
Atomistic Simulation of Realistically Sized 
Nanodevices Using NEMO 3-D: Part I − Models and 

Benchmarks 
Gerhard Klimeck1,2, Shaikh Ahmed1, Neerav Kharche1, Hansang Bae1, Steve Clark1, Benjamin Haley1, Sunhee Lee1, 

Maxim Naumov1, Hoon Ryu1, Faisal Saied1, Marta Prada1, Marek Korkusinski3, and Timothy B. Boykin4  

Abstract―Device physics and material science meet at the 
atomic scale of novel nanostructured semiconductors and the 
distinction between new device or new material is blurred. Not 
only are quantum mechanical effects in the electronic states of the 
device important, but also the granular, atomistic representation 
of the underlying material. Approaches based on a continuum 
representation of the underlying material typically used by device 
engineers and physicists become invalid. Ab-initio methods used 
by material scientists typically do not represent the bandgaps and 
masses precisely enough for device design or they do not scale to 
realistically large device sizes. The plethora of geometry, 
material, and doping configurations in semiconductor devics at 
the nanoscale suggests that a general nanoelectronic modeling 
tool is needed. The Nanoelectronic Modeling tool (NEMO 3-D) 
has been developed to address these needs. Based on the atomistic 
valence-force field (VFF) and a variety of nearest-neighbor tight-
binding models (s, sp3s*, sp3d5s*) NEMO 3-D enables the com-
putation of strain and electronic structure for over 64 and 52 
million atoms, corresponding to volumes of (110nm)3 and 
(101nm)3, respectively. The physical problem may involve very 
large-scale computations and NEMO 3-D has been designed and 
optimized to be scalable from single CPUs to large numbers of 
processors on commodity clusters and supercomputers. NEMO 3-
D has been released with an open source license in 2003 and is 
continually developed by the Network for Computational 
Nanotechnology (NCN). A web-based online interactive version 
for educational purposes is freely available on the NCN portal 
www.nanoHUB.org. In this article, theoretical models, essential 
algorithmic and computational components that have been used 
in the development and successful deployment of NEMO 3-D are 
discussed. 

Index Terms―Atomistic simulation, NEMO 3-D, Nanostruc-
tures, Strain, Piezoelectricity, Valley splitting, Quantum compu-
tation, Tight binding, Keating model. 

I.   INTRODUCTION 
MERGENCE of nanodevices. The rapid progress in 
nanofabrication technologies has led to the emergence of  
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new classes of nanodevices and structures which are expected 
to bring about fundamental and revolutionary changes in 
electronic, photonic, biotechnology, information processing 
and computation, and medicine industries. These devices 
demonstrate new capabilities and functionalities where the 
quantum nature of charge carriers play an important role in 
determining the overall device properties and performance. 
The device sizes have already reached the level of tens of 
nanometers. In this regime, the atomistic granularity of 
constituent materials cannot be neglected: effects of atomistic 
strain, surface roughness, unintentional doping, the underlying 
crystal symmetries, or distortions of the crystal lattice can have 
a dramatic impact on the device operation and performance. In 
effect the formerly disjoint fields of semiconductor devices 
and materials science meet at the atomic scale. 

A critical facet of the nanodevices development is the 
creation of simulation tools that can quantitatively explain or 
even predict experiments. In particular it would be very 
desirable to explore the design space before or in conjunction 
with the (typically time consuming and expensive) 
experiments. A general tool that is applicable over a large set 
of materials and geometries is highly desirable. But just the 
tool development itself is not enough. The tool needs to be 
deployed to the user community so it can be made more 
reliable, flexible, and accurate. The main goal of this paper is 
to describe the theoretical models and the essential algorithmic 
and computational components that have been used in the 
development and successful deployment of NEMO 3-D on 
nanoHUB.org. Of particular importance, presented are some of 
the new capabilities that have been recently added to NEMO 
3-D to make it one of the premier simulation tools for design 
and analysis of realistically-sized nanoelectronic devices, and 
therefore to make it a valid tool for the computational 
nanotechnology community. These recent advances include 
algorithmic refinements, performance analysis to identify the 
best computational strategies, and memory saving measures. 
Demonstrated is the effective scalability of NEMO 3-D code 
on the BlueGene, an Intel Woodcrest cluster, the Cray XT3 
and other Linux clusters. The largest electronic structure 
calculation with 52 million atoms involved a Hamiltonian 
matrix over one billion complex degrees of freedom. 
Compared is the performance with a stored Hamiltonian vs. re-
computing the matrix each time it is needed. Through a set of 
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end-to-end calculations, it is shown how the eigenvalues vary 
as a function of the size of the domain. We describe the state-
of-the-art algorithms that have been incorporated in the code, 
including a very effective Lanczos eigenvalue solver, and 
present a comparison of the different solvers.  While such 
system sizes of tens of millions of atoms appear at first sight 
huge and wasteful, we claim here that some physical problems 
require such large scale analysis. We recently demonstrated [1] 
that the analysis of valley splitting in strained Si quantum 
wells grown on strained SiGe required atomistic analysis of 10 
million atoms to match experimental data. The insight that 
disorder in the SiGe buffer increases valley splitting in the Si 
quantum well would probably not be predictable in a 
continuum effective mass model. 
 

 
 
Fig. 1. NEMO 3-D modeling agenda: maps electronic properties of individual 
atoms into realistic structures containing millions of atoms, computation of 
nanoscale quantum dots that maps into real applications. 
 

II.   MODELING AND SIMULATION CHALLENGES 
The theoretical knowledge of the electronic structure of 

nanoscale semiconductor devices is the first and essential step 
towards the interpretation and the understanding of the experi-
mental data and reliable device design at the nanometer scale. 
Following is a list of the modeling and simulation challenges 
in the design and analysis of realistically-sized engineered 
nanodevices.  

(1) Full three-dimensional atomistic representation: The 
lack of spatial symmetry in the overall geometry of the 
nanodevices usually requires explicit three-dimensional 
representation. For example, Stranski-Krastanov growth 
techniques tend to produce self-assembled InGaAs/GaAs 
quantum dots [2][3][4][5] with cylindrical-like shape symme-
try, e.g. disks, truncated cones, domes, or pyramids [6]. These 
geometries are generally not perfect geometric objects, since 
they are subject to interface interdiffusion, and discretization 
on an atomic lattice. There is no such thing as a round disk on 
a crystal lattice! The underlying crystal symmetry imposes 
immediate restrictions on the realistic geometry and influences 
the quantum mechanics. Continuum methods such as effective 
mass [7] and k.p [8][9] typically ignore such crystal symmetry 
and atomistic resolution. The required simulation domain sizes 
of ~1M atoms prevent the usage of ab initio methods. 
Empirical methods which eliminate enough unnecessary 
details of core electrons, but are finely tuned to describe the 
atomistically dependent behavior of valence and conduction 
electrons are needed. The current state-of-the-art leaves 2 

choices: 1) pseudopotentials [10] and 2) Tight Binding [11]. 
Both methods have their advantages and disadvantages. 
Pseudopotentials use plane waves as a fundamental basis 
choice. Realistic nanostructures contain high frequency 
features such as alloy-disorder or hetero-interfaces. That 
means that the basis needs to be adjusted (by an expert) for 
every different device, which limit the potential impact for 
non-expert users. Numerical implementations of 
pseudopotential calculations typically require a Fourier 
transform between real and momentum space which demand 
full matrix manipulations and full transposes. This typically 
requires high bandwidth communication capability (i.e. 
extremely expensive) parallel machines, which limit the 
practical dissemination of the software to end users with 
limited compute resources. Tight-binding is a local basis 
representation, which naturally deals with finite device sizes, 
alloy-disorder and hetero-interfaces and it results in very 
sparse matrices. The requirements of storage and processor 
communication are therefore minimal compared to 
pseudopotentials and actual implementations perform 
extremely well on cheap clusters [11]. Tight-binding has the 
disadvantage that it is based on empirical fitting and the 
community continues to raise the issue on the fundamental 
applicability of tight-binding. The NEMO team has spent a 
significant effort to expand and document the tight-binding 
capabilities with respect to handling of strain [12], 
electromagnetic fields [13], and Coulomb matrix elements [14] 
and fit them to well known and accepted bulk parameters 
[11][15][16].  With tight-binding the NEMO team was able 
early on to match experimentally verified, high-bias current-
voltage curves of resonant tunneling [17][18] that could not get 
modeled by ether effective mass (due to the lack of physics) or 
pseudopotential methods (due to the lack of open boundary 
conditions). We continue to learn about the tight-binding 
method capabilities and are in the process of benchmarking it 
against more fundamental ab-initio approaches and 
pseudopotential approaches. Our current Si/Ge 
parameterization is described in references [19][20]. Figure 1 
depicts a range of phenomena that represent new challenges 
presented by new trends in nanoelectronics and lays out the 
NEMO 3-D modeling agenda.  

(2) Atomistic strain: Strain that originates from the assembly 
of lattice-mismatched semiconductors strongly modifies the 
energy spectrum of the system. In the case of the InAs/GaAs 
quantum dots, this mismatch is around 7% and leads to a 
strong long-range strain field within and very wide reaching 
(typically ~ 25 nm) around each quantum dot [21]. Si/Ge 
core/shell structured nanowires are another example of strain 
dominated atom arrangements [22] and Si-based quantum well 
quantum computing architectures rely on strain for state 
separation [23]. The strain can be atomistically inhomogene-
ous, involving not only biaxial components but also non 
negligible shear components. Strain strongly influences the 
core and barrier material band structures, modifies the energy 



band gaps and lifts the heavy hole-light hole degeneracy at the 
zone center. In the nanoscale regime, the classical harmonic 
linear/continuum elasticity model for strain is inadequate and 
device simulations must include the fundamental quantum 
character of charge carriers and the long-distance atomistic 
strain effects with proper boundary conditions on equal footing 
[24][25].  

(3) Piezoelectric field: A variety of advanced materials such 
as GaAs, InAs, GaN of interest are piezoelectric. Any spatial 
distortions in nanostructures made of these materials will 
create significant piezoelectric fields, which will significantly 
modify the electrostatic potential landscape. Recent 
spectroscopic analyses of self-assembled QDs demonstrate 
polarized transitions between confined hole and electron levels 
[6]. While the continuum models (effective mass or k.p) can 
reliably predict aspects of the single-particle energy states, 
they fail to capture the observed non-degeneracy and optical 
polarization anisotropy of the excited energy states in the (001) 
plane. These methods fail because they use a confinement 
potential which is assumed to have only the shape symmetry of 
the nanostructure and they ignore the underlying crystal 
symmetry. However, experimentally noticeable is the fact that 
the true symmetry is lower than the assumed continuum 
symmetry because of (a) underlying crystalline symmetry, (b) 
atomistic strain relaxation and (c) piezoelectric field. For 
example, in the case of pyramid shaped quantum dots with 
square bases, continuum models treat the underlying material 
in C4ν symmetry while the atomistic representation lowers the 
crystal symmetry to C2ν.  Piezoelectric potential originating 
from the non-zero shear component of the strain field must be 
taken into account to properly model the associated symmetry 
breaking and the introduction of a global shift in the energy 
spectra of the system.. 

 
III.   NEMO 3-D SIMULATION PACKAGE 

(A) Basic Features 
NEMO 3-D [11][26][27][28][29] bridges the gap between 

the large size, classical semiconductor device models and the 
molecular level modeling. This package currently allows 
calculating single-particle electronic states and optical 
response of various semiconductor structures including bulk 
materials, quantum dots, quantum wires, quantum wells and 
nanocrystals. NEMO 3-D includes spin in its fundamental 
atomistic tight binding representation. Spin is therefore not 
added in as an afterthought into the theory, but spin-spin 
interactions are naturally included in the Hamiltonian. Effects 
of interaction with external electromagnetic fields are also 
included [11][30][13]. This paper focuses on the design and 
performance of NEMO 3-D illustrated on the case of InAs 
quantum dots embedded in a GaAs barrier material. A 
schematic view of the sample is presented in Figure 2. The 
quantum dot is positioned on a 0.6 nm thick wetting layer 
(dark region). The simulation of strain is carried out in the 
large computational box Dstrain, while the electronic structure 

computation is restricted to the smaller domain Delec. In part-II 
of this paper it has been shown that under the assumptions of 
realistic boundary conditions, strain is long-ranged and 
penetrates around 25 nm into the dot substrate thus stressing 
the need for using large substrate thickness in the simulations. 
NEMO 3-D enables the computation of strain and electronic 
structure in an atomistic basis for over 64 and 52 million 
atoms, corresponding to volumes of (110nm)3 and (101nm)3, 
respectively. These volumes can be spread out arbitrarily over 
thin layer geometry. For example, if a thin layer of 15 nm 
height is considered, the corresponding widths in the x-y plane 
correspond to 298 nm for strain calculations and 262 nm for 
electronic structure calculations. No other atomistic tool can 
currently handle such volumes needed for realistic device 
simulations. NEMO 3-D runs on serial and parallel platforms, 
local cluster computers as well as the NSF Teragrid. 
(B) Components and Models  

 The NEMO 3-D program flow consists of four main 
components.  

(1) Geometry construction. The first part is the geometry 
constructor, whose purpose is to represent the treated 
nanostructure in atomistic detail in the memory of the 
computer. Each atom is assigned three single-precision 
numbers representing its coordinates, stored is also its type 
(atomic number in short integer), information whether the 
atom is on the surface or in the interior of the sample 
(important later on in electronic calculations), what kind of 
computation it will take part of (strain only or strain and 
electronic), and what its nearest neighbor relation in a unit cell 
is. The arrays holding this structural information are initialized 
for all atoms on all CPUs, i.e., the complete information on the 
structure is available on each CPU. By default most of this 
information can be stored in short integer arrays or as single bit 
arrays, which does not require significant memory. This serial 
memory allocation of the atom positions, however, becomes 
significant for very large systems which must be treated in 
parallel. A compile option exists in the code to use a 
parallelized atom position storage scheme, which limits some 
output capabilities, but provides significant memory savings. 

(2) Strain. The materials making up the QD nanostructure 
may differ in their lattice constants; for the InAs/GaAs system 
this difference is of the order of 7%. This lattice mismatch 
leads to the appearance of strain: atoms throughout the sample 
are displaced from their bulk positions. Knowledge of 
equilibrium atomic positions is crucial for the subsequent 
calculation of QD’s electronic properties, which makes the 
computation of strain a necessary step in realistic simulations 
of these nanostructures.  

NEMO 3-D computes strain field using an atomistic valence 
force field (VFF) method [31] with the Keating Potential. In 
this approach, the total elastic energy of the sample is 
computed as a sum of bond-stretching and bond-bending 
contributions from each atom. The local strain energy at atom i 
is given by a phenomenological formula 
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where the sum is carried out over the n nearest neighbors j of 
atom i, ijd
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r
 are the bulk and actual (distorted) 

distances between neighbor atoms, respectively, and ijα  and 

ijβ  are empirical material-dependent elastic parameters. The 
equilibrium atomic positions are found by minimizing the total 
elastic energy of the system. Several other strain potentials 
[24] [25] are also implemented in NEMO 3-D. While they 
modify some of the strain details they roughly have the same 
computational efficiency.  

(3) Electronic structure. The single-particle energies and 
wave functions are calculated using an empirical first-nearest-
neighbor tight-binding model. The underlying idea of this 
approach is the selection of a basis consisting of atomic 
orbitals (such as s, p, d, and s*) centered on each atom. These 
orbitals are further treated as a basis set for the Hamiltonian, 
which assumes the following form: 
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where +
ν,ic  ( ν,ic ) is the creation (annihilation) operator of an 

electron on the orbital ν  localized on atom i. In the above 
equation, the first term describes the onsite orbital terms, found 
on the diagonal of the Hamiltonian matrix. The second term 
describes coupling between different orbitals localized on the 
same atom (only the spin-orbit coupling between p-orbitals), 
and the third term describes coupling between different 
orbitals on different atoms. The restriction in the summation of 
the last term is that the atoms i and j be nearest neighbors.  

The characteristic parameters ε  and t are treated as 
empirical fitting parameters for each constituent material and 
bond type. They are usually expressed in terms of energy 
constants of σ  and π  bonds between the atomic orbitals. For 
example, for a simple cubic lattice, the interaction between the 
s orbital localized on the atom i at origin and the orbital xp  

localized on the atom j with coordinate xadij ˆ=
r

 with respect 

to the atom i would simply be expressed as σsp
ps

ij Vt x =),( . 

Most of the systems under consideration, however, crystallize 
in the zinc-blende lattice, which means that the distance 
between the nearest neighbors is described by a 3-D vector 

znymxldij ˆˆˆ ++=
r

, with l, m, n being the directional cosines. 

These cosines rescale the interaction constants, so that the 
element describing the interaction of the orbitals s and xp  is 

σsp
ps

ij lVt x =),( . The parameterization of all bonds using 

analytical forms of directional cosines for various tight-binding 
models is given in Ref. [32]. NEMO 3-D provides the user 

with choices og the sp3d5s*, sp3s*, and single s-orbital models 
with and without spin, in zincblende, wurzite, and simple cubic 
lattices.  

Additional complications arise in strained structures, where 
the atomic positions deviate from the ideal (bulk) crystal lattice 
[33]. The presence of strain leads to distortions not only of 
bond directions, but also bond lengths. In this case, the 
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the new directional cosine l’ can be obtained analytically from 
the relaxed atom positions, but the bond-stretch exponent 

)( ση sp  needs to be fitted to the experimental data. The energy 
constants parameterizing the on-site interaction change as well 
due to bond renormalization [11][12]. 

The 20-band nearest-neighbor tight-binding model is thus 
parameterized by 34 energy constants and 33 strain 
parameters, which need to be established by fitting the 
computed electronic properties of materials to those measured 
experimentally. This is done by considering bulk 
semiconductor crystals (such as GaAs or InAs) under strain. 
The summation in the Hamiltonian for these systems is done 
over the primitive crystallographic unit cell only. The model 
makes it possible to compute the band structure of the 
semiconductor throughout the entire Brillouin zone. For the 
purpose of the fitting procedure, however, only the band 
energies and effective masses at high symmetry points are 
targeted, and the tight-binding parameters are adjusted until a 
set of values closely reproducing these target values is found. 
Search for optimal parameterization is done using a genetic 
algorithm, described in detail in Refs. [11][23]. Once it is 
known for each material constituting the QD, a full atomistic 
calculation of the single-particle energy spectrum is carried out 
on samples composed of millions of atoms. No further material 
properties are adjusted for the nanostructure, once they are 
defined as basic bulk material properties. 

(4) Post processing of QD eigenstates . From the single-
particle eigenstates various physical properties can be 
calculated in NEMO 3-D such as optical matrix elements [34], 
Coulomb and exchange matrix elements [14], approximate 
single cell bandstructures from supercell bandstructure 
[36][37][38].  

(C) Algorithmic and Numerical Aspects  
(1) Parallel implementation. The complexity and generality 

of physical models in NEMO 3-D can place high demands on 
computational resources. For example, in the 20-band 
electronic calculation the discrete Hamiltonian matrix is of 
order 20 times the number of atoms. Thus, in a computation 
with 20 million atoms, the matrix is of order 400 million. 
Computations of that size can be handled because of the 
parallelized design of the package. NEMO 3-D is implemented 
in ANSI C, C++ with MPI used for message-passing, which 
ensures its portability to all major high-performance 



computing platforms, and allows for an efficient use of 
distributed memory and parallel execution mechanisms. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Simulated dome shaped InAs/GaAs quantum dot. Two simulation 
domains are shown. Delec: central domain for electronic structure calculation, 
and Dstrain: larger/outer domain for strain calculation. In the figure: s is the 
substrate height, c is the cap layer thickness, h is the dot height, d is the dot 
diameter. 

 
Although the strain and electronic parts of the computation 

are algorithmically different, the key element in both is the 
sparse matrix-vector multiplication. This allows the use of the 
same memory distribution model in both phases. The 
computational domain is divided into vertical slabs. All atoms 
from the same slab are assigned to a single CPU, so if all 
nearest neighbors of an atom belong to its slab, no inter-CPU 
communication is necessary. The interatomic couplings are 
then fully contained in one of the diagonal blocks of the 
matrix. On the other hand, if an atom is positioned on the 
interface between slabs, it will couple to atoms belonging both 
to its own and the neighboring slab. This coupling is described 
by the off-diagonal blocks of the matrix. Its proper handling 
requires inter-CPU communication. However, due to the first-
nearest-neighbor character of the strain and electronic models, 
the messages need to be passed only between pairs of CPUs 
corresponding to adjacent domains – even if the slabs are one 
atomic layer thick. Full duplex communication patterns are 
implemented such that all inter-processor communications can 
be performed in 2 steps [11]. 

(2) Core Algorithms and Memory requirements. In the strain 
computation, the positions of the atoms are computed to 
minimize the total elastic strain energy. The total elastic 
energy in the VFF approach has only one, global minimum, 
and its functional form in atomic coordinates is quartic. The 
conjugate gradient algorithm in this case is well-behaved and 
stable. This is done using the Conjugate Gradient minimization 
algorithm. The total elastic energy is never stored in its matrix 
form, but the interatomic couplings are computed on the fly. 
Therefore the only data structures allocated in this phase are 
the vectors necessary for the conjugate gradient. The 
implementation used in NEMO 3-D requires six vectors, each 
of the total size of 3 × number of atoms (to store atomic 
coordinates, gradients, and intermediate data), however all 

those vectors are divided into slabs and distributed among 
CPUs as discussed above. The final atom position vectors are 
by default stored on all the CPU for some technical output 
details. They can be distributed to the various CPUs at compile 
time resulting in reduced output capabilities. 

The electronic computation involves a very large 
eigenvector computation (matrices of order of hundreds of 
millions or even billion). The algorithms/solvers available in 
NEMO 3-D include the PARPACK library [39], a custom 
implementation of the Lanczos method [40], the spectrum 
folding method [41] and the Tracemin [42]. The research 
group is also working on implementation of Lanczos with 
deflation, Block Lanczos and Jacobi-Davidson [43] methods. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Number of atoms that can be treated, as a function of the number of 
CPUs for different amounts of memory per CPU. The plot on top is for the 
strain calculation, and the one on the bottom is for the electronic structure 
calculation. The vertical axis on the right side of each plot gives the equivalent 
length in nm of one side of the cube that would contain the given number of 
atoms. 
 

The Lanczos algorithm employed here is not restarted, and 
the Lanczos vectors are not reorthogonalized. Moreover, the 
spectrum of the matrix has a gap, which lies in the interior of 
the spectrum. Typically, a small set of eigenvalues is sought, 
immediately above and below the gap. The corresponding 
eigenstates are electron and hole wave functions, assuming 
effectively nonzero values only inside and in the immediate 
vicinity of the dot. Also, in the absence of the external
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TABLE I 

Performance on P processors: time (in seconds), number of matrix vector multiplications (# mvs), memory (mem.) and number of correct eigenvalues times their 
multiplicity (# eigs) for Lanczos, Tracemin and PARPACK k eigenvalue solvers in NEMO 3-D software package. 

 
 LANCZOS TRACEMIN PARPACK 
P time # mvs mem. # eigs Time # mvs mem. # eigs time # mvs mem. # eigs 
1 197.2 7000 55.15 14 14298.0 390000 227.15 14 2155.9 11700 177.83 11 
2 121.9 7000 28.11 14 8341.7 400000 114.28 14 579 8300 89.58 11 
3 89.0 7000 18.95 14 5480.0 390000 76.20 14 412 8900 59.85 11 
4 75.3 7000 14.49 14 4346.9 400000 57.66 14 912.8 26900 45.35 12 

 
TABLE II 

Spectrum of the eigenvalues around 0 (with correct multiplicity 2) and eigenvalue multiplicity obtained by the Lanczos, Tracemin and PARPACK eigenvalue 
solvers. Number of searched eigenvalues was kept constant for these three methods.  

 
Eigenvalues LANCZOS TRACEMIN PARPACK 

-1.72338200E-01 1  1 
-1.66029400E-01 1  1 
-1.59010400E-01 1  1 
-1.47522100E-01 1  1 
-1.38917800E-01 1  1 
-1.17807000E-01 1  1 
-1.01703700E-01 1 2 2 
-7.80348200E-02 1 2 2 
-5.17194400E-02 1 2 1 
-2.81959000E-03 1 2  
3.93045300E-02 1 2  
7.66237500E-02 1 2  
1.16104700E-01 1 2  
1.57112300E+00 1   

 
TABLE III 

Specifications for the HPC platforms used in the performance comparisons. 
 

 Platform Type CPU Interconnect Location
PU/Xeon64 Linux Cluster Xeon x86-64 3.2GHz Gigabit Ethernet RCAC 
PU/Xeon32 Linux Cluster Xeon 3.06GHz Gigabit Ethernet RCAC 

PU/Woodcrest Linux Cluster Xeon x86-64 Dual Core 2.33GHz Gigabit Ethernet RCAC 
PSC/XT3 Cray XT3 Opteron x86-64 2.6GHz Native PSC 

NCSA/Altix SGI Altix Itanium2 IA-64 1.6GHz SGI NUMAlink NCSA 
RPI/BGL BlueGene/L PowerPC 440 0.7 GHz Native RPI 

 
TABLE IV 

Iteration counts for the Lanczos computation as a function of system size. 
 

NUMBER OF ATOMS  
(MILLIONS) 

0.89 1.99 3.92 6.80 16.18 21.07 52.57 

Number of Lanczos iterations 5,061 5,121 6,141 7,921 9,621 10,401 14,691 



magnetic field the eigenvalues are repeated, which reflects the 
spin degeneracy of electronic states. The advantage of Lanczos 
algorithm is that it is fast, while the disadvantage is that it does 
not find the multiplicity and can potentially miss eigenvalues. 
Some comparisons have shown that the Lanczos method is 
faster by a factor of 10 for the NEMO 3-D matrix than 
PARPACK. Tracemin algorithm finds the correct spectrum of 
degenerate eigenvalues, but is slower than Lanczos. 
PARPACK has been found to be less reliable for this problem, 
taking more time than Lanczos and missing some of the 
eigenvalues and their multiplicity. Tables I and II give a 
comparison of Lanczos, PARPACK and Tracemin (the number 
of eigenvalues searched was kept constant). The majority of 
the memory allocated in the electronic calculation in Lanczos 
is taken up by the Hamiltonian matrix. This matrix is very 
large, but typically very sparse; this property is explicitly 
accounted for in the memory allocation scheme. All matrix 
entries are, in general, complex, and are stored in single 
precision. The code has an option to not store the Hamiltonian 
matrix, but to recompute it, each time it needs to be applied to 
a vector. In the Lanczos method, this is required once in each 
iteration. The PARPACK and Tracemin algorithms require the 
allocation of a significant number of vectors as a workspace, 
which is comparable to or larger than the Hamiltonian matrix. 
This additional memory need may require a matrix recomputed 
for memory savings. 

Figure 3 shows the memory requirements for the two main 
phases of the code (strain and electronic structure 
calculations). It shows how the number of atoms that can be 
treated grows as a function of the number of CPUs, for a fixed 
amount of memory per CPU. The number of atoms can be 
intuitively characterized by the length of one side of a cube 
that would contain that many atoms. This length is shown in 
Figure 3, on the vertical axis on the right side of each plot. 
This figure shows that for a given amount of memory per CPU 
in the strain calculation (shown in the left plot), the number of 
atoms that can be handled levels off after a certain CPU count, 
whereas for the electronic structure calculation (shown in the 
right plot), the number of atoms that can be treated in NEMO 
3-D continues to grow for larger CPU counts. The unfavorable 
memory scaling in the strain calculation is due to the allocation 
of all the atom positions on a single CPU. Distribution of this 
memory is possible at compile time but has limited output 
capability. The strain calculations have so far never been 
memory limited. NEMO 3-D is typically size limited in the 
electronic structure calculation. 

(3) Scaling. Out of the two phases of NEMO 3-D, the strain 
calculation is algorithmically and computationally simpler. 
The Lanczos diagonalization of the Hamiltonian matrix, on the 
other hand, is much more challenging computationally.  

To investigate the performance of NEMO 3-D package, 
computation was performed in a single dome shaped InAs 
quantum dot nanostructure embedded in a GaAs barrier 
material as shown in Figure 2. The HPC platform used in the 

performance studies are shown in Table III. These include 
three Linux clusters at the Rosen Center for Advanced 
Computing (RCAC) at Purdue with Intel processors (32 bit 
Xeon, 64 bit Xeon and dual core Woodcrest). The 
PU/Woodcrest cluster has two dual core chips per node. The 
other three platforms are a BlueGene at the Rensselaer 
Polytechnic Institute (RPI), the Cray XT3 at the Pittsburgh 
Supercomputing Center (PSC) and the SGI Altix at the 
National Center for Supercomputing Applications (NCSA). 
The processors on the Altix are Intel Itanium 2 processors, on 
the BlueGene they are IBM PowerPC's while the Cray XT3 
has AMD Opterons. These three platforms have proprietary 
interconnects, that are higher performance than Gigabit 
Ethernet (GigE) for the three Linux clusters at Purdue. In the 
following, the terms processors and cores are used 
interchangeably. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Parallel performance of NEMO 3-D on some HPC platforms. 
 
Figure 4 shows the performance of NEMO 3-D for each of 

the architectures. The wall clock times for 100 iterations for 
the energy minimization in the strain phase and 100 iterations 
of the Lanczos method for the electronic structure phase are 
shown as a function of the number of cores. The problem is a 
benchmark problem with 2 million atoms. Figure 4 shows that 
the PU/Woodcrest cluster and the PU/Xeon64 cluster are very 
close in performance for the same number of cores. These are 
both close to the performance of the Cray XT3 for lower core 
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counts, while the XT3 performs better for higher core counts, 
due to its faster interconnect. The older cluster, PU/Xeon32, is 
slower by a factor of about 2-2.3 compared to the Woodcrest 
cluster. The BlueGene’s slower performance is consistent with 
its lower clock speed, while the scalability reflects its efficient 
interconnect. The performance of the Altix is lower than 
expected. 
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Fig. 5. Wall clock time vs. number of atoms for end-to-end computations of 
the electronic structure of a quantum dot, for various numbers of cores on the 
PU/Woodcrest cluster. 

 
In addition to the performance for the benchmark cases, 

with 100 iterations in the strain and electronic structure cases, 
end-to-end runs on the PU/Woodcrest cluster are carried out 
next (Figure 5). This involves iterating to convergence and 
computing the eigenstates in the desired range (conduction 
band and valence band). For each problem size, measured in 
millions of atoms, the end-to-end cases were run to 
completion, for one choice of number of cores. The iteration 
counts for the Lanczos computation are given in Table IV.  

The numerical experiment is designed to demonstrate 
NEMO 3-D’s ability to extract targeted interior eigenvalues 
and vectors out of virtually identical systems of increasing 
size. A single dome shaped InAs quantum dot embedded in 
GaAs is considered. The GaAs buffer is increased in size to 
increase the dimension of the system while not affecting 
confined states in the QD. It is verified [44] that the 
eigenvectors retain the expected symmetry of the 
nanostructure. 

(D) Visualization. The quantum dot simulation data of 
NEMO 3-D contains multivariate wave functions and strain 
profiles of the device structure. For effective 3-D 
visualizations of these results, a hardware-accelerated direct 
volume rendering system [45] has been developed, which is 
combined with a graphical user interface based on Rappture1. 
This visualization system uses data set with OPEN-DX2 format 
                                                 
1 Rappture is a toolkit supporting rapid application infrastructure, which is 
developed by Network for Computational Nanotechnology, Purdue University. 
2 OPEN-DX is a package of open source visualization software based on 
IBM’s Visualization Data Explorer. 
 

that are directly generated from NEMO 3-D. Figure 6 shows 
the wave functions of electron on the first 4 eigenstates in 
conduction band of quantum dot which has 268800 atoms in 
the electronic domain.   

(E) Release and Deployment of NEMO 3-D Package. 
NEMO 3-D was developed on Linux clusters at the Jet 
Propulsion Lab (JPL) and was released with an open source 
license in 2003. The originally released source appears to be 
no longer hosted at openchannelfoundation.org web site. As 
NEMO 3-D is undergoing further developments by the NCN 
we are planning future releases of the NEMO 3-D source 
through nanoHUB.org. NEMO 3-D has been ported to 
different high performance computing (HPC) platforms such 
as the NSF’s TeraGrid (the Itanium2 Linux cluster at NCSA), 
Pittsburgh’s Alpha cluster, SGI Altix, IBM p690, and various 
Linux clusters at Purdue University and JPL.  

 

 
 

Fig. 6. Wave functions of electron on the first 4 states in conduction band. 
 
The NEMO 3-D project is now part of a wider initiative, the 

NSF Network for Computational Nanotechnology (NCN). The 
main goal of this initiative is to support the National 
Nanotechnology Initiative through research, simulation tools, 
and education and outreach. Deployment of these services to 
the science and engineering community is carried out via web-
based services, accessible through the nanoHUB portal 
www.nanoHUB.org. The educational outreach of NCN is 
realized by enabling access to multimedia tutorials, which 
demonstrate state-of-the-art nanodevice modeling techniques, 
and by providing space for relevant debates and scientific 
events (cyber-infrastructure). The second purpose of NCN is to 
provide a comprehensive suite of nano simulation tools, which 
include electronic structure and transport simulators of 
molecular, biological, nanomechanical and nanoelectronic 
systems. Access to these tools is granted to users via the web 
browsers, without the necessity of any local installation by the 
remote users. The definition of specific sample layout and 
parameters is done using a dedicated Graphical User Interface 
(GUI) in the remote desktop (VNC) technology. The necessary 
computational resources are further assigned to the simulation 
dynamically by the web-enabled middleware, which 



automatically allocates the necessary amount of CPU time and 
memory. The end user, therefore, has access not only to the 
code, a user interface, and the computational resources 
necessary to run it but also to the scientific and engineering 
community responsible for its maintenance. 

Recently, a prototype graphical user interface (GUI) based 
on the Rappture package (www.rappture.org) is incorporated 
within the NEMO 3-D package and a web-based online 
interactive version (Quantum Dot Lab) for educational 
purposes is freely available on www.nanohub.org [46]. The 
currently deployed educational version is restricted to a single 
s orbital basis (single band effective mass) model and runs in 
seconds. Quantum Dot Lab was deployed in November 2005 
and usage during the past year increased to 924 users 
conducting 6127 simulation runs (Figure 7). Users can 
generate and freely rotate 3-D wavefunctions interactively 
powered by a remote visualization service.  

  

 
 

 
 

Fig. 7. (a) Number of annual users who have run at least one simulation. (b)  
Annualized simulation runs executed by nanoHUB users.  

 
The complete NEMO 3-D package is available to selected 

members of the NCN community through the use of a 
nanoHUB workspace. A nanoHUB workspace presents a 
complete Linux workstation to the user within the context of a 
web browser. The workstation persists beyond the browser 
lifetime enabling to user to perform long duration simulations 
without requiring their constant attention. As shown in this 

paper the computational resources required to perform device 
scale simulations are considerable and beyond the reach of 
many researchers. With this requirement in mind NCN has 
joined forces with Teragrid [47] and the Open Science Grid 
[48] to seamlessly provide the necessary backend 
computational capacity to do scientifically significant 
computing. Computational resources necessary for large scale 
parallel computing are linked to nanoHUB through the 
Teragrid Science Gateways program. Access to a Teragrid 
allocation is provided for members of the NCN community. 
Development of a more comprehensive NEMO 3-D user 
interface continues. The more comprehensive interface will 
provide access to a broader audience and encourage the 
continued growth of the nanoHUB user base. 

 
V.   CONCLUSION 

NEMO 3-D is introduced to the IEEE Nanoelectronics 
community as a versatile, open source electronic structure code 
that can handle device domains relevant for realistic large 
devices. Realistic devices containing millions of atoms can be 
computed with reasonably, easily available cluster computers. 
NEMO 3-D employs a VFF Keating model for strain and the 
20-band sp3d5s* empirical tight-binding model for the 
electronic structure computation. It is released under an open 
source license and maintained by the NCN, an organization 
dedicated to develop and deploy advanced nanoelectronic 
modeling and simulation tools. NEMO 3-D is not limited to 
research computing alone; A first educational version 
including visualization capabilities has been released on 
nanoHUB.org and has been used by hundreds of users for 
thousands of simulations. In the next part, the use of NEMO 3-
D is demonstrated in the modeling and calculation of single-
particle electronic states of a large variety of relevant, 
realistically sized nanoelectronic devices. 
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