

Quantum Simulation with Superconducting Circuits

Alex Ruichao Ma

Department of Physics and Astronomy

Quantum Science at Purdue

10/07/2023

Three things to cover

- Quantum computers vs quantum simulators
- Superconducting qubits and circuits
- Is noise always bad?

Quantum materials

Unique properties due to quantum mechanics

Technological relevance:

- Power/energy transfer
- Data storage and spintronics
- Quantum information processing

•

Essential physics captured in relatively simple models... But extremely challenging to calculate...

High T_c superconductors

Quantum magnets

Graphene

Classical state: O(*N*) parameters

$$\oint \oint \oint \oint \oint \oint \oint \oint$$

Quantum state: $O(2^N)$ parameters

$$C_{1} | \phi \phi \phi \phi \phi \rangle + C_{2} | \phi \phi \phi \phi \phi \rangle + \cdots$$

$$+ \cdots + C_{2^{N}} | \phi \phi \phi \phi \phi \phi \rangle$$
AND AND

"Superposition": 2^N configurations simultaneously!

Exponential resources required for simulation on classical computer

Needs a quantum computer! Or...

Wait... Don't we already have quantum computers?

Quantum Simulators ("special purpose quantum computers"):

to study the dynamics of another quantum system

Solid State Interacting electrons in ionic lattice

Ultracold Atoms

Interacting atoms in optical lattice

Photonics

Interacting microwave photons in superconducting qubit arrays / lattices

"synthetic quantum materials"

See e.g. Nat Phys: Insight - Quantum Simulation (2012); 'The rise of quantum materials'

Ma Lab @ Purdue - Superconducting Circuits for Quantum Simulation

https://www.ma-quantumlab.com/

"4 bit QPU"

Dilution refrigerator cooled to 10 milli-Kelvin

Building BH

cooled to 10 milli-Kelvin

- Quantum electrical circuits capacitors, inductors, Josephson junctions...
- Site resolved readout "image" the motion of the photons in the lattice!

Single particle "quantum walk"

Lattice spectroscopy (8 site)

Usually, noise and interactions with an environment (bath) tend to destroy the quantum state... Detrimental for quantum simulators and quantum computers

- For example: photon loss in our circuit – end up with empty lattice

But turns out, carefully designed "noise/dissipation", or carefullyengineered "bath" can actually be a powerful resource to control quantum systems

- Generate and protect (!) entanglement in quantum simulators
- Autonomous error correction in quantum computers

Counter-intuitive? This is natural in real materials!

Related: **optical pumping** in atomic systems; lasers

Real materials, interacting with thermal / particle baths

Many-body

Synthetic quantum matter, with engineered baths

Superconducting circuits as quantum simulators

Full control of the quantum system, and its interaction with the engineered environment/bath

Waveguide coupled

Carefully designed noise can be a quantum resource

Use engineered bath to:

- Prepare and control entanglement
- Explore fundamental questions about open system quantum dynamics
- New tools for probing synthetic quantum materials