## QUANTUM COMPUTATION ROUTE TO MAGNETIC PHASE DISCOVERY

#### Arnab Banerjee, Assistant Professor









1/19/2024







### Electrons are like tiny bar magnets - Spins

#### What are Electron Spins



Electrons can spin around their axis and create corresponding magnetic spin in the direction of the magnetic field lines



Each orbital of an atom can have two electrons, but they have to be in opposite spins



2

## What are spins?

- Unpaired electron contributes a net spin moment of  $S = \pm 1/2$ .
- Orbital motion of electrons create a net angular moment *L*.







## **Applications of Magnetism**



Ferromagnetism have led to magnetic memories. but many more states of magnetism are possible...

Topological phases, skyrmions

New phases, e.g. spin ice, spin glass Emergent defects, domain walls







**T** PURI Discovery of new magnetic phases is important as it will lead to new applications in spintronics

## Zoo of new magnetic phases of matter



#### Quantum Spin Liquids

Spin liquids have a long-range entanglement and short-range correlation.



Motion (breaking of bonds) can be topological and depends on the symmetry of the system





Qubits

### Spin



Bloch spins have a direct correspondence with qubit states and phase gates



### Spin and Qubits

## Easy to entangle



### Spin and Qubits

### Easy to entangle



Bloch spins have a direct correspondence with qubit states and phase gates We can create quantum circuits that represent quantum states. the Bell states:



NISQ

 In the current era of noisy intermediate-scale quantum (NISQ) devices, it is very intriguing to explore the possibilities they provide for simulating quantum systems.



(a) Superconductors



(b) Rydberg atoms



(c) Trapped ions



### Optimization



- Find the objective function
- Applications in various industrial and societal and design problems
- Find the ground state of quantum Hamiltonians

### Hamiltonian Engineering



### Topological Phases



- Design dynamics of Hamiltonians
  using quantum hardware
- Study how to beat noise
- Study how to scale up simple building blocks to complex circuits
- Get to materials co-design and experiments

- Design topologically relevant models
- Study how environmental and device parameters affect state
- Understand quasiparticles and protection
- Get to materials co-design and experiments.



### Quantum Optimization

Minimize an Objective Function f(x) $x = (x_1, x_2, ..., x_n),$ 

where x = discrete or continuous variables



#### SLOW AND UNCERTAIN PROCESS



Ghasemaliz

### Quantum tunnelling





If one can find a means to change  $\delta U$  then the states can controllably tunnel into the minima.



QUANTUM SCIENCE CENTER

#### D-Wave 2000Q Annealer : 'Chimera architecture'





Each term can be independently tuped

## Frustrated Magnets

Competition between spins can give rise to highly degenerate and complex states of matter

Shastry-Sutherland model is an example of such a system



Has physical and material realizations, e.g. rareearth tetraborides, Yb<sub>2</sub>Pt<sub>2</sub>Pb

Can be exactly solved.

PURDUE



(a)

### Ising Shastry-Sutherland: RB<sub>4</sub> materials



### Ways to embed Shastry-Sutherland Lattice:

Unit Cell for Shastry-Sutherland





DUANTUM SCIENCE CENTER

We only pursue the half-cell embedding as more symmetric graph in an imperfect lattice

#### The defective D Wave Lattice: 2048 qubits → 496 logical spins

#### D-Wave lattice

A OAK RIDCE

Il Laboratory



QUANTUM SCIENCE CENTER

#### Interesting spin lattice



Has defects!



19

1/10/2024

## **Annealing Routines**



$$H = A(s) \sum_{i} \sigma_{i}^{x} + B(s) \left[ \sum_{i} h_{i} \sigma_{i}^{z} + \sum_{\langle ij \rangle} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z} \right]$$

- Forward annealing
- Reverse annealing
- Markov Chain quantum annealing(!)



### Can we see the phase diagram?

#### **Result on D-Wave Chip**



Liu & Sachdev, PRL, 101, 177201 (2008) Dublenych et al., PRL 109, 167202 (2012)

al Laboratory

QUANTUM SCIENCE CENTER



### D-Wave results, phase diagram



Liu & Sachdev, PRL, 101, 177201 (2008) Dublenych et al., PRL 109, 167202 (2012)

nal Laboratory

QUANTUM SCIENCE CENTER



## Structure factor

#### 1/3<sup>rd</sup> Bragg peak



 $\mathbf{S}(\vec{q}) = \sum_{\langle ij \rangle} \langle \sigma_i^z \sigma_j^z \rangle e^{i \vec{q} \cdot \vec{R}_{ij}}$ 

|  | h=-2.00 |           |    |
|--|---------|-----------|----|
|  |         |           |    |
|  |         |           |    |
|  |         |           |    |
|  |         |           |    |
|  |         |           |    |
|  |         |           |    |
|  |         |           |    |
|  |         |           |    |
|  |         |           |    |
|  |         |           |    |
|  |         |           |    |
|  |         |           |    |
|  |         | 1/10/2024 | 23 |

### Structure factor

 $\mathcal{S}(\vec{q}) = \sum \langle \sigma_i^z \sigma_j^z \rangle e^{i \vec{q} \cdot \vec{R}_{ij}}$  $\langle ij \rangle$ 

• The 1/3 Bragg peaks





#### What is the Hamiltonian?

- What is the phase diagram of a material

#### How do we understand criticality?

- Critical phases lend new states of matter
- Thermal and Quantum fluctuations?
- What is the role of defects in the material?
  - Size of defects,
  - Type of defects (point, domains)
  - Density of defects.
  - Does it change the Hamiltonian?

### Applications in various fields

#### An example: Applications in finance

Better solution than classical computers



## Hamiltonian design and dynamics using universal quantum computers



## Frustration and Chirality



New quantum physics can emerge from geometric frustration



Breeding ground for emergent quasiparticles, scaling laws, physical properties



### Ground State - Quantum Approximate Optimization

Simulations of Frustrated Ising Hamiltonians using Quantum Approximate Optimization

Phillip C. Lotshaw<sup>1</sup>, Hanjing Xu<sup>2</sup>, Bilal Khalid<sup>2,3</sup>, Gilles Buchs<sup>1,3</sup>,

Travis S. Humble<sup>1,3</sup> and Arnab Banerjee<sup>2,3</sup>

Annealing to the Quantum ground states – a start **PURDUE** 



### **QAOA** Frustrated Lattice



## How do we measure spin dynamics in real life?





Measure the dynamic spin-spin correlation  $\langle S^{\alpha}(r,t)|S^{\beta}(r',t')\rangle$ 

Fourier transform of dynamic 2-spin correlation is measured by: Neutron scattering, Inelastic X-Ray, Raman Spectroscopy, NMR, THz ...

> No way to (yet) measure sophisticated quantum observables in real materials: Multi-spin correlators? Loop operators? Entanglement Entropy?



#### STM tip moves Ti (S = $\frac{1}{2}$ ) and entangles them





#### Arbitrarily entangle several spins







ARTICLE

OPEN https://doi.org/10.1038/s41467-021-21274-5



Probing resonating valence bond states in artificial quantum magnets



Realize dimers and a quantum spin liquid state to achieve lossless information tunneling (superfluidity)

## Entangled Valence bond – Dimer states



### **Methods of Time Evolution Simulation: Trotterization**



#### Hopeless on NISQ. Is there a way to avoid this?

### 2+2 qubits, Fast Forwarding Algorithm: XY+h Hamiltonian

 $H = J_{xx} \sum s_x s_x + J_{yy} \sum s_y s_y + h \sum s_z$ 



Norhan Eassa (PU, IBM)



Correlation function plotted for VFF results for the XY model: The hardware results were obtained using ibmq\_kolkata

< d>< d>< d>< d>< d>< d</p> 

• J = 1, h = 1.

### **Results: Final (64 such coefficients)**







## **Results: The Triplet States with high fidelity**



$$H = \sum_{j=1}^{N-1} J_{xx} \sigma_j^x \sigma_{j+1}^x + J_{yy} \sigma_j^y \sigma_{j+1}^y + J_{zz} \sigma_j^z \sigma_{j+1}^z + h \sum_{j=1}^N \sigma_j^z$$



## **Results: Experimental Data Simulation**



Dimerized Magnet Ba<sub>2</sub>CoSi<sub>2</sub>O<sub>6</sub>Cl<sub>2</sub>. *Physical Review Letters*, 123(2), 027206.



### Quantum Spin Eigenfunctions at IBM

P. Carbone, Mario Motta, Barbara Jones, Quantum Circuits for the Preparation of Spin Eigenfunctions on Quantum Computers, *Symmetry* **2022**, *14*(3), 624

strategies: exact recursive construction (based on addition of angular momenta) accurate but expensive



#### results: simulated on IBMQ hardware (3,5 spins) deploying error mitigation techniques



perspectives: use to support research in frustrated spin systems,

exploration of tailored variational Ansatz, reduction of computational cost

### Macro Project: States on 2D defective Honeycomb and Kagome lattices





IBM Quantum



#### Hamiltonian Engineering Spins, to Spin chains to Spin plaquettes:



Consider a system of entangled spin chain:



(AKLT model) Haldane model

#### Dynamic data





# THANK YOU





