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Abstract―In Part−I, development and deployment of a general 
Nanoelectronic Modeling tool (NEMO 3-D) has been discussed. 
Based on the atomistic valence-force field (VFF) and the sp3d5s* 
nearest-neighbor tight-binding models, NEMO 3-D enables the 
computation of strain and electronic structure in nanostructures 
consisting of over 64 and 52 million atoms, corresponding to vol-
umes of (110nm)3 and (101nm)3, respectively. In this part, 
successful applications of NEMO 3-D are demonstrated in the 
atomistic calculation of single-particle electronic states of 
realistically-sized (1) self-assembled quantum dots (QDs) 
including long-range strain and piezoelectricity, (2) stacked 
quantum dot system as used in quantum cascade lasers, (3) SiGe 
quantum wells (QWs) for quantum computation, and (4) SiGe 
nanowires. These examples demostrate the broad NEMO 3-D 
capabilities and indicate the necessity of multimillion atomistic 
electronic structure modeling. 

Index Terms―Atomistic simulation, NEMO 3-D, Nanostruc-
tures, Strain, Piezoelectricity, Valley splitting, Quantum compu-
tation, Tight binding, Keating model, Quantum dot, Quantum 
well, Nanowire.  

I.   INTRODUCTION 
HIS article describes NEMO 3-D capabilities in the 
simulation of 3 (three) different classes of nanodevices of 

carrier confinement in 3, 2, and 1 dimensions in the 
GaAs/InAs and SiGe materials systems.   

Single and Stacked Quantum Dots (confinement in 3 
dimensions). Quantum dots (QDs) are solid-state 
semiconducting nanostructures that provide confinement of 
charge carriers (electrons, holes, excitons) in all three spatial 
dimensions resulting in strongly localized wave functions, 
discrete energy eigenvalues and subsequent interesting 
physical and novel device properties [1][2][3][4][5]. Existing 
nanofabrication techniques tailor QDs in a variety of types, 
shapes and sizes. Within bottom-up approaches, QDs can be 
realized by colloidal synthesis at benchtop conditions. 
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Quantum dots thus created have dimensions ranging from 2–
10 nanometers corresponding to 100–100,000 atoms. On the 
other hand, self-assembled quantum dots (SAQDs), in the 
coherent Stranski-Krastanov heteroepitaxial growth mode, 
nucleate spontaneously within a lattice mismatched material 
system (for example, InAs grown on GaAs substrate) under the 
influence of strain in certain physical conditions during 
molecular beam epitaxy (MBE) and metalorganic vapor phase 
epitaxy (MOVPE) [1][6]. The strain produces coherently 
strained quantum-sized islands on top of a two-dimensional 
wetting-layer. The islands can be subsequently buried to form 
the quantum dot. Semiconducting QDs grown by self-
assembly are of particular importance in quantum optics [7][8], 
since they can be used as detectors of infrared radiation, 
optical memories, and in laser applications. The delta-function-
like energy dependence of density of states and the strong 
overlap of spatially confined electron and hole wavefunctions 
provide ultra-low threshold current densities, high temperature 
stability of the threshold current and high material and 
differential quantum gain/yield. Strong oscillator strength and 
non-linearity in the optical properties have also been observed 
[1][8]. Self-assembled quantum dots also have potential for 
applications in quantum cryptography as single photon sources 
and quantum computation [9][10]. In electronic applications 
QDs have been used to operate like a single-electron transistor 
and demonstrate pronounced Coulomb blockade effect. Self-
assembled QDs, with an average height of  1–5 nm, are 
typically of size (base length/diameter) 5–50 nm and consist of 
5,000–2,000,000 atoms. Arrays of quantum-mechanically 
coupled (stacked) self-assembled quantum dots can be used as 
optically active regions in high-efficiency, room-temperature 
lasers. Typical QD stacks consist of 3–7 QDs with typical 
lateral extension of 10–50 nm and dot height of 1–3 nm. Such 
dots contain 5–50 million atoms in total, where atomistic 
details of interfaces are indeed important [11]. 

Quantum Wires (confinement in 2 dimensions). For quite 
some time, nanowires have been considered a promising 
candidate for future building block in computers and 
information processing machines [12][13][14][15][16]. 
Nanowires are fabricated from different materials (metal, 
semiconductor, insulator and molecular) and assume different 
cross-sectional shapes, dimensions and diameters. Electrical 
conductivity of nanowires is greatly influenced by edge effects 
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on the surface of the nanowire and is determined by quantum 
mechanical conductance quanta. In the nanometer regime, the 
impact of surface roughness or alloy disorder on electronic 
bandstructure need be atomistically studied to further gauge 
the transport properties of nanowires.  

Quantum Wells (confinement in 1 dimension). QW devices 
are already a de-facto standard technology in MOS devices and 
QW lasers. They continue to be examined carefully for ultra-
scaled devices where interfacial details turn out to be critical. 
Composite channel materials with GaAs, InAs, InSb, GaSb, 
and Si are being considered [17][18], which effectively 
constitute QWs. Si QWs buffered/strained by SiGe are 
considered for Quantum Computing (QC) devices where 
valley-splitting (VS) is an important issue [19]. Si is desirable 
for QC due to its long spin-decoherence times, scaling 
potential and integrability within the present microelectronic 
infrastructure. In strained Si 6-fold valley-degeneracy of Si is 
broken into lower 2-fold and raised 4-fold valley-degeneracies. 
The presence of 2-fold valley-degeneracy is a potential source 
of decoherence which leads to leakage of quantum information 
outside qubit Hilbert space. Therefore, it is of great interest to 
study the lifting of remaining 2-fold valley degeneracy in 
strained Si due to sharp confinement potentials in recently 
proposed [19] SiGe/Si/SiGe quantum well (QW) 
heterostructures based quantum computing architectures. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Simulated InAs/GaAs quantum dots with dome and pyramidal shape. 
Two simulation domains are shown. Delec: central domain for electronic 
structure calculation, and Dstrain: larger/outer domain for strain calculation. In 
the figure: s is the substrate height, c is the cap layer thickness, h is the dot 
height, d is the dot diameter and b is the dot base length. 

 
II.   SIMULATION RESULTS 

(A) Strain and Piezoelectricity in InAs/GaAs Single QDs 
The dome and pyramid shaped InAs QDs that are studied 

first in this work are embedded in a GaAs barrier material 
(schematic shown in Figure 1) and have diameter (base length) 
and height of 11.3 nm and 5.65 nm respectively, and are 
positioned on a 0.6-nm-thick wetting layer [20][21]. The 
simulation of strain is carried out in the larger computational 
box (width Dstrain and height H), while the electronic structure 
computation is usually restricted to the smaller domain (width 
Delec and height Helec). All the strain simulations in this 

category fix the atom positions on the bottom plane to the 
GaAs lattice constant, assume periodic boundary conditions in 
the lateral dimensions, and open boundary conditions on the 
top surface. The inner electronic box assumes closed boundary 
conditions with passivated dangling bonds [22]. The strain 
domain contains ~3 M atoms while the electronic structure 
domain contains ~0.3M atoms.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Atomistic diagonal strain profile along the [001], z direction. (a) Dome 
shaped dot with Diameter, d = 11.3 nm and Height, h = 5.65 nm. (b) Pyramidal 
dot with Base, b = 11.3 nm and Height, h = 5.65 nm. Strain is seen to penetrate 
deep inside the substrate and the cap layer. Also, noticeable is the gradient in 
the trace of the hydrostatic strain curve (Tr) inside the dot region that results in 
optical polarization anisotropy and non-degeneracy in the electronic 
conduction band P. Atomistic strain thus lowers the symmetry of the quantum 
dot. 

 

 
Fig. 3. Conduction band wavefunctions and spectra (eV) for first eight energy 
levels in the (a) Dome shape and (b) Pyramidal quantum dot structures. 
Atomistic strain is included in the calculation. Note the optical anisotropy and 
non-degeneracy in the P energy level. The first state is oriented along [110] 
direction and the second state along [110] direction. 

 
Impact of strain. Strain modifies the effective confinement 

volume in the device, distorts the atom bonds in length and 
angles, and hence modulates the local Bandstructure and the 
confined states. Figure 2 show the diagonal (biaxial) 
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components of strain distribution along the [001] direction in 
both the quantum dots (cut through the center of the dot). 
There are two salient features in both these plots: (a) The 
atomistic strain is long-ranged and penetrates deep into both 
the substrate and the cap layers, and (b) all the components of 
biaxial stress has a non-zero slope inside the quantum dot 
region. The presence of the gradient in the trace of the 
hydrostatic strain introduces unequal stress in the zincblende 
lattice structure along the depth, breaks the equivalence of the 
[110] and [110] directions, and finally breaks the degeneracy 
of the first excited electronic state (the so called P level). 
Figure 3 shows the wavefunction distribution for the first 8 
(eight) conduction band electronic states within the device  
 

 
 
 
 
 
 
 
 
 
 

Fig. 4. Atomistic off-diagonal strain profile along the z (vertical) direction 
which in effect induces polarization in the quantum dot structure. (a) Dome 
shape dot with Diameter, d = 11.3 nm and Height, h = 5.65 nm. (b) Pyramidal 
dot with Base, b = 11.3 nm and Height, h = 5.65 nm. 
 

 
Fig. 5. Potential surface plot of a (a) dome shape (b) pyramidal quantum dot in 
the XY plane at z = 1 nm from the base of the dot. 

region for both the dots (in a 2-D projection). Note the optical 
anisotropy and non-degeneracy in the first excited (P) energy 
level. The first P state is oriented along the [110] direction and 
the second P state along the [110] direction. The individual 
energy spectrum is also depicted in this figure which reveals 
the value of the P level splitting/non-degeneracy (defined as 
E110 – E110) to be about 5.73 meV and 10.85 meV for the dome 
shaped and pyramidal quantum dots, respectively. Although 
both the two dots have the same qualitative trend in diagonal 
strain profiles and similar wavefunction distribution, the 
reason for a larger split and hence pronounced anisotropy of P 
level in the pyramidal quantum dot is due to the presence of 
larger gradient of the hydrostatic strain, as can be seen in 
Figure 2, inside the dot region. In other words, as far as crystal 
symmetry lowering is concerned, atomistic strain has stronger 
impact in the pyramidal dot than it has in the dome shaped dot. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Potential along [110] and [110] directions at z = 1 nm from the base of 
the dot. Notice the induced polarization in the potential profile and the unequal 
values of potential along the [110] and [110] directions. Also, dome shape dot 
induces stronger potential (d/b = 11.3 nm and h = 5.65 nm). 

 
Impact of piezoelectric field. The presence of non-zero off-

diagonal strain tensor elements leads to the generation of a 
piezoelectric field in the quantum dot structure, which is 
incorporated in the simulations as an external potential by 
solving the Poisson equation on the zincblende lattice. Figure 4 
shows the atomistic off-diagonal strain profiles in both the 
quantum dots with heights, h of 5.65 nm and diameter (base 
length) of 11.3 nm. The off-diagonal strain tensors are found to 
be larger in the dome shaped dot. The off-diagonal strain 
tensors are used to calculate the first-order polarization in the 
underlying crystal (please see Ref. [20] for the governing 
equations) which gives rise to a piezoelectric charge 
distribution throughout the device region and then used to 
calculate the potential by solving the Poisson equation. The 
relevant parameters for the piezoelectric calculation are taken 
from Ref. [20]. Experimentally measured polarization 
constants of GaAs and InAs materials (on unstrained bulk) 
values of -0.16 C/m2 and -0.045 C/m2 are used. The second 
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order piezoelectric effect [23] is neglected here because of 
unavailability of reliable relevant polarization constants for an 
InAs/GaAs quantum dot structures.       

 

 
 
Fig. 7. Conduction band wavefunctions for first three energy levels in the 
dome shaped quantum dot structure with diameter, b = 11.3 nm and height, h = 
5.65 nm (a) without strain and piezoelectricity, E[110] - E[110] = 1.69meV (b) 
with atomistic strain, E[110] - E[110] = 5.73 meV  and (c) with strain and 
piezoelectricity, E[110] - E[110] = -2.84 meV. Piezoelectricity flips the 
wavefunctions. 
 

 
Fig. 8. Conduction band wavefunctions for first three energy levels in the 
pyramidal quantum dot structure with base, b = 11.3 nm and height, h = 5.65 
nm (a) without strain and piezoelectricity, E[110] - E[110] = 2.02meV (b) with 
atomistic strain, E[110] - E[110] = 10.85 meV  and (c) with strain and 
piezoelectricity, E[110] - E[110] = 0.74 meV. Piezoelectricity does not flip the 
wavefunctions. 

 
The calculated piezoelectric potential contour plots in the 

XY plane are shown in Figure 5 revealing a pronounced 
polarization effect induced in the structure. It is found that in 
both the dots piezoelectric field alone favors the [110] 
orientation of the P level. Shown in Figure 6 is the asymmetry 
in potential profile due to atomistic strain and inequivalence in 

the piezoelectric potential along [110] and [110] directions at a 
certain height z = 1 nm from the base of the dots.   

Figures 7 and 8 show the conduction band wavefunctions 
for the ground and first three excited energy states in the dome 
and pyramidal quantum dot structures with diameter (base 
length) of 11.3 nm and height, h of 5.65 nm, respectively. In 
Figures 7a and 8a strain and piezoelectricity are not included 
in the calculation. The weak anisotropy in the P level is due to 
the atomistic interface and material discontinuity. Material 
discontinuity mildly favors the [110] direction in both the dots. 
In Figures 7b and 8b atomistic strain and relaxation is included 
resulting in a 5.73 meV (dome) and 10.85 meV (pyramidal) 
splits in the P energy levels. Strain favors the [110] direction 
in both the dots. In Figures 7c and 8c piezoelectricity is 
included on top of strain inducing a split of -2.84 meV (dome) 
and 9.59 meV (pyramid) in the P energy level. There is a 
noticeable difference in Figures 7c and 8c. In the case of a 
dome shaped dot (Figure 7c), the first P state is oriented along 
[110] direction and the second state along [110] direction; 
piezoelectricity thereby has not only introduced a global shift 
in the energy spectrum but also flipped the orientation of the P 
states. In the case of a pyramidal dot (Figure 8c) the energetic 
sequence of the P states remains unchanged. The underlying 
reason behind this difference in orientation polarization due to 
piezoelectricity can be explained by the unequal potential 
induced as depicted in the 1-D potential plot in Figure 6, which 
really is induced by the off-diagonal crystal distortion depicted 
in Figure 4. The pyramidal dot does not build-up as much off-
diagonal strain due to the alignment of its facets with the 
crystal. As a result the piezoelectric fields are reduced. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Electron state energies in the quantum dot molecule as a function of 
interdot separation. The strain simulation domain contains 8–13 M atoms and 
the electronic structure domain contains 0.5–1.1M atoms. 

(B) Stacked Quantum Dot System   
Self-assembled quantum dots can be grown as stacks where 

the QD distance can be controlled with atomic layer control. 
This distance determines the interaction of the artificial atom 
states to form artificial molecules. The design of QD stacks 
becomes complicated since the structures are subject to 
inhomogeneous, long-range strain and growth imperfections 

1.34

1.35

1.36

1.37

1.38

1.39

1.4

1.41

2 4 6 8 10 12 14 16
DOT SEPARATION [nm]

EN
ER

G
Y 

[e
V]

E1

E2

E3

E4

v

E5

E6

25nm

5nm

d
d

Strain 
domain

Electronic 
domain

10nm

20nm 20nm

20nm

25nm

5nm

d
d

Strain 
domain

Electronic 
domain

10nm

20nm 20nm

20nm



such as non-identical dots and inter-diffused interfaces. 
Quantum dot stacks consisting of three QD layers are 
simulated next (see inset of Figure 9). The InAs quantum dots 
are disk shaped with diameter 10 nm and height 1.5 nm 
positioned on a 0.6 nm thick wetting layer. The substrate 
thickness under the first wetting layer is kept constant at 30nm 
and the cap layer on top of the topmost dot is kept at 10 nm for 
all simulations. The strain simulation domain contains 8–13 M 
atoms and the electronic structure domain contains 0.5–1.1M 
atoms.  

 

 
 
Fig. 10. First five electron states wavefunction magnitudes (columns) with QD 
2, 3, 4, 6, 10 and 12 nm separation (rows). 

 
Figure 9 shows the electron state energy as a function of 

inter-dot separation. In a system without inhomogeneous strain 
one would expect the identical dots to have degenerate 
eigenstate energies for large dot separations. Strain breaks the 
degeneracy even for large separations. The strain field clearly 
extends over the distance of 15 nm quantum dot separation 
(which is why they physically do not grow on top of each 
other). As the dot separation is narrowed the dots interact with 
each other mechanically through the strain field as well as 
quantum mechanically through wavefunction overlaps. The set 
of lowest states E0-2 clearly show the state repulsion of 
bonding and anti-bonding molecular states for short inter-dot 
distances. Figure 10 shows cross-sectional cuts in the growth 
direction and one lateral direction through the middle of the 3-
D wavefunctions. The wavefunctions are quite clearly 
separated into the individual dots with little overlap across the 
dots for dot separations of 15 nm and 10 nm. For 2-6 nm 
separation, wavefunction overlap can be observed. The 
reduction of E2 energy with decreasing distance for 2–4 nm 
can be associated with a cross-over of p-symmetry states. 

Whether or not the coupled dot system favors the top-most or 
bottom-most QD to peak the ground state wavefunction is a 
complicated interplay of strain, QD size, and wavefunction 
overlap. Only a detailed simulation can reveal that interplay.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. (a) Schematic of a SiGe/Si/SiGe QW heterostructure grown on [001] 
substrate. The crystal symmetry directions are along x and z. (b) Schematic of 

a quantum well unit cell grown on ]01[ nz ′  miscut substrate. The unit cell is 

periodic along ]01[nx′  and y′  directions and confined in ]01[ nz ′  

direction. Miscut angle is ( )nT 1tan 1−=θ . The step height is one atomic 

layer )4/(a , where a is lattice constant. (c) Band structure of 5.26 nm thick 

flat QW along x and 02  miscut QW along x′  direction. Flat QW shows the 
presence of two non-degenerate valleys separated by an energy know as VS. 

Miscut QW shows the presence of two degenerate valleys centered at 0
xk ′± . 

Interaction between these valleys at 0=± ′xk  causes a minigap (∆m) as 

shown in the inset. Lowest valleys are degenerate. Here, SiL naa = and 

n=28 for 02  miscut. SiGe buffer layers are not included in electronic 
structure calculation domain for these plots. 

  
(C) SiGe Quantum Well  

Miscut (vicinal) surfaces (Figure 11b) as opposed to flat 
surfaces (Figure 11a) are often used to ensure uniform growth 
of Si/SiGe heterostructures. Miscut has a dramatic effect on 
bandstructure of Si QW. Bandstructure of a flat Si QW has two 
valleys centered at 0=± xk  and separated by an energy 
known as valley-splitting (VS) [24][25]. VS in a flat QW is a 
result of interaction among states in bulk z-valleys centered at 

mz kk = , where mk  is position of the valley-minimum in 
strained Si. In a miscut QW lowest lying valleys are 
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degenerate with minima at 0
xk ′± . Valley-valley interaction at 

0=± xk  causes formation of a minigap (∆m). Thus atomic 
scale modulation of surface topology leads to very different 
electronic structures in flat and miscut QWs. As a consequence 
of this, flat and miscut QWs respond differently to the applied 
magnetic fields. In the presence of lateral confinement in 
miscut QW the two degenerate valleys in Figure 11c interact 
giving rise to VS. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 12. (a) VS of the first Landau-level in a 10nm thick flat strained Si QW. 
VS increases due to the alloy-disorder (as shown in the inset) in SiGe buffer 

layers. (b) VS of the first Landau-level in a 02  miscut strained Si QW. 
Presence of miscut surfaces leads to significant suppression in VS. Inclusion 
of realistic alloy-disorder in SiGe buffer layers raise the VS to experimentally 
observed values. Error bars represent standard deviation in VS. 

 
The VS is often measured using magnetic probe techniques 

such as Shubnikov de Haas oscillations or electron-valley 
resonance (EVR) [26]. In these measurements in plane 
confinement of the Landau-levels is provided by the magnetic 
field. Figure 12a and 12b show the dependence of VS on 
applied magnetic field in flat and 02  miscut QWs. In a flat 
QW VS is independent of magnetic field because in these 
QWs VS arises from z-confinement provided by the confining 
SiGe buffers. In miscut QWs, however, VS arises from the 
interaction of two degenerate valleys centered at 0

xk ′±  along 

x′  direction. Therefore, x′  confinement arising from the 
applied magnetic field results in the dependence of VS on 
magnetic field. At low magnetic fields this dependence is 
linear. SiGe alloy disorder shown in inset of Figure 12a is 
inherently present Si/SiGe heterostructures. In tight-binding 
calculations alloy-disorder translates into atom-disorder and 
inhomogeneous strain disorder. 

Simulation Domain. Strain disorder is known to have long 
range nature (see for example the QD simulations in Figure 2). 
40nm of SiGe layers are included on the top and the bottom of 
10nm Si QW for strain calculations. This SiGe thickness is 
sufficient to model the long-range strain disorder, where the 
detailed strain boundary conditions are not important and the 
SiGe volume exceeds the Si QW volume significantly. SiGe 
buffers provide electronic confinement of approximately 
100meV due to which the electronic states of interest in this 
problem are spatially confined to the QW and only weakly 

penetrate into the SiGe buffer. Therefore one can safely reduce 
the electronic structure domain to 3nm of SiGe buffer around 
the Si QW. For this setup the strain calculation requires 3.6 M 
atoms and the electronic structure calculation requires 0.7M 
atoms. For the idealized geometries without a SiGe buffer, a 
homogeneous lattice distortion of 013.0|| =ε  is assumed 
throughout the Si QW, as approximated from the full SiGe 
buffer system calculation and hard wall boundary conditions 
are assumed in z-direction. Such electronic structure 
calculations require ~50,000 atoms. 

 
Fig. 13. (a) Atomistically resolved disorder in the Si0.8Ge0.2 40×4×4 unit cell 
nanowire. (b) Bandedge minima of the first four conduction subbands plotted 
along length of the nanowire in local bandstructure and VCA formulations. (c) 
Bandedge minimum in the transport direction plotted along length of the 
nanowire. 

 
The Magnetic field is introduced into the tight binding 

Hamiltonian through Peierls substation [27][28][29]. x′  
confinement resulting from the magnetic field is incorporated 
through the Landau gauge ( )yBxA ˆ=

v
. Closed boundary 

conditions are used in x and z directions while y-direction is 
assumed to be (quasi-)periodic. The confinement induced by 
closed boundary conditions in x′  direction compete with the 
magnetic field confinement. The lateral extension of the strain 
and the electronic structure domain is set to 150nm, which is 
about 7 times larger than the maximum magnetic confinement 
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length in a 2DEG at B = 1.5T (�21nm). For the magnetic field 
ranges of 1.5-4T confinement is dominated by the magnetic 
field and no lateral x-confinement effects due to the closed 
boundary conditions are visible in simulations of Figure 12. 
Modulation doping in Si/SiGe heterostructures induces built-in 
electric field. In the simulations performed here an electric 
field of 9 MV/m is assumed in the growth direction. SiGe alloy 
disorder is assumed to be quasi-periodic with the period of 5.5 
nm which is sufficient to capture the effect of inhomogeneous 
strain disorder.  

 

 
 

Fig. 14. Bandstructures of 40×4×4 Si0.8Ge0.2 alloy nanowire in local 
bandstructure (grey), VCA (red) and zone-unfolding (blue) formulations. 

 
In the presence of the applied magnetic field the 2-DEG is 

quantized in Landau levels (LLs). The valley-degeneracy of 
LLs is broken in the presence of sharp confinement due to 
Si/SiGe interfaces in a QW. The VS of first LL in flat and 02  
miscut QWs is plotted as a function of the applied magnetic 
field in fig 16. The VS in ideal (no SiGe disorder) miscut QWs 
is 2 orders of magnitude less than that in flat QWs. The SiGe 
alloy disorder provides additional symmetry breaking leading 
to enhancement in VS in flat as well as miscut QWs (Figure 
12). Addition of SiGe buffers to the electronic structure 
calculation domain in 02  miscut QWs results in VS close to 
the experimentally observed values. 

Previous predictions of VS [24][25] over-predict the value 
of the VS compared to experimental data [26] while perfect 
slanted quantum wells underpredict the observed VS by an 
order of magnitude.  Friesen et al [30] suggest that disorder in 
the miscuts raises the valley splitting to experimentally 
observed levels.  Here we show that just buffer disorder with 
regular miscut steps alone can account for the additional valley 
splitting.  We do not have to assume any particular step 
disorder models at all [31].  The atomistic representation of the 
confinement buffer and the local disorder in it is therefore an 
esstential ingredient in the physics based simulation of VS. No 
additional disorder parameters need to be introduced to obtain 
results close to experiments! Simulations including step 

roughness disorder combined with alloy disorder have recently 
been shown [31] to improve the agreement with experiment. 
(D) SiGe Nanowires  

Nanowires conduct carriers in one dimension and confine 
them in the other two dimensions.  As the wire diameter is 
reduced to the nanometer range, it is understood that the two-
dimensional confinement modifies the electronic structure and 
the nanowire is quite similar to an electromagnetic waveguide. 
Typical calculations are performed in the single band effective 
mass calculation. Full 3-D transport simulations based on 
NEGF have been implemented in simulators [13], analyzed 
interface roughness [32], and released on the nanoHUB [33]. 
Since its release in May 2006 the nanowire code has been used 
by over 419 users who have run over 3,898 simulations on a 
parallel virtual cluster utilizing VIOLIN [34] indicating that 
there is a real demand in the community for such simulations. 
It is however also understood that as the nanowire dimension 
shrinks to below around 5nm, that the effective mass 
approximation breaks down [35] and an atomistic 
representation of the material is needed to compute the 
dispersion of an ideal nanowire slice. Efforts are now 
underway to develop full 3-D nanowire NEGF-based transport 
simulators that are fully atomistic [15]. Fundamental questions 
to be addressed here remain the influence of the nanowire 
interface and the atomistic nanowire composition, such as 
alloy disorder. 

Recently NEGF based transport simulations and full 3D 
electronic structure calculations were compared for AlGaAs 
nanowires [16].  A critical finding of that work was that the 
alloy disorder strongly influences the dispersion along the wire 
direction.  The considered AlGaAs wires are unstrained and 
“only” contain atom disorder while all atom positions are on a 
regular zincblende GaAs/AlAs lattice. This work presents for 
the first time electronic structure calculations for SiGe 
nanowires that contain strain, position, and atom disorder.  
Different nanowire cross sections with 4, 6, 8 unit cells, 
corresponding to 2.17, 3.26, 4.34nm with a common nanowire 
length of 40 unit cells, corresponding to 22 nm are considered. 
Strain and electronic structure calculations are performed on 
the whole nanowire in free standing configuration. In other 
words substrate is not taken into account. 

Figure 13a depicts a sliver cut through the center of the 
40×4×4 sample indicating the atomistically resolved disorder 
of the wire.  Only the central 5nm long portion of this 22nm 
long wire is shown for good atomistic resolution. It is obvious 
that there is no such thing as a repeated unit cell in that wire.  
Therefore the very concept of bandstructure, which is based on 
a (small) repeated cell in semiconductors is called into 
question [36].  The most typical approach to deal with alloy 
disorder is called virtual crystal approximation (VCA). The 
VCA averages the atomic potentials according to the atom 
concentrations and to smooth out the material.  In that 
approach a bandstructure can be easily calculated in the 
repeated 4×4 unit cell.   

VCA 

Unfolded 

Local BS 



In another approach one can consider a single sliver of the 
4×4 building block, imagine that that cell is repeated infinitely 
and compute a bandstructure in it. This would in a sense 
represent the local bandstructure for each slice. With the 
fluctuations in the device, one would expect that the 
conduction band edge will fluctuate from slice to slice as 
indicated in Figure17b. SiGe alloy disorder splits 4 four fold 
degenerate bands in a pure Si nanowire. The corresponding 
bandedge minima of these four bands in 40×4×4 SiGe alloy 
nanowire are plotted along length of the nanowire in Figure 
13b. The four bands are degenerate in the VCA formulation 
and the bandedge minimum of this band is also plotted in 
Figure 13b. Figure 13c shows the X point conduction band 
minimum along the wire length in local band structure and 
VCA formulation. Each slice has its own local bandstructure 
and its fluctuations in k-space are compared in Figure 14 
against the VCA approach.  This local bandstructure approach 
does not deliver a meaningful bandedge of the wire or a 
meaningful effective mass.  

 

 
 

Fig. 15. (a) Direct (∆4 valleys) and indirect (∆2 valleys) bandgaps obtained 
form VCA and zone-unfolded bandstructures. (b) Effective masses of ∆4 and 
∆2 valleys. (c) Energy uncertainties of ∆4 and ∆2 bands. 

 
An alternative approach to the local bandstructure and the 

VCA approach is the computation of the electronic structure of 
the overall wire and to extract an approximate bandstructure 
that describes the overall wire well [36]. This approximate 

bandstructure is representative of the overall transport 
capabilities of the wire and correlates well to NEGF transport 
simulations [16].  Figure 14 also compares the approximate 
bandstructure to the VCA and the local bandstructure samples.  
The approximate bandstructure provides a much more 
meaningful representation of the nanowire performance than 
the two others, which either over represent the disorder, or 
ignore disorder completely. From this approximate dispersions 
one can derive critical device parameters such as bandgap and 
effective masses (along the transport direction), which can be 
used in an approximate over-the-barrier-model to predict 
device performance [17][37].   

Bandgaps and effective masses are plotted as a function of 
nanowire diameter in Figure 15a,b. The approximate 
bandstructure predicts a smaller bandgap than the VCA similar 
to AlGaAs nanowires [16] and AlGaAs bulk [38].  The direct 
(∆�) and indirect (∆�) valley-bandgaps show an interesting 
cross-over for 4.34nm wires, which will significantly increase 
the density of states at the conduction band edge and influence 
device performance; the VCA assumption does not result in 
such a cross-over. Interestingly the VCA and approximate 
bandstructure result in virtually identical effective masses. 
Additional statistical samples on different wires need to be 
simulated in the future to verify if this is a typical trend for this 
class of SiGe wires. 

 Since the bandstructure is approximate it does contain an 
error bar in energy for each k point in the dispersion. These 
energy uncertainties can be used to calculate the scattering 
time of the state according to the prescription of Ref [39]. One 
would expect that as the system becomes larger the error bars 
become smaller and the system becomes more bulk like.  
Figure 15c depicts the size of the error bars at the ∆� and ∆� 
valley conduction band edges and indeed confirms that 
expectation.  Note that even for the 4.34nm thick nanowire the 
fluctuations are still of the order of 5meV. 

 
III.   CONCLUSION 

NEMO 3-D is introduced to the IEEE Nanoelectronics 
community as a versatile, open source electronic structure code 
that can handle device domains relevant for realistic devices. 
Realistic devices containing millions of atoms can be 
computed with reasonably, easily available cluster computers. 
NEMO 3-D employs a VFF Keating model for strain and the 
20-band sp3d5s* empirical tight-binding model for the 
electronic structure computation. The impact of atomistic 
strain and piezoelectricity on the electronic structure in dome 
shaped quantum dots is explored. Under the assumptions of 
realistic boundary conditions, strain is found to be long-ranged 
and penetrate around 20 nm into the dot substrate thus 
stressing the need for using large dimensions of these 
surrounding layers and at least 3 million atoms in the 
simulations. The true symmetry of the quantum dots is found 
to be lower than the geometrical shape symmetry because of 
the fundamental atomistic nature of the underlying zincblende 



crystal lattice. Atomistic strain is found to induce further opti-
cal polarization anisotropy favoring the [110] direction and 
pronounced non-degeneracy in the quantum dot excited states, 
magnitude (few meV) of which depends mainly on the dot size 
and surrounding material matrix. First order piezoelectric 
potential, on the other hand, favors the [110] direction, reduces 
the non-degeneracy in the P states and is found to be strong 
enough to flip the optical polarization in certain sized quantum 
dots. Simulations of QD stacks exemplify the complicated 
mechanical strain and quantum mechanical interactions on 
confined electronic states. Molecular states can be observed 
when the dots are in close proximity.  Simulations of SiGe 
buffered Si QWs indicate the importance of band-to-band 
interactions that are naturally understood in the NEMO 3-D 
basis. VS is computed as a function of magnetic field matching 
experimental data. First simulations of disordered SiGe alloyed 
nanowires indicate the critical importance of the treatment of 
atomistic disorder. Typical approaches of a smoothed out 
material (VCA) or considerations of bandstructure in just 
individual slices clearly fail to represent the disordered 
nanowire physics. 

NEMO 3-D demonstrates the capability to model a large 
variety of relevant, realistically sized nanoelectronic devices.  
It is released under an open source license and maintained by 
the NCN, an organization dedicated to develop and deploy 
advanced nanoelectronic modeling and simulation tools. 
NEMO 3-D is not limited to research computing alone; A first 
educational version including visualization capabilities has 
been released on nanoHUB.org and has been used by hundreds 
of users for thousands of simulations. 
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