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Online talks

Virtual AMO Seminar

Ana Asenjo-Garcia “Single, few, and many photon
physics in 1D atomic arrays”

Susanne Yelin “Dense arrays: a novel quantum tool”


https://youtu.be/_nRtoXVnoSw
https://youtu.be/yQws2uOchhs

Why Optical Transitions?
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Downsides?
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Some Many Atom Effects

Clausius-Mossotti (Lorentz-Lorenz) corrections to y of gas
Superradiance: many atoms emit photons with rate >> N X single atom
Subradiance: many atoms inhibit photon emission

Atom array can give 100% reflection or change propagation direction

Control emission direction using phase relation between atoms

Many others



Classical interference: 2 sources

Two sources interfere depending on the
phase of each source

Intensity at large distance compared to 1
source Is

4 cos?([r L cos(0)/A + ¢]/2)
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Early time Superradiance for
Atom Arrays

Use early time properties of decay to determine superradiance

Inspired by Stuart J. Masson and Ana Asenjo-Garcia, “Universality
of Dicke superradiance in arrays of guantum emitters,” Nat Comm
13, 1 (2022). arXiv:2106.02042 (2021).

Apply to various arrays and random atom cloud

Similar results to E. Sierra, S.J. Masson, and A. Asenjo-Garcia,
“Dicke superradiance in ordered lattices: dimensionality matters,”
Phys. Rev. Res. 4 023207 (2022). arXiv:2110.08380 (2021)

PHYSICAL REVIEW A 104, 063706 (2021)

Theoretical study of early-time superradiance for atom clouds and arrays

F. Robicheaux©” 7



spacing of atoms

d=

Square array, Directional decay
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Many regions of superradiance due to constructive interference
For some angles superradiant ford ~ 2 A
Apparently doesn’t converge with increasing number of atoms
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PHYSICAL REVIEW X 7, 031024 (2017)

Exponential Improvement in Photon Storage Fidelities Using Subradiance
and “Selective Radiance” in Atomic Arrays

A, ﬁscnjn—f}arciajj'z'* M. Mnrcnn—flardnncrﬁ A .i"'.lhredcht,3 H.J. Kimhl::,I and D. E. Chang?'
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Control the propagation of light

Can you use atoms to control where the light goes?

Seems impossible because the spontaneous gives random direction and
phase

Many atoms with regular spacing suppress spontaneous emission
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Phased Planar Arrays a=08A\
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PHYSICAL REVIEW LETTERS
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Enhanced Optical Cross Section via Collective Coupling of Atomic Dipoles in a 2D Array

Robert 1. Ecttlcs,H Simon A. Gavdiucr,_: and Charles S. Adams’
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Proposal for total
reflection from atom
array

Weak light limit is
equivalent to CM

Finite size
calculations

Effects from

positional disorder
and fractional filling
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Article

A subradiant optical mirrorformedbya

single structured atomiclayer

https://dol.org/10.1038/s41586-020-2463-x

Recelved: 3 January 2020

Jun Rul®=, David Wel'?, Antonio Rublo-Abadal*?, Simon Hollerith*?, Johannes Zeiher®,

Dan M. Stamper-Kurn?, Christian Gross'** & Immanuel Bloch**®
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Experimental
verification

Subradiant mode

Show better results as
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Positional disorder

and not quite 100%
filling
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Pair of Planar Arrays:a=0.8 A
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PHYSICAL REVIEW LETTERS 122, 093601 (2019)

Subradiant Bell States in Distant Atomic Arrays

P.-O. Guimond, A. Grankin, D. V. Vasilyev, B. Vermersch, and P. Zoller
Use curved array to
make cavity
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Qutro

Interaction of photons with many atoms leads to
qualitative new effects

Super-radiance and subradiance are collective effects of
many atoms + photon

Possible uses for subradiant states

Possible uses to coherently control the photon propagation
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Concluding Remarks

Subradiant states can have large recoil energy per photon
Superradiant states can have less than expected recoil

Amount of recoil could affect utility of atom arrays (most
subradiant states are most interesting => largest recoil)

Size of an atom’s recoil roughly follows excitation
probability (as expected)

What happens when not in the weak laser limit?

17



Concluding Remarks

Early time behavior of photon emission rate can determine
whether “superradiant” but not the peak rate

Atom arrays give less dephasing: implications for Rydberg
arrays?

For 2 states, the initial photon emission slope increases
with number of atoms (doesn’t converge) for 2D & 3D

18
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