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1. Introduction
Discovering new catalysts for improved reactivity or selectivity is challenging because of the large
number of laborious experiments or stepwise quantum mechanical calculations necessary to explore
the catalyst design space. Alternative to these approaches, employing machine learning (ML) for
catalyst discovery and design is a promising avenue to rapidly screen catalysts for enhanced
properties (see References for recent literature examples).

A useful ML tool is Quantitative Structure-Activity Relationships (QSAR), which can efficiently predict
material properties for a wide-range of molecules. Schrödinger’s AutoQSAR tools automates the
generation of accurate QSAR models, which allows users to leverage machine learning tools without
extensive background knowledge. For a complete description of how AutoQSAR automatically tests
various models and makes selections, visit the Machine Learning for Materials Science tutorial.

DeepAutoQSAR integrates graph convolutional neural networks into the traditional AutoQSAR
workflow, where DeepAutoQSAR treats a molecule as a graph consisting of nodes as atoms and
edges as bonds. DeepAutoQSAR has been found to outperform traditional AutoQSAR for ‘large’
datasets (>5000 molecules) and perform similarly to traditional AutoQSAR for ‘small’ datasets (<5000
molecules) (see comparison here). A distinct advantage of DeepAutoQSAR is its ability to identify
hidden patterns relevant to the property of interest through a series of convolution operations. You
can read more about DeepAutoQSAR on our webpage as well as the references therein.

In this tutorial, we will use the DeepAutoQSAR panel in MS Maestro to create a machine learning
model to predict rate constants for a radical reaction (reductive dehalogenation of aryl halide)
catalyzed by a series of organometallic iridium complexes. The experimental data set is provided
from a recent publication from Mdluhi et al. (High-throughput Synthesis and Screening of Iridium (III)
Photocatalysts for the Fast and Chemoselective Dehalogenation of Aryl Bromides.
DOI:10.1021/acscatal.0c02247). This experimental dataset explores a series of ~1000
[Ir(C^N)2(N^N)]+ photocatalysts (octahedral iridium complexes with three, bidentate ligands) and
measures rate constants using high-throughput colorimetric monitoring.

Herein, we use a data set of 863 of the iridium complexes and the experimental rate constants to train
and evaluate machine learning models. The DeepAutoQSAR panel is used to generate a model to
predict rate constants by training on the structure of each Ir complex and the associated rate
constant. To test the generalizability of the model, rate constants are predicted for an unseen set of
50 complexes. The overall workflow is summarized in Figure 1.

https://www.schrodinger.com/science-articles/catalysis-and-chemical-reactivity
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/ml_materialsscience/ml_materialsscience.htm
https://www.schrodinger.com/science-articles/deepautoqsar
https://www.schrodinger.com/science-articles/deepautoqsar
https://pubs.acs.org/doi/10.1021/acscatal.0c02247


Figure 1. Tutorial workflow showing the input Ir complexes, DeepAutoQSAR panel used to build
machine learning models, and the output parity plot after model training. After training the model,
an unseen test set was used to evaluate model performance. The workflow subsequently shows the
Ir complexes, output predictions, and parity plot for the test set.

Note that while this dataset is small enough that AutoQSAR could also be used, this tutorial focuses
on using DeepAutoQSAR, which produces slightly more accurate predictions than traditional
AutoQSAR.

For additional practice with the DeepAutoQSAR workflow, but with a categorical classification task,
see the Machine Learning for Sweetness tutorial.

For additional practice with AutoQSAR, tutorials are available using the Materials Science Maestro
suite to predict properties of small molecules, polymers and periodic systems: Machine Learning for
Materials Science, Polymer Descriptors for Machine Learning and Periodic Descriptors for Inorganic
Solids.

To learn about using pre-built machine learning models to predict volatility of organometallic
complexes, please refer to the Machine Learning Property Prediction tutorial.

For alternative computational approaches for catalyst discovery, namely elucidating reaction
mechanisms via various workflows, visit the Locating Transition States: Part 1 and Part 2 tutorials, as
well as the Reaction Workflow for Polyethylene Insertion tutorial.

https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/sweetness_ml/sweetness_ml.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/ml_materialsscience/ml_materialsscience.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/ml_materialsscience/ml_materialsscience.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/polymer_descriptors/polymer_descriptors.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/periodic_descriptors_inorganic/periodic_descriptors_inorganic.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/periodic_descriptors_inorganic/periodic_descriptors_inorganic.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/ml_property_prediction/ml_property_prediction.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/qm_transition_states/qm_transition_states.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/transition_states_plus/transition_states_plus.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/reaction_workflow/reaction_workflow.htm


2. Creating Projects and Importing Structures
At the start of the session, change the file path to your chosen Working Directory in MS Maestro to
make file navigation easier. Each session in MS Maestro begins with a default Scratch Project, which
is not saved. A MS Maestro project stores all your data and has a .prj extension. A project may
contain numerous entries corresponding to imported structures, as well as the output of
modeling-related tasks. Once a project is saved, the project is automatically saved each time a
change is made.

Structures can be built in MS Maestro or can be imported using File > Import Structures (or
drag-and-dropped), and are added to the Entry List and Project Table. The Entry List is located to the
left of the Workspace. The Project Table can be accessed by Ctrl+T (Cmd+T) orWindow > Project
Table if you would like to see an expanded view of your project data.

1. Launch the tool in the nanoHUB interface
○ Launching the tool will

automatically open up MS Maestro



Figure 2-1. Change Working Directory option.

2. Go to File > Change Working Directory

Figure 2-2. Selecting the Working Directory.

1. Navigate to your Home Directory then the
SCHRODINGER directory

2. Select catalysis_ml, and click Choose
○ All files needed to execute this

tutorial are included in this
directory



Figure 2-3. Save Project panel.

3. Go to File > Save Project As
4. Change the File name to

catalysis_ml_tutorial, click Save
○ The project is now named

catalysis_ml_tutorial.prj

Figure 2-4. Import the starting structures.

Let’s import the data set:

5. Go to File > Import Structures
6. Navigate to where you downloaded the

provided tutorial files (presumably in your
working directory) and choose
train.mae from the provided tutorial
files

7. Click Open

Figure 2-5. The entry list and a complex after
importing.

The entry list is updated to include the 863
entries. Feel free to stylize and visualize any of
the provided structures.

Note: The model complexes were prepared
using Materials Science Maestro structure
building capabilities (see the Organometallic
Complexes tutorial for relevant workflows).

https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/builders_organometallic/builders_organometallic.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/builders_organometallic/builders_organometallic.htm


Figure 2-6. Viewing the rate constants in the
Project Table.

Each entry has a rate constant associated with
it. These can be visualized in the Project Table (

). Use the Property Tree ( ) to add the
rate constant property (under All > Materials
Science > Secondary > rate constant)

3. Building a Machine Learning Model Using DeepAutoQSAR
In this section, we will use the DeepAutoQSAR panel to train a machine learning model for rate
constant prediction. For a complete description of how AutoQSAR automatically tests various models
and makes selections, visit the Machine Learning for Materials Science tutorial.

Figure 3-1. Choosing task and options.

1. Ensure that all 863 entries are selected
from the entry list (use Shift + Click or
click on the entry group header)

2. Go to Tasks > Browse All > Discovery
Informatics and QSAR >
DeepAutoQSAR

○ The DeepAutoQSAR panel opens
3. Ensure that Build model is checked
4. For Model type, choose Regression

○ Because the data is numerical and
continuous, we use the regression
Model type

5. Ensure that for Use structures from,
Project Table (863 selected entries) is
chosen

https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/deepautoqsar/deepautoqsar_help/deepautoqsar.html
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/ml_materialsscience/ml_materialsscience.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/deepautoqsar/deepautoqsar_help/deepautoqsar.html


Figure 3-2. Defining the training.

6. Change the Prediction property dropdown
to rate constant

7. Set 90% for the Random split
○ This is the percentage of data to

set aside between train and test
sets, where 90% of the data is
used to train the model and 10% of
the data is used to test the model

○ This is a relatively large data set.
The 90:10 split ensures that there
is significantly more data in the
training set than the test set, but
still enough data in the test set to
assess model performance

8. Set the Training time to 10 hours
○ For datasets with >800 inputs like

this one, a 10 hour training time is
sufficient to ensure the best
models are determined

Figure 3-3. Naming the job.

9. Change the Job name to
BuildTask_rate_constant

The job would run for 10 hours as prescribed.
The provided data is available for proceeding in
Section 4. You can proceed to Section 4 where
steps are provided for importing the
pre-computed models.

10.Close the DeepAutoQSAR panel (or
simply move it to the side of your window
– we will return to it in a moment)

4. Viewing the Machine Learning Model and Predicting
Using the DeepAutoQSAR panel, we can proceed to view the generated models, and use these to
make predictions on an unseen data set.

https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/deepautoqsar/deepautoqsar_help/deepautoqsar.html


Figure 4-1. Loading the .qzip file.

The output can be analyzed and used for
predictions back in the DeepAutoQSAR panel:

1. Return to Tasks > Browse All >
Discovery Informatics and QSAR >
DeepAutoQSAR

○ The DeepAutoQSAR panel opens
2. For Choose task, switch to Make

Predictions
3. To choose the Model file click Browse,

navigate to the Section_03 >
BuildTask_rate_constant >
BuildTask_rate_constant_model.q
zip file and click Open

○ The panel will parse the .qzip file
and the Model Summary section
will be populated

Figure 4-2. Viewing the Model Summary.

Begin by analyzing the Model Summary output.
The data presented is a summary of the
statistics of the model on the test set. We
observe that the DeepAutoQSAR achieves a
high R2 of ~0.90 (denoted as r2) and low
root-mean-squared error (rmse) of ~0.16 (an
ideal model would have R2of 1 and RMSE of 0).

4. Click View Full Report

The Report tab includes a raw copy of the JSON
output of DeepAutoQSAR. This report contains
information on the top four best-performing
model ensembles, including their metrics, the
classification method used (e.g. dNN, random
forest, etc.) and relevant model
meta-parameters.

For a complete description of how AutoQSAR
automatically tests various models and makes
selections, visit the Machine Learning for

https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/deepautoqsar/deepautoqsar_help/deepautoqsar.html
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/ml_materialsscience/ml_materialsscience.htm


Figure 4-3. Viewing the Report tab. Materials Science tutorial.

Figure 4-4. Viewing the parity plot.

5. Click on the Plot tab

For regression models such as this, the Plot tab
shows a parity plot.

6. Close the DeepAutoQSAR Report Viewer

Figure 4-5. Imported structures in the entry list.

Now, we will use the trained model to make
predictions on an unseen data set of iridium
complexes that were not in the training data.
These complexes have known rate constants
from the same experimental study, which we can
use to assess the quality of the model for
making predictions outside the training set.

7. Close the DeepAutoQSAR panel (or
simply move it to the side of your window
– we will return to it in a moment)

8. Go to File > Import Structures
9. Navigate to where you downloaded the

provided tutorial files (presumably in your
working directory), choose test.mae
and click Open

○ A new entry group is added to the
entry list titled test (50)

Figure 4-6. The DeepAutoQSAR panel with the

10.Select the entire test (50) group from the
entry list

○ Recall that select means to
highlight the group in the entry list

11. Return to the DeepAutoQSAR panel
12.Ensure that the panel reflects the

progress from the above steps: Make
Predictions is selected, the .qzip file is
loaded and the Model Summary is shown

https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/ml_materialsscience/ml_materialsscience.htm


prediction set selected. 13. In the Make Predictions section of the
panel, ensure that Project Table (50
selected entries) is chosen for Use
structures from

Figure 4-7. Naming and running the job.

14.For Output property name, maintain
PredictTask

○ This will be the name of the
predicted property in the project
table

15.Change the Job name to
PredictTask_test_set

Adjust the job settings ( ) as needed. This
job requires a Linux host. The job can be
completed in about 5 minutes, which is of course
many orders of magnitude faster than computing
the rate constants of 50 systems from first
principles. If you do not wish to run the job, feel
free to simply import Section_04 >
PredictTask_test_set >
PredictTask_test_set_output.maegz
from the provided tutorial files

16.Click Run
17.Close the DeepAutoQSAR panel

Figure 4-8. Viewing the output in the Project
Table and opening the plots

When the job is complete or after importing, a
new entry group is added to the entry list titled
PredictTask_test_set_output1 (50) containing
the same 50 entries, but now with predicted rate
constant property. The data can be analyzed in
the Project Table

18.Open the Project Table ( )

19.Use the Property Tree ( ) to include
the Predicted Task score and uncertainty
properties (Check the properties of
interest under All > Maestro > Predict
Task score/uncertainty)



We can see predicted scores for the various
molecules as well as uncertainty values.

To compare these values to the known values
we will draw a scatter plot.

20.Click the Manage Plots ( ) button

Figure 4-9. A scatter plot of the predicted data
versus the known values for the test set.

21.Click New Scatter Plot
22.For X-Axis select matsci_rate_constant

○ These are the actual values of the
target property

23.For Y-Axis select PredictTask score
○ These are the ML predicted values

24.Check Best fit line
○ A regression line and equation is

added

This scatter plot was generated from the values
in PredictTask_test_set_output.maegz.
If you performed this calculation your scatter plot
and best fit line will differ slightly.

This workflow highlights the computational efficiency achieved when using ML approaches as
compared to other computational (e.g. ab initio calculations) or experimental approaches. While this
tutorial uses a relatively small dataset, one could expect that a larger training set would further
improve prediction accuracy.

5. Conclusion and References
In this tutorial, we learned how to use the DeepAutoQSAR panel to build machine learning models to
predict experimentally determined rate constants for a series of iridium complexes. The
DeepAutoQSAR model can generalize to unseen data sets and generate fast predictions
(~seconds-minutes) as compared to ab initio or experimental measurements (~hours-days), enabling
the screening of catalysts for enhanced reaction rates. While this tutorial focuses on reaction rate
constants of iridium complexes, the workflow can be extended to other catalyst types and properties.

For further learning:

For introductory content, focused on navigating the Schrödinger Materials Science
interface, an Introduction to Materials Science Maestro tutorial is available. Please visit

https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/intro_maestro_materialsscience/intro_maestro_materialsscience.htm


the materials science training website for access to 50+ tutorials. For scientific inquiries or
technical troubleshooting, submit a ticket to our Technical Support Scientists at
help@schrodinger.com.

For self-paced, asynchronous, online courses in Materials Science modeling, including
access to Schrödinger software, please visit the Schrödinger Online Learning portal on
our website.

For some related practice, proceed to explore other relevant tutorials:

● For more machine learning:
○ Machine Learning for Materials Science
○ Polymer Descriptors for Machine Learning
○ Periodic Descriptors for Inorganic Solids
○ Optoelectronics Active Learning
○ Machine Learning for Sweetness
○ Machine Learning Property Prediction
○ Machine Learning for Ionic Conductivity

● For transition state searching with quantum mechanical methods in molecular or
periodic systems:

○ Locating Transition States: Part 1
○ Locating Transition States: Part 2
○ Reaction Workflow with Polyethylene Insertion

For further reading:

● Help documentation on DeepAutoQSAR
● High-throughput Synthesis and Screening of Iridium(III) Photocatalysts for the Fast

and Chemoselective Dehalogenation of Aryl Bromides.
DOI:10.1021/acscatal.0c02247

● DeepAutoQSAR: Scalable, Intuitive, Deep-learning QSAR models for Big Data
Applications (Schrödinger white paper)

● DeepAutoQSAR Hardware Benchmark (Schrödinger white paper)
● Design of Organic Electronic Materials With a Goal-Directed Generative Model

Powered by Deep Neural Networks and High-Throughput Molecular Simulations.
DOI:10.3389/fchem.2021.800370

● Active Learning Accelerates Design and Optimization of Hole-Transporting
Materials for Organic Electronics. DOI:10.3389/fchem.2021.800371

● Some recent publications applying machine learning methods in catalysis and
reactivity:

○ Machine Learning in Catalysis, From Proposal to Practicing.
DOI:10.1021/acsomega.9b03673

○ Accelerated dinuclear palladium catalyst identification through unsupervised
machine learning. DOI:10.1126/science.abj0999

https://www.schrodinger.com/learn/training/materials-science
mailto:help@schrodinger.com
https://www.schrodinger.com/learn/training/molecular-modeling-materials-science-applications-page
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/ml_materialsscience/ml_materialsscience.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/polymer_descriptors/polymer_descriptors.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/periodic_descriptors_inorganic/periodic_descriptors_inorganic.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/opto_al/opto_al.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/sweetness_ml/sweetness_ml.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/ml_property_prediction/ml_property_prediction.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/ml_ionic_conductivity/ml_ionic_conductivity.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/qm_transition_states/qm_transition_states.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/transition_states_plus/transition_states_plus.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/tutorials/reaction_workflow/reaction_workflow.htm
https://www.schrodinger.com/sites/default/files/s3/release/current/Documentation/html/deepautoqsar/deepautoqsar_help/deepautoqsar.html
https://pubs.acs.org/doi/10.1021/acscatal.0c02247
https://www.schrodinger.com/sites/default/files/autoqsar_deepchem_whitepaper_e-version.pdf
https://www.schrodinger.com/science-articles/deepautoqsar-hardware-benchmark
https://www.frontiersin.org/articles/10.3389/fchem.2021.800370/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.800371/full
https://pubs.acs.org/doi/10.1021/acsomega.9b03673
https://www.science.org/doi/10.1126/science.abj0999


○ Univariate classification of phosphine ligation state and reactivity in
cross-coupling catalysis. DOI:10.1126/science.abj4213

○ Catalytic Performance of Cycloalkyl-Fused Aryliminopyridyl Nickel
Complexes towards Ethylene Polymerization by QSPR Modeling.
DOI:10.3390/catal11080920

6. Glossary of Terms
Entry List - a simplified view of the Project Table that allows you to perform basic operations such as
selection and inclusion

Included - the entry is represented in the Workspace, the circle in the In column is blue

Project Table - displays the contents of a project and is also an interface for performing operations on
selected entries, viewing properties, and organizing structures and data

Recent actions - This is a list of your recent actions, which you can use to reopen a panel, displayed
below the Browse row. (Right-click to delete.)

Scratch Project - a temporary project in which work is not saved, closing a scratch project removes all
current work and begins a new scratch project

Selected - (1) the atoms are chosen in the Workspace. These atoms are referred to as "the selection"
or "the atom selection". Workspace operations are performed on the selected atoms. (2) The entry is
chosen in the Entry List (and Project Table) and the row for the entry is highlighted. Project operations
are performed on all selected entries

Working Directory - the location where files are saved

Workspace - the 3D display area in the center of the main window, where molecular structures are
displayed

https://www.science.org/doi/10.1126/science.abj4213
https://www.mdpi.com/2073-4344/11/8/920

