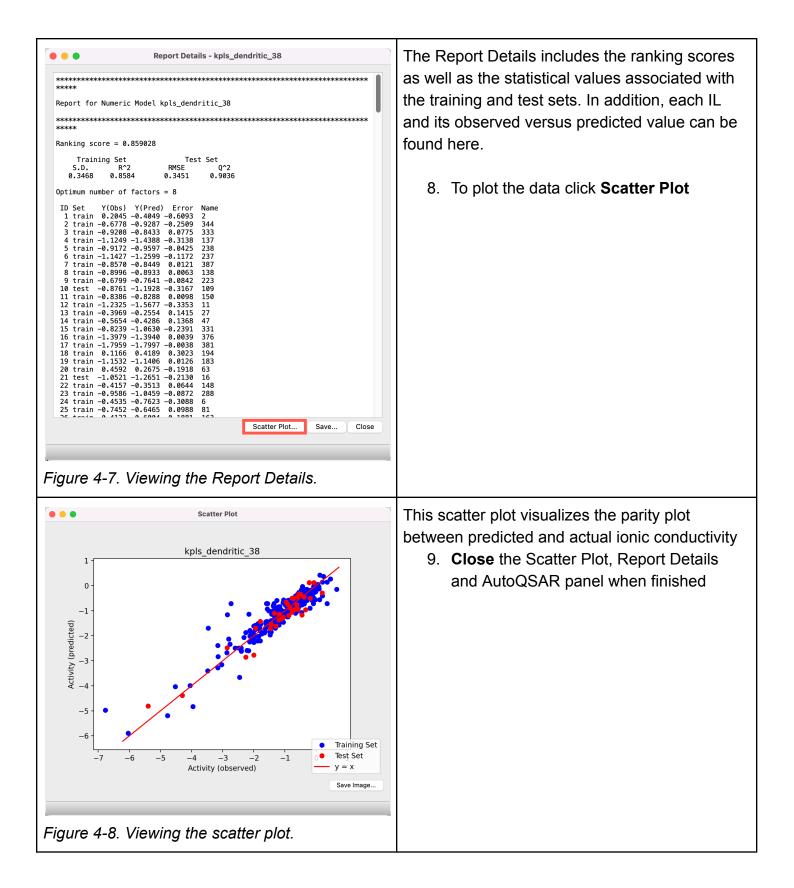
Flgure 2-6. The ionic conductivity data set has	
now been imported.	

3. Building Machine Learning Models Using AutoQSAR

In this section, we will use the <u>AutoQSAR</u> panel to build machine learning models on ionic conductivity for a group of ionic liquids.

				4 In the entry list called all the entries and	
Row In	Title	Exclude		 In the entry list, <u>select</u> all the entries and right eliek 	
1	2	Fix in Workspace		right click ○ Holding the shift key will allow you	
2 (344			to select all entries	
3 (333	Lock (set non-editable)		2. Click Group to create a single entry	
4	137	Split	>	group for the training set	
5 (238	Duplicate	>	group for the training set	
6 (237	Merge	-		
7 (387	Delete			
8 (138				
9 (223	Add to Shortcut Rows			
10 (109	Color Row			
11 (Set Stars	>		
12		Group			
13 (Move to	>		
14		Ungroup Groups			
15					
16 (17 (Set Property			
18		Group by Entry Property			
19		Copy / Paste Properties	>		
20		Style	>		
21	16	Export	Ś		
22	1/19		/		
Figure 3-1	1. Grouping	g the training set.			
	Group Sele	ected Entries & Groups		3. For New group title input train_set	
N				4. Click Create Group to close the panel	
New group ti	itie:				
train_set					
Location of n	new group:				
OAt top leve	el:	First selected row	()		
In parent g	O In parent group:				
		Create Group Cancel			
		Cancel			
Figure 3-2	2. Naming t	the new group.			



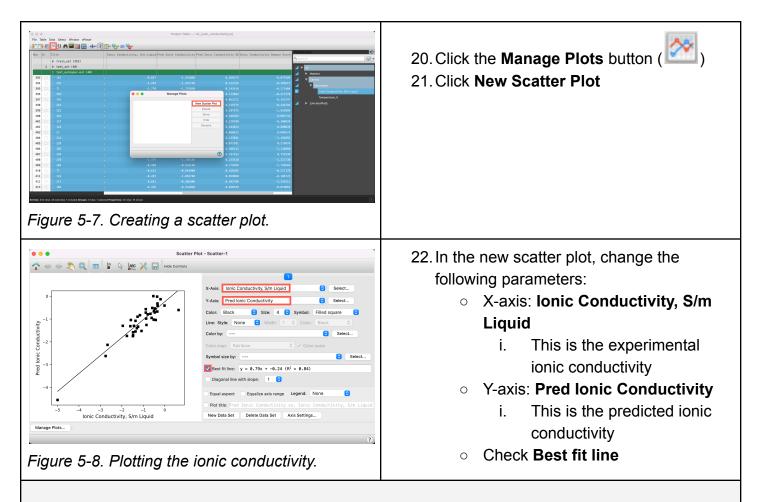

4. Viewing the Machine Learning Models

Using the <u>AutoQSAR</u> panel, we can analyze the generated models.

AutoQSAR CGAR task Choose task: Build model Videl Report Model Report Immodel Selected entries) Property to be fit: AutoQSAR Prediction: Immodel Selected entries) Property to be fit: RutoQSAR Prediction: Figure 4-11. Opening the AutoQSAR panel.	 When the job is complete, note that no new entry group is added to the <u>entry list</u>. The output can be analyzed and used for predictions in the AutoQSAR panel: 1. Return to Tasks > Materials > Informatics > AutoQSAR The <u>AutoQSAR</u> panel opens 2. For <i>Choose task</i>, switch to View model and make prediction 3. To choose the <i>Model file</i> click Browse
Select a Model Set File Look in: /home/nanohub/ /SCHty/Section_03/train_autoqsar Home train_autoqsar.qz/p Working Direc Working Direc File pame: train_autoqsar.qz/p File sof type: Model set input (*.qz/p) Figure 4-2. Loading the .qz/p file.	 4. If using the provided file, navigate to the Section_03 > train_autoqsar > train_autoqsar.qzip file and click Open The panel will parse the .qzip file and the Model Summary section will be populated
AutoQSAR QSAR task QSAR task QSAR task Choose task: Build model Vew model and make prediction File name: 23-2/train_autoqsar.qzip Model Report Model to test: AutoQSAR Model to test: All models (selected entries) Nodel to test: All models (consensus prediction) Property to be fit: inductivity, S/m Liquid Job name: gsar_test_1 Heat-bolt_cpu_bhort:12, incorporate-append ? Figure 4-3. Expanding the model report.	 5. In the Model Report section, click the + button The Model Report section of the panel shows the ranking score and Q² value (the R² for the test set) for the best models Several hundred 2D descriptors (molecular, topological, and feature counts) are automatically generated during the model building process and the top 10 models are retained. The models retained have performed well on the test set and have highly consistent training and test set statistics which results in a

	higher ranking score. The report gives the score and Q ² value of the best-ranked models from the set of models generated in the run.
AutoQSAR QSAR task Choose task: Build model Wodel Report Model Code Model Code Volume Score 0°2 kpls_dendritic_38 0.8319 0.8319 0.83277 0.8400 kpls_linear_38 0.8277 0.8640 kpls_dendritic_23 0.7962 kpls_inear_23 0.8339 0.7662 kpls_radial_21 0.7907 0.7218 kpls_radial_21 0.7805 kpls_radial_34 0.7805 kpls_linear_5 0.77793	The informative descriptors and fingerprints are used to build a large number of numeric or categorical models, where a given model is trained against a particular random subset of the input structures. The model is applied to the remaining input structures, and the accuracy of those predictions is used to arrive at an optimal number of factors for KPLS, PCR, and PLS models, and to assign an overall ranking score to the model.
Report Details Visualize Model. Show More Make Prediction	In this case, the highest scoring models are all KPLS (Kernel partial least squares regression). For KPLS models, we can visualize atomic contributions to help understand the structural relationship to the model.
(7) Figure 4-4. Visualizing the models.	For each structure, each atom that contributed to a fingerprint used in building the model can be marked with a colored disk that represents the value of the contribution to the property due to that atom. The disks are blue for negative values and red for positive values. The color saturation indicates the magnitude of the contribution. Atoms that did not appear in any fingerprint are not marked with a disk.
	6. Click Visualize Model

5. Predicting Ionic Conductivity for an Unseen Test Set


In this section, we will use the <u>AutoQSAR</u> panel to predict ionic conductivity on an unseen test data set of ionic liquids that were not used to train and evaluate AutoQSAR models.

Import * Look in: * Import *	 Let's import the test data set: 1. Go to File > Import Structures 2. Navigate to where you downloaded the tutorial files (presumably your working directory) and choose fixed_temp_298_K_test.csv. Click Open
Import SMILES - fixed_temp_298_K_test.csv File contains 41 rows (including header), 4 columns Specify the columns that contain SMILES and Entry Title values: SMILES Column: SMILES Column: SMILE Column: Index Column: Discard any additional properties OK Cancel Figure 5-2. Importing in the test set.	 Change the ENTRY TITLE Column to Index Click OK

353 🔵 147			A test set of 40 ionic liquid structures and ionic
354 🔿 292			conductivity values have now been imported
355 🔿 71	Include		into the project. These structures were not used
356 393	Fix in Workspace		in the training and evaluation of the AutoQSAR
357 O 345	Lock (set non-editable)		models.
358 262			5. In the entry list, select all the newly
359 322	Split	>	imported test set entries and right-click
360 342	Duplicate	>	
361 127 362 110	Merge		6. Click Group to group the test set
363 0 57	Delete		
364 214	Add to Shortcut Rows		
365 239	Color Row		
366 105	Set Stars	>	
367 🔿 299		1	
368 🔿 370	Group		
369 O 286	Move to	>	
370 🔿 77	Ungroup Groups		
371 🔵 116	Set Property		
372 O 317	Group by Entry Property		
373 168	Copy / Paste Properties	>	
374 0 135			
375 0 62	Style	>	
376 401 377 321	Export	>	
377 O 321 378 O 38			
379 0 355			
380 260			
Figure 5-3. Grouping the	e test set.		
			7 For New group title input test est
Group Selected	Entries & Groups		7. For <i>New group title</i> input test_set
New group title:			8. Click Create Group to close the panel
And the second			
test_set			
Location of new group:			
• At top level:	First selected row	•	
In parent group:		٥	
Crea	te Group Cancel		
	ouncer		
Figure 5-4. Naming the r	new group.		
	U 1		

	 Score 0.8590 0.8319 0.8277 0.6159 0.8039 0.7941 0.7967 0.7833 0.7885 0.793 	20 From file Train_autoqsar/train_autoqsar.qzip Browse 0.9936 0.9936 0.8849 0.8400 0.7662 0.7662 0.7662 0.7662 0.7662 0.7662 0.7653 0.7859 0.7859 0.7859 0.7535 Show More Property to be fit: Conductivity, 5/= Liquit 	 9. In the entry list, <u>select</u> the test_set group 10. Go to Tasks > Materials > Informatics > AutoQSAR The AutoQSAR panel opens In addition to using the AutoQSAR panel to build and evaluate our models, we can also use this panel to make predictions 11. For Choose task select View model and make prediction 12. Ensure that the train_autoqsar.qzip file is still selected
Job name: gsar_test_1 Hostsbolt_cpu_short:12, Incorporatesappent Figure 5-3. Chu QSAR task Choose task: Build model	OOSING the C		13. Change the <i>AutoQSAR Prediction</i> to lonic Conductivity
Make Prediction Use structures from: Project		- 0°2 0.9936 0.8849 0.849 0.7862 0.7662 0.7592 0.7218 0.7829 0.7850 0.7535 Show More Property to be fit: tivity, 5/# Liqui	can be completed in about 10 minutes

	17. Close the AutoQSAR panel
Figure 5-5. Viewing the output of the prediction task.	When the job is complete or after importing, a new entry group is added to the <u>entry list</u> titled test_autoqsar-out (40) containing the same 40 entries, but now with predicted ionic conductivity properties.
	The resulting data can be analyzed in the Project Table 18. Open the Project Table (19. Use the Property Tree () to include the <i>lonic Conductivity score</i> (Check the properties of interest under All > Canvas > Secondary > lonic Conductivity, S/m Liquid) The Project Table should show "lonic Conductivity" and predictions by AutoQSAR ("Pred lonic Conductivity"). Approximate prediction uncertainties and domain scores from AutoQSAR are also shown as "Pred lonic Conductivity Domain Score", respectively (high magnitudes of domain scores tell you whether a molecule is extremely distinct from the original training set).

The best fit line between predicted and actual values shows a reasonable R^2 of 0.84 (an ideal model would have an R^2 of 1.00). The results suggest that the ML model derived could be used to predict ionic conductivity values for ionic liquids. Furthermore, this workflow highlights the computational efficiency achieved when using ML approaches as compared to other computational (*e.g. ab initio* calculations) or experimental approaches. While this tutorial uses a relatively small dataset, one could envision a larger training set would further improve prediction accuracy.

6. Conclusion and References

In this tutorial, we learned how to use the <u>AutoQSAR panel</u> to build machine learning models to predict the ionic conductivity for ionic liquids. These machine learning models enable fast screening of ionic liquids for high ionic conductivities, which could help build safer and more efficient batteries.

For further learning:

For introductory content, focused on navigating the Schrödinger Materials Science interface, an <u>Introduction to Maestro for Materials Science</u> tutorial is available. Please visit the <u>materials science training website</u> for access to 50+ tutorials. For scientific inquiries or technical troubleshooting, submit a ticket to our Technical Support Scientists at <u>help@schrodinger.com</u>.

For self-paced, asynchronous, online courses in Materials Science modeling, including access to Schrödinger software, please visit the <u>Schrödinger Online Learning</u> portal on our website.

For some related practice, proceed to explore other relevant tutorials:

- For more machine learning practice with MS Maestro:
 - Machine Learning for Materials Science
 - Polymer Descriptors for Machine Learning
 - Periodic Descriptors for Inorganic Solids
 - Machine Learning Property Prediction
 - Optoelectronics Active Learning
 - Machine Learning for Sweetness
 - Cheminformatics Machine Learning for Homogeneous Catalysis
- For general battery-related workflows:
 - Liquid Electrolytes Properties: Part 1
 - Liquid Electrolyte Properties: Part 2
 - Calculating Voltage Curves of Spinel Intercalation Compounds
 - Polymer Electrolyte Analysis
 - Diffusion

For further reading:

- The dataset was extracted from the supplementary information of: Conductivity prediction model for ionic liquids using machine learning. <u>DOI:</u> <u>10.1063/5.0089568</u>
- The original dataset is from: NIST IL Thermo Database
- Developing machine learning models for ionic conductivity of imidazolium-based ionic liquids. DOI: 10.1016/j.fluid.2021.113208
- A generalized machine learning model for predicting ionic conductivity of ionic liquids. Molecular Systems Design and Engineering. <u>DOI: 10.1039/D2ME00046F</u>
- DeepAutoQSAR: Scalable, Intuitive, Deep-learning QSAR models for Big Data Applications (Schrödinger <u>white paper</u>)
- DeepAutoQSAR Hardware Benchmark (Schrödinger <u>white paper</u>)
- See the help documentation for more information on the AutoQSAR panel

7. Glossary of Terms

<u>Entry List</u> - a simplified view of the Project Table that allows you to perform basic operations such as selection and inclusion

Included - the entry is represented in the Workspace, the circle in the In column is blue

<u>Project Table</u> - displays the contents of a project and is also an interface for performing operations on selected entries, viewing properties, and organizing structures and data

<u>Recent actions</u> - This is a list of your recent actions, which you can use to reopen a panel, displayed below the Browse row. (Right-click to delete.)

<u>Scratch Project</u> - a temporary project in which work is not saved, closing a scratch project removes all current work and begins a new scratch project

<u>Selected</u> - (1) the atoms are chosen in the Workspace. These atoms are referred to as "the selection" or "the atom selection". Workspace operations are performed on the selected atoms. (2) The entry is chosen in the Entry List (and Project Table) and the row for the entry is highlighted. Project operations are performed on all selected entries

Working Directory - the location where files are saved

<u>Workspace</u> - the 3D display area in the center of the main window, where molecular structures are displayed