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Machine Learning for Materials Design/Discovery at Schrödinger

Live
Design

Expertise in physics-based simulation 
and domain knowledge

Latest machine learning technology for 
materials chemistry

Enterprise solution for data management 
and collaborative ideation
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• Properly featurizing various chemical systems is key to building predictive 
machine learning models

• Small Molecules
– Physiochemical, topographical descriptors
– Binary fingerprints (RDKit, Canvas)
– Graph-based convolution neural networks

• Polymers
– Taking into account connections between repeat units
– RDKit fingerprints + customized descriptors

• Periodic Inorganic Solids
– Element
– Lattice structure
– Oxidation state
– Intercalation descriptors
– 3D SOAP (with PCA)

• Formulations and Mixtures
– Composition
– Chemistry of the components
– Experimental/Processing conditions

Featurization in Diverse Materials Systems
Schrӧdinger’s Physics-
based Simulation Provides 
Additional Power to 
Machine Learning

QM (Jaguar)
Catalysis (AutoRW)

MD (Desmond)
MD + QM

Periodic QM (QE)

MD (Desmond)



Machine Learning with  Model visualization

Schrödinger’s automated model-building algorithm 
(AutoQSAR)

• Supervised learning with 400+ built-in descriptors
• Integrated as automated HPC-supported workflow

t raining set
t est  set  (20%)

KP
LS

DFT

Automated cross-validation for 
model scoring and ranking

Automated Machine Learning and Visualization in Molecular Systems
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AutoQSAR for Ionic Liquids

• 392 ionic liquids from the NIST IL Thermo database
• Target Property → Electrical conductivity
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DeepAutoQSAR: Automated Model Selection & Parameter Optimization

Models Sampled
● Dense Neural Network
● Random Forest Regressor
● XGBoost
● TorchGraphConv
● GCN
● GraphSAGE
● GIN
● TopK
● SAGPool
● EdgePool
● GlobalAttention
● Set2Set
● SortPool

Consensus Model
● Prediction = an average of the predictions for 

5 best models
● Uncertainty = SD across the 5 predictions

Model architecture, descriptor and 
hyperparameter combinations 
explored and optimized via 
Bayesian Optimization 

Data splits, featurization

Scoring Ranking

For details on model training and performance see: Schrödinger LigandML Performance Whitepaper
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- Design: Homobenzylic ethers (HBE) with 
oxidation potential in a pre-specified range.

- Oxidation potential of 1,400 HBEs 
calculated as the initial (training) dataset for 
machine learning

[1] Doan, Hieu A., Garvit Agarwal, Hai Qian, Michael J. Counihan, Joaquín Rodríguez-López, Jeffrey S. Moore, 
and Rajeev S. Assary. "Quantum Chemistry-Informed Active Learning to Accelerate the Design and 
Discovery of Sustainable Energy Storage Materials." Chemistry of Materials (2020).

Case Study - Redox Flow Batteries
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Traditional AutoQSAR
Test R2 = 0.94

- ML models were created for oxidation potential of 1,400 homobenzylic ethers for Redox Flow

- Both AutoQSAR and DeepAutoQSAR offer solid predictive capability.

- The deep-NN-based model (by DeepAutoQSAR) outperforms descriptor-based models for larger (>1000) training set.

DeepAutoQSAR
Test R2 = 0.98

AutoQSAR vs DeepAutoQSAR Results
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• 100+ additional physics-based descriptors by QM-bound properties, 
repeat-unit chemistry, and crystallinity

• Direct link to AutoQSAR and other workflows within the platform

Molecular descriptors

Polymer descriptors

Periodic descriptors

Chemical Featurization using Physics
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Machine Learning for 
Volatility of Organic 

Molecules



• Training data:
• 1,184 organic molecules containing C, O, Cl, N, Si, Br, S, F, P, 

I, B, As, Se
• 12,169 experimental (p,T) datapoints
• Pressure ranges from 1 Torr to 30 atm

• Generate 200 chemical descriptors and 1000 
Morgan Fingerprints for each molecule from its 2D 
sketch

• Examples of descriptors: molecular weight, solvent-accessible 
volume, max partial charge on atoms, electrotopological state 
descriptors …

• Log(p) was used as an additional descriptor and ML 
model was trained to predict 1/T

Evaporation/Sublimation of Organic Molecules
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Top-performing machine learning algorithms:
• Light Gradient Boosting Machine (LightGBM) 

• RMS error ±8°C
• Multi-Layer Perceptron (neural network)

• RMS error ±2°C

Most literature QSPR models for boiling points of 
diverse organic molecules have errors ±18°C

“Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting 
point”, J. C. Dearden, Environmental Toxicology and Chemistry, 22, 1696–1709 (2003).

Best neural network gives RMS-error ±5°C and mean 
absolute error ±4°C

“Boiling point and critical temperature of a heterogeneous data set: QSAR with atom type 
electrotopological state indices using artificial neural networks”, L. H. Hall & C. T. Story, J. Chem. Inf. 
Comput. Sci. 36, 1004–1014 (1996).

Benchmarking ML Algorithms
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Performance of model on sample molecules outside training set 

Prediction of Pressure-Temperature Relationships
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• Atomic Layer Deposition / Chemical Vapor Deposition  

• Thermal evaporation & jet-printing (Organic LED) 

• Flavors & fragrances 

• Equation of state for petroleum fluids 

• Refrigerants 

• Membrane separation/distillation 

• Volatile Organic Compound Pollutants 

• Explosion hazards

Applications of Volatility Machine Learning
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Machine Learning for 
Inorganic 3D Crystal 

Structures



• 3000 periodic structures containing indium, aluminum, gallium 
and oxygen

• These materials have applications in display devices and solar-
cells

• Dataset was obtained from NOMAD 2018 Kaggle challenge on 
creating ML models for properties of transparent conducting 
oxides

• ML models for Band Gap were created using DeepAutoQSAR
• Composition (matminer) and 3D SOAP descriptors were used

Transparent Conducting Oxide Band Gap ML

https://www.kaggle.com/c/nomad2018-predict-transparent-conductors




R2 on test set  = 0.886 R2 on test set  = 0.939

With 139 matminer 
descriptors 

With 139 matminer 
descriptors + 10 SOAP-
PCA descriptors

DeepAutoQSAR Results
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• The following properties/models are currently available 
• Volatility of organic molecules (Both Boiling Point and Vapor pressure)
• Volatility of organometallic molecules
• Polymer Tg
• Frequency dependent Df
• Frequency dependent Dk
• Density
• Viscosity 

Machine Learning Property Prediction Panel
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Active Learning and 
Genetic Optimization



Maximize Minimize

Target Value

Inner tolerance

Outer tolerance

Active Learning OptoElectronics Multi-Parameter Optimization (MPO)
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Active Learning Workflow for OptoElectronics
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Add new molecules to 
Training Set

Train ML models on new 
Training Set

Make MPO predictions and use 
acquisition function to select new 

molecules

Calculate DFT properties of 
selected molecules

QUERY

TRAINAPPEND

COMPUTE 

Active Learning 
Loop

Large pool of candidate 
molecules



AutoQSAR consensus prediction for 
experimental ΔEST dataset

Experimental ΔEST

M
L 

P
re

di
ct

ed
 Δ

E
S

T
Optoelectronic Genetic Optimization
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Machine Learning 
Forcefields



Achieving QM accuracy at the cost of classical forcefields is an exciting prospect for neural 
network potentials to accelerate design of next-generation materials

ML-FF

Neural Network Potentials (NNPs)



❏ SANI is extension of ANI1-family of NN potential2

❏ Supports 8 elements covering 94% druglike molecules in 
ChEMBL3

❏ Inputs are cartesian coordinates and element type for 
each atom

❏ Each element has a separate NN learning mapping from 
features to energies

❏ Trained to DFT energies (wB97X/6-31G(d))

❏ Limitations: Neglect long-range effects, no information 
about charge state, charge distribution

Our First NN Model: Schrödinger-ANI (SANI)

Stevenson et. al., arXiv, 1912.05079 (2019)
1Smith et. al.,Chem. Sci., 8, 3192-3203 (2017)

2Behler et. al., Phys. Rev. Lett., 98, 146401 (2007)
3Gaulton et. al., Nucleic Acids Res., 45, D945-D954 (2016)



❏ Extension of SANI to provide support for 
ionic systems

❏ Involves recursive charge correction

❏ Predicted atomic charges added as 
features to the NN

❏ Include charge dependent AEVs to learn 
radial charge distribution 

❏ Empirical dispersion correction and 
coulomb interaction using the predicted 
charges added to energy

QRNN: Charge-Recursive Neural Network

Predicts energy, atomic charges, dipole and 
atomic forces 

Jacobson et. al., J. Chem. Theory Comput. 18, 2354-2366 (2022) 



❏ ML-FF computed bulk properties are compared to experiments and OPLS4

❏ Excellent property predictions for all electrolyte components

❏ Significant improvement in prediction of diffusivity and viscosity compared to OPLS4

Bulk Properties of Liquid Electrolytes

The technical features and projected timeline presented on this slide is for 
discussion purposes only. Such planned or potential capabilities are subject to 
change at any time.



Enterprise Informatics



Informatics Analysis, 
Visualization and

Machine Learning

LiveDesign

Schrödinger’s core values of modeling supported DESIGN

Experimental data
Computational 

Modeling

• Easy agnostic access to expert 
computational tools

– Machine learning
– Advanced QM properties

• Execute modeling jobs, analyze 
results alongside all other data

• Web-based: Instantly LIVE to 
all users

• Scalable: Performant for global 
sized organizations

• Informatics: Visualization and 
Analysis

• Central Platform

Schrodinger’s Informatics Platform - LiveDesign®
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Polymers 
and co-
polymers

Molecules

OrganometallicsExperimental data

Formulations

Experimental data

Suitable for Diverse Materials and Data Types
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• Customized featurization based on chemical domain knowledge is critical in developing machine 
learning models

• High throughput physics-based modeling (QM, MD) provides various advantages in enhancing 
machine learning technology 

• Our machine learning technology has been successfully applied to a wide range of materials systems 
and can be easily adapted to experiment design (i.e experimental design)

• Web-based materials informatics platform (LiveDesign) enables data digitization with advanced data 
analysis/visualization and machine learning technology

• ML Forcefields offer MD simulations with DFT-level accuracy

• Schrӧdinger’s technology is to empower users and increase efficiency and productivity

Summary
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Thank you
Feel free to reach out to me at:
chandras@schrodinger.com

mailto:chandras@schrodinger.com
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