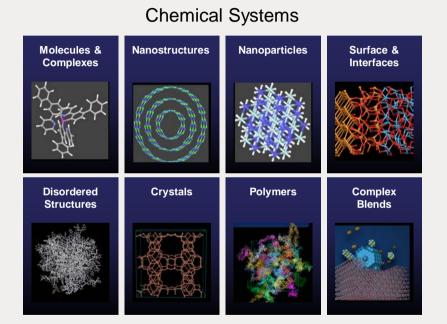


Hands-On Workshop in nanoHUB: Machine Learning Models for Ionic Conductivity with Schrödinger's AutoQSAR

Dr. Michael Rauch, Materials Science Education Lead, Schrödinger

The Schrödinger Platform: An integrated solution for digital materials discovery and analysis

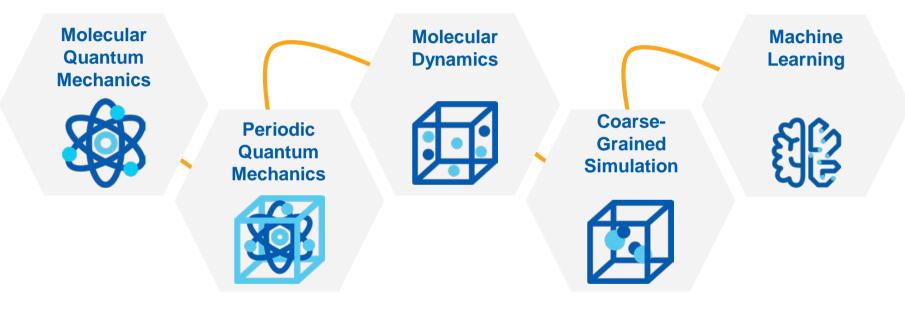
- A streamlined intuitive GUI for structural visualization, cutting-edge predictive atomistic simulation and machine learning workflows for Materials Science discovery and analysis.
- A powerful web-based informatics and molecular design platform that enables team to rapidly advance materials discovery projects by collaborating, designing, experimenting, analyzing, tracking, and reporting in a centralized platform.



Build advanced models or systems Run simulations or automated workflows Predict properties and performances

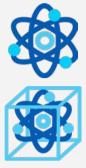
Analyze and Screen Guide experimental design

Atomistic Simulation Across Diverse Systems and Applications



Application Verticals

Organic Electronics	Polymeric Materials	Consumer Packaged Goods	Catalysis & Reactive Systems
Semiconductors	Energy Capture & Storage	Complex Formulations	Alloys, Metals & Ceramics
		Ø	



Methods Power Capabilities

From Engines to Workflows

Jaguar Molecular Quantum Mechanics

Quantum ESPRESSO Periodic Quantum Mechanics multistage workflows, optoelectronic properties, automated reaction workflow

adsorption energy workflows, surface energy, microkinetics

Desmond All-Atom Molecular Dynamics

I

Desmond Coarse-Grained Simulation

> AutoQSAR Machine Learning

multistage workflows, thermophysical properties, crosslinking

multistage workflows, automated DPD parameterization & Martini mapping

materials descriptors, built-in property prediction, active learning

Visit Our Blog for Case Studies

EXTRAPOLATIONS

Powered by | **(iiii) Schrödinger**

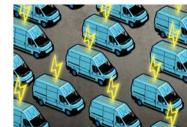
Science & Innovation

Modernizing the Mining Industry with Digital Simulation

BY ANDREW JACKSON | JAN 18, 2023

0 reckitt

Driving Sustainability at Reckitt through the Adoption of Molecular Simulations BY MARTIN SETTLE & MARIAM HUSSAIN | MAR 21, 2022



ĽORÉAL

5

SOLVAY

Science & Innovation How L'Oreal Uses Digital Simulation to Explore Sustainable **Product Ingredients** BY SCHRÖDINGER EDITORIAL TEAM | MAY 31, 2023

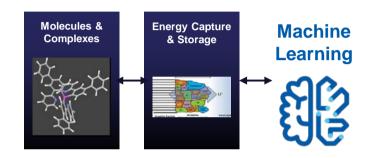
Combating Climate Change with Next-Generation Batteries

BY JESSICA GOLDEN | JAN 24, 2023

Science & Innovation U.S. AIR FORCE Uncovering Better Materials for the Spacecraft of Tomorrow BY SCHRÖDINGER EDITORIAL TEAM & LEVI MOORE | APR 24, 2023

CAMBRIUM

Science & Innovation

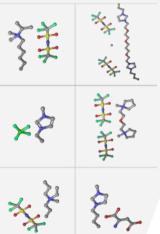

Collaborations

Science & Innovation

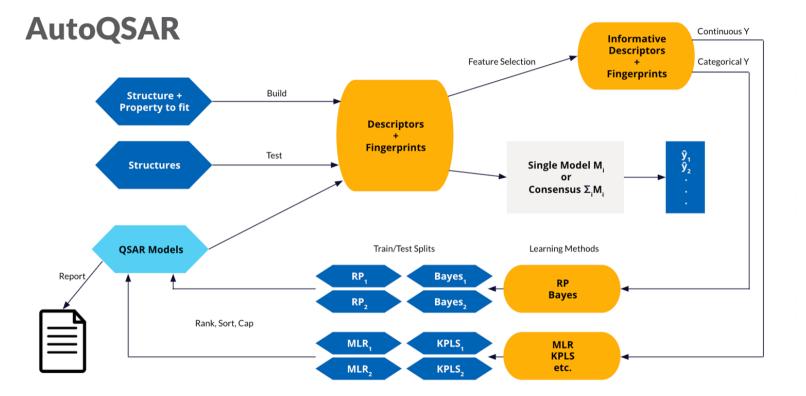
Beyond AI: The Importance of Physics-Based Simulations in Sustainable Biomaterials Design BY PIERRE SALVY, PH.D. & JEFFREY SANDERS, PH.D. | JUN

Today's Example

Today's Example



Model Generation and Application



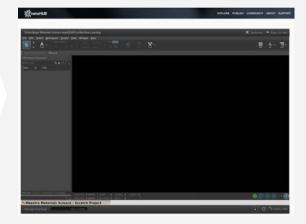
ML Data Input

	Ionic Conductivity, S/m Liquid	Temperature, K	SMILE	Index
	0.204459143	298.15	F(B-)(F)(F)F.C(C)(N+)1+CN(C+C1)C	2
	-0.677780705	308.1	[N-](S(=0)(=0)C(F)(F)F)S(=0)(=0)C(F)(F)F.C(C)(N+)(CCC)(CCC)C	344
	-0.920818754	295.1	FC(S(+O)(+O)(N+)S(+O)(+O)O)P)(F)F)(F)(F)(F)(C)(C)(C)(N+)(CCCCCC)(C)(C)	333
	-1.124938737	298.15	N[CBH][C[+O][O-][CC[+O]O.C[CCC][NH+]1CN[C+C1]C	137
	-0.91721463	298	F0(5(+0)(+0)(N-(5(+0)(+0)0)F)(F)(F)(F)(F)(C(CC)N+(1)(CCCC1)C)(CC)N+(1)	238
	-1.142667504	298	C(COCCOCCCC(N+)1=C(N)(C=C1)CCCC)(N+)2=C(N)(C=C2)CCCC.	237
	-0.8569852	298,1	F(B-)(F)(F)F.C(C)(N+)1+CN(C+C1)CCCCCC	387
	-0.899629455	298.15	S(=O)(=O)(OC)(O-].C(CCC)(N+)1=CN(C=C1)C	138
	-0.679853714	298.15	[N-](SL=0)(=0)C(F)(F)(F)(SL=0)(=0)C(F)(F)(F)(F)(COCCC)(N+[1)(CCCCC1)C	223
<u>_</u>	-0.876148359	298.15	[N-](S(=0)(=0)C(F)(F)(F)(S(=0)(=0)C(F))(F)(F)C(CCCCCCCC)(N+]1=CN(C=C1	109
~	-0.838631998	303	[N-](S(=0)(=0)C(F)(F)F)S(=0)(=0)C(F)(F)F[NH+]1=CC=CC=C1.C(CCC)#I	150
5	-1.232473101	298.15	F[B-](F)(F)F.C[N+]1=CN(C+C1)CCCCCCCC	11
~ «	-0.396855627	298.15	F(B-)(F)(F)(F)(C(C)(N+)1+CC+CC+C1	27
- 2	-0.565431096	298.15	FOIS(=OI(=OINS(=OI(=OIC)F)/F)/F)/F)/FOICCCI(N+)1=CC(=CC=C1)C	47
>	-0.823908741	295.1	FC(S(+O)(+O)(N-(S(+O)(+O)O)F)(F)F)(F)(F)(F)CCC(N+)(C(C)C)(C)C	331
ď	-1.397940009	298.1	[N-](SL=0)(=0)C(F)(F)F)SL=0)(=0)C(F)(F)F)C(CCCCCCC)(N+])C)(C)C	376
	-1.795880017	298.1	[N-][SI=0((=0)CIF)[F]F[SI=0)(=0)CIF)[F]F[C]CCCC][N+][CCCCCCC][CCCC]	381
	0.116607744	298.15	[N-](CHN(CHN.C(CC)[N+]1+CC+CC+C1	194
	-1.153168247	303.15	C(CC)(=O)(O-],C(CCC)N1C(NH+)(C=C1)C	183
	0.459249207	298.15	[N-](C#N)C#N.C(C(N+]1+CN(C+C1)C	63
	-1.05207638	298.15	[N-](SI-0)(=0)C(F)(F)F)S(=0)(=0)C(F)(F)F;C(C)(N+)(CCCCCC)(CC)CC	10
	-0.415668776	298.15	FC(S(+O)(+O)(N+)S(+O)(+O)O(F)(F)(F)(F)(F)(F)(C)(C)(P+)(CCOC)(CC)(CC)	148
	-0.958607315	295.1	[N-](SL=0)(=0)C(F)(F)C(F)(F)(F)SL=0)(=0)C(F)(F)C(F)(F)C(F)(F)(F)C(CCCCCCC))N+	288
	-0.453457337	298.15	F(B-)(F)(F)(F)(C)(C)(N+)1+CN(C+C1)C	6
	-0.745210313	298.2	[N+]]=0([0-]](0-].CN1C=N[N+]]=C1)CCC	81
	-0.412289035	298.15	FO(5(=0)(=0)(N-(5(=0))=0)O(F)(F)(F)(F)(F)(C)(O(CN1C=(N+))(C=C1)C	163
	-1.062983893i	298.15	CC1+CC+O(C+C1)S(=O)(=O)(O-].C(C)(N+]1+CN(C+C1)C	
	-1.045757491	298.1	P(=0)(0CC)(0CC)(0-].C(C)(N+)1=CN(C=C1)C	384
	-0.29627884	299.1	FIP-)(F)(F)(F)(F)F,O(C)(N+)1+ON(C+C1)C	21
	-2	295.1	FC(S(+O)(+O)(N+)S(+O)(+O)O(F)(F)(F)(F)(F)(F)(OO(C(N+)1(CCCC1)C)(OO	338
	0.000000000			-

nanoHUB Access

Login to nanoHUB and request to join the Schrödinger group

https://nanohub.org/groups/schrodinger


Schrödinger	Controller Terms for special graphs for some where the data starts where the binding on bacify the second starts of the second starts where the second starts and the second sta
E Deren A Menery II Provid Constant V Manager Manage	Steps to request group invertibinity and access to the software Uncer a process device and the access to the software Uncer a process device and the access to the software Process invertibility of access and the access to the software Process invertibility of access and the access to the software Process invertibility of access and the access to the software Process invertibility of access and the access to the software Process invertibility of access and the access to the software Process invertibility of access and the access to the software Process invertibility of access and the access to the software Process invertibility of access and the access to the software Process invertibility of access and the access of access and the

Go to Schrödinger Materials Science AutoQSAR for Machine Learning tool

https://nanohub.org/tools/autoqsar

Launch the Tool and Accept the EULA

Live Demo

Next Steps

Continue Exploring Schrödinger Materials Science Through nanoHUB

Two other datasets are available in nanoHUB for widespread educational use (thermally activated delayed fluorescent materials & homogeneous catalysts)

Learn All Capabilities with Comprehensive Online Certification Courses

Hands-on courses come with learning content (videos, tutorials, case studies) and Schrödinger software access through a virtual cluster [exclusive nanoHUB discount: NANOHUB1]

Incorporate Schrödinger Into Your Classroom

The Teaching with Schrödinger solution enables facile integration of molecular modeling into your classroom or curriculum

Learn About Licensing Schrödinger Software

Get in touch with our scientific and sales teams to learn about licensing opportunities

Questions? Thank you!