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Preface

This set of lecture notes was prepared for a single-semester junior-level course on the funda-
mentals of quantum technology, offered for the second time in the Fall 2023 semester in the
Elmore Family School of Electrical and Computer Engineering at Purdue University. The
course is primarily intended to introduce electrical and computer engineering students with
no background in quantum mechanics to many of the concepts and applications of quantum
information technology, although other engineering students with a basic course in electrical
circuits may also find them useful.

It should be emphasized that this course is on quantum technology, with an emphasis on
quantum information technology, rather than the traditional subject of quantum mechanics.
We of course must cover many quantum mechanical concepts to build the tools needed to
understand the quantum technologies of interest, but we omit various standard topics that
would be found in most introductory quantum mechanics courses (e.g., angular momentum)
in favor of covering more topics that we envision engineers being more likely to work with
in the future (e.g., controlling individual quantum systems with classical ones). We also
spend more time covering the main pillars of quantum information technologies – quantum
communications, quantum computation, and quantum sensing – than is typical in a standard
undergraduate quantum mechanics course. Broadly, our overarching goal was to have the
students learn many of the fundamental concepts of quantum mechanics so that any “holes”
in their knowledge can be readily filled in through self-study or advanced coursework, but still
allow enough time to discuss concrete applications that are naturally of significant interest
to many engineers.

In this second offering of the course, we have also moved up our discussion on quantum
computing to approximately the middle of the semester. We believe this makes for a more
engaging course sequence for the students, rather than leaving all the detailed discussions
about quantum technologies to the end of the semester. We also then use this technology
to motivate many of the remaining technical topics covered in the course – e.g., why we
need to have a detailed understanding of quantum harmonic oscillators, artificial atoms, and
the interactions between them. We conclude the course with the students independently
researching a quantum technology topic of interest to them that they then present to the
class to teach one another. The students have strongly appreciated this component of the
course, so we have provided a selection of suitable topics in the Practice Problems section of
the final chapter of these lecture notes.

In preparing these lecture notes, we drew heavily upon the textbook Quantum Mechanics
for Scientists and Engineers by D. A. B. Miller for standard quantum mechanics topics. We
also treated this textbook as a required reference for the course so that the students would
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have an accessible resource for filling in standard quantum mechanics topics we did not
cover if they needed them in the future. Outside of “standard topics”, we attempted to
keep the discussions of many concepts more concrete by illustrating them within a single
framework of quantized circuits that we feel will be more readily understood by electrical and
computer engineers. These quantized circuits also benefit from having a natural hardware
implementation using superconducting circuits, which is to date one of the leading platforms
being pursued to develop quantum information technologies. We have also drawn upon
various excellent sets of lecture notes from the field of circuit quantum electrodynamics by
S. M. Girvin of Yale University and N. K. Langford of University of Technology Sydney in
preparing sections of these notes.
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Chapter 1

Overview

1.1 A (Brief) History of Quantum Physics

Quantum physics traces its origins to the turn of the 20th century, when physicists were
increasingly finding that their theories of the world – such as Newtonian mechanics, ther-
modynamics, and electromagnetics – were beginning to fail in spectacular ways. It took
revolutionary thinking from some of histories greatest physicists (e.g., Albert Einstein) to
propose bold new ideas that greatly deviated from prior thinking to begin the process of
overcoming the obstacles the field of physics was facing at this time. These jumps in logic
about how the world works is encapsulated in the transition from the prior theories of clas-
sical physics to what we now refer to as modern physics, which broadly include any physical
theories that make use of quantum mechanics or the theory of relativity. Generally, we must
begin to use modern physics when phenomena we are concerned about have a close tie to
the behavior of systems on a microscopic scale (e.g., atomic structure of a material) or when
the systems are moving at very high speeds (i.e., close to the speed of light).

Unfortunately, we find in both of these cases that these systems begin to behave in ways
that defy our intuition built on how we experience the world in our day-to-day lives. This is a
large reason why such a massive paradigm shift was needed in developing theories to describe
these systems, and also contributes to the difficulty in building new intuition for how these
theories should work in a given situation. As a result, we often must fall back on some tool
to continue forging ahead in our understanding of these perplexing systems. Generally, this
tool will turn out to be some kind of mathematical theory, which in modern contexts can
become quite sophisticated. Fortunately, we will find that the vital mathematical tool for
grasping many of the underlying principles of quantum mechanics is linear algebra, which
is already a key part of many areas of electrical and computer engineering that we must be
familiar with. As a result, we will see that learning quantum mechanics can help reinforce
our understanding of other areas of electrical and computer engineering, and vice-versa.

Now, let’s briefly discuss some of the problems physics was facing that led to the creation
of quantum mechanics. One classic example is that of black-body radiation and what was
known as the ultraviolet catastrophe. Black-body radiation centers around the wavelength
and intensity of electromagnetic radiation that should be emitted from a black body (an
idealized definition of an object that absorbs all incident electromagnetic radiation, and
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CHAPTER 1. OVERVIEW

Figure 1.1: Illustration of the spectral intensity distribution for a black body at different
temperatures and the (incorrect) Rayleigh-Jeans law (labeled “Classical theory”) that was
at the center of the ultraviolet catastrophe (image from Wikipedia [1]).

would thus appear perfectly “black” in color) as a function of temperature. You will be
familiar with the basic effect of black-body radiation as it relates to the different colors of
hot objects, such as the filament in old light bulbs or metals being heated in a furnace. At
the time, physics was unable to explain the color that these hot objects should take, and
more disastrously predicted that black bodies would emit an ever-increasing/infinite amount
of energy as the wavelength moved into the ultraviolet regime (this catastrophe was part of
the Rayleigh-Jeans law of the time, which is illustrated in Fig. 1.1).

In 1900, Max Planck determined the correct intensity spectral distribution function of
radiation for a black body. In order to derive this spectral distribution, Planck had to
assume that electromagnetic energy was only emitted or absorbed in discrete packets that
are now referred to as quanta. (In this context, these quanta are referred to as photons.) He
determined that these packets of energy would have a value of

E = hf (1.1)

where h = 6.626 × 10−34 m2kg/s was Planck’s constant and f was the frequency of the
electromagnetic radiation. At the time, Planck thought this energy quantization was a
“formal assumption” that would later be revised in a better way, but it turns out to still
hold and often be considered as one of the key steps in the birth of quantum physics. Even
today, one can generally determine whether something has its origin in a quantum mechanical
effect by seeing whether the formula/equation has Planck’s constant in it or not.

Another key observation that contributed to the development of quantum physics was
the photoelectric effect. This effect is concerned with the emission of electrons from a ma-
terial when electromagnetic radiation is absorbed by the material. Classical physics would
predict that electrons should be able to be emitted due to any frequency of electromagnetic
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CHAPTER 1. OVERVIEW

radiation so long as the radiation was applied for a sufficient amount of time to build up the
necessary energy. Instead, it was found that electrons would only be emitted once the elec-
tromagnetic radiation reached a particular frequency. Einstein resolved these issues in 1905
by considering the light to be composed of a discrete set of energy packets (i.e., photons)
that were absorbed by the material. (This was one of four papers that Einstein published
in 1905 that revolutionized physics. He also published an explanation of Brownian motion
that helped give credence to the existence of atoms, as well as introduced the theory of special
relativity and his famous equation E = mc2. These contributions have made 1905 go down
in history as Einstein’s aptly named miracle year or wunderjahr. Einstein was only 26
years old during this miracle year!)

Although Einstein’s formulas were quite simple and explained experimental evidence very
well, there was strong resistance to the concepts of discrete packets of electromagnetic energy
for various reasons. One central issue was the great success of Maxwell’s equations (developed
in 1865) in describing electromagnetic physics. Maxwell’s equations readily led to the wave
theory of light, which agreed well with the conclusions of an earlier debate in the 1670’s that
had Christiaan Huygens wave theory triumph over Isaac Newton’s corpuscular (particle)
theory of light. Due to the successes of the wave theory of light and the many failings of
the particle theory of light, physicists were uncomfortable with adopting an approach of
photons that “felt” like a return toward a particle view of light. These issues were central to
the development of the concept of wave-particle duality that is now a key piece of quantum
physics. In essence, wave-particle duality is the idea that every quantum “entity” can behave
as either a “particle” or a “wave” depending on the circumstances. This notion is another
piece of the “weirdness” of quantum physics, and is a good example of how it can become
difficult to apply our previous concepts of the “macroscopic world” to the “quantum world”.

Jumping forward a bit, another central piece in the development of quantum mechanics
was in its role in describing the structure of atoms. Many theories had been developed to
explain how electrons “orbited” around the nucleus, but these theories were still incomplete
and had certain inconsistencies when attempted to be described using classical physics. For
example, classically speaking, if an electron were “orbiting” around a nucleus it would be
constantly accelerating, and thus should continually emit radiation. However, it was well
known that this constant emission did not occur. In addition to this, there were also further
issues about what wavelengths of radiation should be emitted from an atom. As a result, an
improved description of atomic structure was needed. After many different approaches from
various physicists over the years, Erwin Schrödinger eventually introduced his now famous
equation in 1926. In its original form, Schrödinger’s equation was a partial differential
equation for a “mysterious” wave function. In a simple one-dimensional case, we can write
it as

iℏ
∂

∂t
ψ(x, t) =

[
− ℏ2

2m

∂2

∂x2
+ V (x, t)

]
ψ(x, t), (1.2)

where ψ is the wave function, ℏ = h/2π is the reduced Planck’s constant, m is the mass
of the object the wave function is for (e.g., an electron), and V is a potential energy in-
fluencing the object of interest. Schrödinger’s equation was extremely successful, and its
“generalizations” still play a central role in the description of most quantum systems, even
in describing the operation of a quantum computer! Schrödinger’s equation also played a key
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CHAPTER 1. OVERVIEW

role in establishing the essential role that Hamiltonian mechanics would play in developing
quantized theories of many areas of physics (e.g., that of quantized circuits or quantized
electromagnetic fields). Due to this importance, we will spend some time focusing on the
basics of Hamiltonian mechanics in this course.

After the introduction of Schrödinger’s equation, quantum physics was able to develop
at a rapid rate. There have been many significant intellectual achievements along the way,
but we will only touch on a few very briefly. One of the next major steps in the development
of quantum physics was the introduction of quantum electrodynamics, which describes the
quantum interactions between “light and matter” (in the sense of photons and charged
particles). Early work in this area was pioneered by Paul Dirac in the 1920s, with many
further refinements by a wide range of physicists over the next few decades needed to bring
it to its current state that has shown exceptionally good agreement with experimental tests.
This represented the first quantum field theory, which has become a vital area of physics
that is central to our current understanding of many complex physical systems. Another
quantum field theory that has been very successful is that of quantum chromodynamics,
which describes the strong force/interaction between quarks mediated by gluons. This was
developed in the 1960’s and 70’s, and plays an important role in the Standard Model of
particle physics. Although these many theories have been significantly successful, there
remain many open questions that are yet to be resolved. As a result, this field is still
growing and changing, with many more exciting developments expected still to come!

These earlier theories of quantum physics are often viewed as being primarily concerned
with the quantum description of matter, with the quantum description of other components
(such as light) coming about as needed. However, interest also began to grow into the
quantum physics of light on its “own”. This led to the development of the field of quantum
optics, which has seen significant growth even to this day due to its usefulness in harnessing
quantum effects for new kinds of applications.

Included in these exciting new areas of application are emerging technologies like quan-
tum computers, quantum communication systems, and quantum sensors. Interest in these
applications has exploded in the past few decades as foundational experiments demonstrated
that revolutionary technologies leveraging new kinds of quantum “weirdness” not previously
harnessed could be within reach. The purpose of this course is to introduce electrical and
computer engineers to these revolutionary concepts. Our hope is that more engineers can
become engaged in this area, and as a result contribute to the development of these exciting
new technologies.

1.2 Overview of Quantum Technologies

As we have just discussed, quantum physics began to be developed at the turn of the 20th
century. Since then, it has played a vital role in the explosive development of technologies
that have occurred throughout the 20th and 21st centuries. However, it is currently believed
that we have only begun to “scratch the surface” of what is possible with engineering tech-
nologies based on our understanding of quantum physics. Broadly speaking, we typically
classify technologies into two kinds of “quantum revolutions”, which we will now briefly
discuss.
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CHAPTER 1. OVERVIEW

The first quantum revolution generally consists of technologies where understanding quan-
tum physics was essential in their creation, but where the quantum effects are essentially
leveraged as they “naturally” occur. For example, quantum physics was central to our
increased understanding of chemistry and materials science that has contributed to the de-
velopment of many technologies.

More “at home” to electrical and computer engineers, quantum mechanics played an
essential role in the development of technologies that we use to process information. For in-
stance, transistors and integrated circuits that form the bedrock of information technologies
relied on our understanding of the wave nature of electrons for their creation. Similarly, op-
toelectronic technologies that are central to our ability to generate and process optical signals
also have their genesis in our understanding of quantum mechanics. This includes under-
standing the photoelectric effect for devices like optical detectors, and exploiting quantum
mechanical properties of semiconductor crystals to generate other technologies like LEDs or
photovoltaic solar cells. Additional key technologies that rely on quantum effects are lasers
and atomic clocks, each of which have had incredibly broad impacts on science and our
daily lives. These represent only a small sampling of technologies developed during the first
quantum revolution. However, it should hopefully be clear how important quantum physics
was in leading us to our modern age of technology.

Currently, it is believed that we are just beginning what is sometimes referred to as the
second quantum revolution. In this revolution, it is expected that we will engineer devices
that exploit the “rules” of quantum mechanics in ways that we generally do not observe in a
natural setting. Central to this is our recent ability to isolate and control individual quantum
systems. Generally, technologies of the first quantum revolution utilized quantum effects in
a setting with many constituent particles – e.g., a transistor with many electrons tunneling
through a potential barrier or a laser with many emitters being stimulated to emit coherent
radiation. In contrast to this, technologies from the second quantum revolution utilize a
“small” number of individual quantum systems that we engineer interactions between to
achieve a desired effect. By achieving this level of control over quantum systems, we can
begin to think of a broader sense of quantum information, i.e., the information that can be
encoded into a state of a quantum system. We can then think of ways to process this quantum
information to develop exciting new technologies. This is the realm of technologies like
quantum computers, quantum communication systems, and quantum sensors; which have
been proven to yield higher performance than any classical technology could on problems of
practical importance. However, the full scope of problems that these technologies may be
able to address is still currently unknown. There is a significant amount of research interest
in academia, government, and industry focused on better understanding how to develop
these new technologies and on determining where they will be of most use. As a result,
the field is evolving at a rapid pace, and represents an incredibly exciting area to become
engaged in!
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Chapter 2

Lagrangian and Hamiltonian
Mechanics

2.1 Introduction to the Calculus of Variations

In quantum mechanics, the unfamiliar concept (to electrical and computer engineers) of the
Hamiltonian of a system plays an incredibly important role. This concept comes about in
a particular formulation of classical mechanics, known as Hamiltonian mechanics, that has
been found to provide a startling simple link between the classical and quantum theories
of a system. Today, the Hamiltonian plays a starring role in Schrödinger’s equation, and
as a result, finding the Hamiltonian of a system is generally one of the first steps taken in
analyzing a new quantum system.

Hence, it is necessary for us to become acquainted with the theory of Hamiltonian me-
chanics so that we can utilize these concepts in tackling quantum descriptions of various
systems of interest. Although it is often possible (once one is familiar with the basic steps)
to quickly write down the Hamiltonian of a system, there can be important subtleties that
must be handled correctly to successfully analyze a system. These subtleties are most readily
addressed by first formulating a related quantity, known as the Lagrangian of a system. The
Lagrangian comes from an alternate theory of mechanics, known as Lagrangian mechanics,
which has many similarities to the eventual Hamiltonian description of a system. Once the
Lagrangian for a system has been determined, basic rules can be used to determine the
Hamiltonian, from which a quantum analysis can then be launched.

Now, to further complicate things, both Lagrangian and Hamiltonian mechanics are based
on what is known in the field of mathematics as a variational principle. Variational principles
play a substantially large role in many areas of mathematics, and although it may sound
new, it turns out that the basic idea of a variational principle is something that is relatively
familiar. In essence, a variational principle is related to finding some function that optimizes
a particular “condition” of interest. Generally, we will set up our “condition” so that the
optimum will coincide with finding a minima or maxima. You have already done this same
kind of operation in your introductory calculus classes when you set the first derivative of a
function equal to 0 to find its minima or maxima. Likewise, if you have ever taken a control
theory course or dealt with an optimization problem, you have probably seen other examples
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of this same logic at play. As we will see, a single variational principle will allow us to find
a unified theory for deriving the equations of motion for almost any physical system (this is
the heart of Lagrangian mechanics). The ubiquitousness and importance of this principle is
difficult to overstate. In fact, it was so stunning that its early adopters believed it to be the
unifying principle of the universe, to the point that one even tried to prove the existence of
God based on it [2]!

As alluded to earlier, working with our variational principle is going to require us to
be able to differentiate the “condition” we are trying to minimize or maximize. Since our
“condition” is typically going to be a “function of functions”, we are going to need to utilize
a bit more sophisticated form of calculus than what is covered in introductory calculus
classes. In particular, we will need to learn a small amount of what is known as the calculus
of variations. Although this is likely a new concept to you, it was already starting to
be developed in the late 1600’s to mid 1700’s by many of the same mathematicians that
developed the calculus you already know so that they could handle a broader class of problems
of practical interest. You will find these concepts very useful in this class, but also will likely
encounter concepts of a similar “flavor” in other areas of electrical and computer engineering
(if you haven’t already).

2.1.1 Functionals

To begin understanding the calculus of variations, we will first need to become acquainted
with the kind of “mathematical object” that we will be writing our “conditions” in terms of.
We have already colloquially referred to this as a function of functions, which mathematically
is referred to as a functional. To understand the basic idea, recall that a function can be
abstractly defined as a “map” that takes in a particular number and returns another number
as the result (e.g., f(x) = x2). In similarity to this, a functional will take a function as its
input and return a single number as its output.

This may seem like an abstract concept at first, but it turns out that it is something that
you are already familiar with. As a simple example, we can consider the Fourier transform
to be a kind of functional. To see this, we will write our Fourier transform functional at a
particular angular frequency as Fω[y(t)], with its definition given as

Fω[y(t)] =

ˆ ∞

−∞
y(t)e−iωtdt. (2.1)

This clearly takes in the function y(t) and returns a single number, equal to the value of
the Fourier transform of y(t) at angular frequency ω. If we then allow the value of ω to be
varied, we find that our functional Fω[y(t)] can be viewed as giving us a new function, which
we would recognize as the Fourier transform of y(t).

Clearly, in this example, the use of the terminology of the Fourier transform as being
a functional is excessive for most practical purposes. Where the notion of a functional
becomes very useful is when we want to find some way to maximize or minimize a particular
functional as a function of its input function. This will be the operation that we need to do
in solving many optimization problems, and will be one of the central steps in a Lagrangian
mechanics formulation of a problem. Hence, we need to now determine how to “differentiate”
a functional.
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2.1.2 Functional Derivatives

For inspiration, let’s recall the Taylor series of a regular function f(x) at position x + ϵ,
where ϵ is some small offset parameter. We know from our introductory calculus that the
Taylor series of f(x+ ϵ) is then

f(x+ ϵ) = f(x) + ϵf ′(x) +
1

2
ϵ2f ′′(x) +O(ϵ3), (2.2)

where O(ϵ3) is used to denote that all other missing terms in the series are “of order ϵ3 or
smaller”. If we only care about terms of O(ϵ), we can rewrite this as

f(x+ ϵ)− f(x) = ϵf ′(x) +O(ϵ2). (2.3)

From this, we can see that we can identify the first derivative of f by taking f(x+ ϵ)− f(x)
and then only keeping terms of order O(ϵ).

Considering this, let’s do a similar operation with a relatively generic functional. In
particular, we will consider our functional to be of the form

J [y] =

ˆ x2

x1

f(x, y, y′)dx, (2.4)

where f is a generic function of the variables x, y, and y′. As we will see throughout this class,
it turns out that this relatively simple generic functional will cover most cases of interest
to us. To proceed, we need to determine our analog of the small offset ϵ to the functional
setting. Since we now need to perturb the input function, we will need to define a “small
function” instead of simply having a constant ϵ. So, let’s define our perturbation as

y(x) → y(x) + ϵη(x), (2.5)

where ϵ is still a small parameter to ensure that the perturbation ϵη(x) is “small”. Now, to
keep things simpler, we will constrain our perturbation function η(x) so that it vanishes at
the end points of our region; i.e., η(x1) = η(x2) = 0. It is possible to handle problems that
don’t have fixed endpoints, but we won’t concern ourselves with this case now (if interested,
a simple explanation can be found in [2]).

Now that we know how we will perturb the functional, we can go about determining
what our functional derivative will be (the analog of f ′(x) that we had earlier). To do this,
we will calculate J [y + ϵη(x)]− J [y] as

J [y + ϵη(x)]− J [y] =

ˆ x2

x1

{
f(x, y + ϵη, y′ + ϵη′)− f(x, y, y′)

}
dx. (2.6)

To proceed, we need to figure out how to simplify this expression into something we are
more familiar with working with. To do this, we can utilize a multivariate extension to the
Taylor series from (2.3). In general, these expressions can become quite complex, but when
we only keep terms of first-order in ϵ the result is quite simple. In particular, we will find
that we primarily just add the first-order Taylor series results of each argument together to
get

f(x, y + ϵη, y′ + ϵη′) = f(x, y, y′) + ϵη
∂

∂y
f(x, y, y′) + ϵη′

∂

∂y′
f(x, y, y′) +O(ϵ2). (2.7)
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Note that when we write something like ∂f
∂y′

in this context, we are treating y′ like an inde-
pendent variable from y. As a result, we don’t need to worry about taking complex kinds of
chain rules when evaluating the derivative ∂f

∂y′
. Finally, using the result of (2.7) in (2.6), we

find that the result can be rewritten as

J [y + ϵη(x)]− J [y] =

ˆ x2

x1

{
ϵη
∂f

∂y
+ ϵη′

∂f

∂y′
+O(ϵ2)

}
dx. (2.8)

Moving on, we will want to rearrange our expression so that we can “cleanly” separate
out our perturbation. In this context, what we want is to be able to write the entire inside
of the integral in (2.8) as being ϵη times “something”. In similarity to (2.3), we will be able
to identify that “something” as being what we will define as the functional derivative. Now,
to do this in (2.8), we will first need to integrate by parts to transfer the derivative off of η′.
Doing this, and dropping the O(ϵ2) terms that we don’t care about, we get

J [y + ϵη(x)]− J [y] ≈
ˆ x2

x1

{
ϵη
∂f

∂y
− ϵη

d

dx

(
∂f

∂y′

)}
dx+

[
ϵη
∂f

∂y′

]x2
x1

. (2.9)

Since by our beginning assumptions we are working with an η that vanishes at x1 and x2,
we can readily see that the final term in (2.9) will vanish. Hence, we get

J [y + ϵη(x)]− J [y] ≈
ˆ x2

x1

ϵη

{
∂f

∂y
− d

dx

(
∂f

∂y′

)}
dx. (2.10)

It is conventional at this point to rewrite our notation a bit. In particular, if we consolidate
ϵη(x) → δy(x), then we would typically write that

δJ ≈
ˆ x2

x1

δy(x)

(
δJ

δy(x)

)
dx, (2.11)

where

δJ = J [y + ϵη(x)]− J [y] (2.12)

is referred to as the variation of J and

δJ

δy(x)
=
∂f

∂y
− d

dx

(
∂f

∂y′

)
(2.13)

is called the functional derivative or Fréchet derivatve of J with respect to y(x). As we will
see later, taking the variation of a particular functional known as the action functional will
be central to Lagrangian mechanics.

2.1.3 Stationary Points of a Functional

A stationary point from introductory calculus occurs when a function is at a maxima, a
minima, or a saddle point. You should recall that we can find these points readily by
determining when the first derivative of the function is equal 0. In the higher-dimensional
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case, we simply expand this to finding the points where all the first-order partial derivatives
are equal to 0. Written in more abstract language, if we had a function f(x1, x2, . . . , xn)
we would find its stationary points by requiring the variation of f to be 0 for all first-order
perturbations. Mathematically, this would be written as

δf =
n∑
i=1

∂f

∂xi
δxi, (2.14)

where δxi are all the possible small perturbations along the different coordinate directions.
Since the δxi are arbitrary, the only way to ensure that (2.14) is always 0 is to require all
the partial derivatives to be 0.

It is this more abstract definition that we will use to find the stationary point of a
functional. In particular, we will need to ensure that δJ from (2.11) is always 0 for all
first-order perturbations; i.e., that

δJ =

ˆ x2

x1

δy(x)

(
δJ

δy(x)

)
dx = 0. (2.15)

Now, the logic is more complicated than required for (2.14), but the same conclusion can be
reached that the only way to ensure that δJ = 0 will be for the functional derivative with
respect to y(x) to be 0 at all values of x (for more details on the precise reasons why, the
reader may consult [2]). More explicitly, we require that

δJ

δy(x)
=
∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0, x1 < x < x2. (2.16)

This condition is so important that it has its own name; i.e., the Euler-Lagrange equation. We
will find later that the equations of motion of a system will correspond to the Euler-Lagrange
equation.

2.1.4 Example: Shortest Distance Between Two Points

The derivations up to this point have been quite abstract and have relied on notation that is
perhaps confusing and unfamiliar. As a result, it is best to stop now and do a simple example
to see how some of this mathematical machinery works for an actual problem. We will also
consider further examples more focused on familiar mechanical and electrical problems later.

For now, let’s look at a “trivial” example of determining the shortest curve that can
connect two points (x1, y1) and (x2, y2) on a Cartesian plane. Intuitively, you already know
that the answer will be a straight line, but let’s see how we can use the machinery of the
calculus of variations to actually prove this result.

To begin, we will need to define our functional, which we will take to be the arc length
of the curve between the two points. If we consider x to be our independent variable, then
we can define our arc length functional as

A[y] =

ˆ x2

x1

√
1 + (y′)2dx. (2.17)
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To minimize the arc length, we need to take the functional derivative of this and set it equal
to 0. Since we already know that the first functional derivative will equal the Euler-Lagrange
equation given in (2.16), all we need to do is evaluate the necessary (regular) derivatives to
fill out the expressions in (2.16).

In this case, we have that our f will just be f =
√

1 + (y′)2. Hence, we find that

∂f

∂y
= 0 (2.18)

and

∂f

∂y′
=

y′√
1 + (y′)2

. (2.19)

Now, typically, we would need to evaluate what d
dx

(
∂f
∂y′

)
is. However, because we have that

∂f
∂y

= 0 we can instead immediately recognize from the Euler-Lagrange equation that

d

dx

(
∂f

∂y′

)
= 0. (2.20)

Hence, instead of explicitly evaluating the derivative with respect to x, we can instead
integrate with respect to x to find that

∂f

∂y′
= C, (2.21)

where C is an integration constant. Filling in from (2.19), we find that

y′√
1 + (y′)2

= C. (2.22)

We can now solve for y′ to get

y′ =

√
C2

1− C2
= m, (2.23)

where we have simplified the right-hand side since we can recognize that it is simply a
constant. We can solve this “differential equation” quite easily by just integrating with
respect to x to get that

y = mx+ b, (2.24)

where b is another integration constant. One can utilize the boundary conditions that
f(x1) = y1 and f(x2) = y2 to find the explicit formulas for m and b. However, it should
not surprise you that you will find they simply match what we already know; e.g., that
m = (y2 − y1)/(x2 − x1) will be the slope of the line connecting the points (x1, y1) and
(x2, y2).

Although this was a simple example, we will find that this same basic set of steps can be
used to formulate and solve significantly more complex problems. As a result, it represents
a very powerful mathematical tool that can be useful in many circumstances. We will see
some more examples of this in the coming sections of this course.
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2.2 Introduction to Lagrangian Mechanics

As we briefly discussed previously, one of the most common approaches to developing a
quantum theory for a physical system begins with a Lagrangian or Hamiltonian mechanics
description of the classical system. From there, the Hamiltonian of the quantized system
also plays a fundamental role in the quantum dynamics of the system. Hence, it will be
necessary for us to become familiar with the frameworks of Lagrangian and Hamiltonian
mechanics. In both cases, these frameworks are built from a suitable variational principle,
so we will also need to utilize our recently learned tools from the calculus of variations. For
a more in-depth introduction to these topics, the reader is referred to [3].

2.2.1 Principle of Least Action

The particular variational principle that Lagrangian mechanics is built from is known as the
principle of least action. This variational principle begins with the Lagrangian of the system,
which (using standard notation) is given by

L = T − V, (2.25)

where L is the Lagrangian, T is the kinetic energy of the system, and V is the potential energy
of the system. In the Lagrangian mechanics approach, it is necessary to express both the
kinetic and potential energies in terms of generalized coordinates and generalized velocities.
If a system has N degrees of freedom, then the generalized coordinates q1, q2 . . . qN are any
quantities (of total number N) that fully specify the position of a system. For a system of
particles, these could simply be the Cartesian coordinates of each particle, or alternatively,
another coordinate system description (if more convenient). The generalized velocities are
then simply the time derivative of the generalized coordinates, denoted as q̇i.

Once the generalized coordinates and generalized velocities have been simultaneously
specified, its motion at future times can be calculated. That is, the accelerations q̈i can
all be found, and the mechanical state of the system can continue to be advanced in time.
We generally refer to the equations that relate the generalized accelerations, velocities, and
coordinates of a system as the equations of motion. This terminology is still used even for
non-mechanical systems (e.g., for an electrical circuit) when analyzed in terms of Lagrangian
or Hamiltonian frameworks.

To determine the equations of motion for our system under study, we utilize the principle
of least action. As the name suggests, this variational principle involves finding the functions
that minimize the action functional, which is defined as

S[q1, q2, . . . , qN ] =

ˆ t2

t1

L(t, q1, q2, . . . , qN , q̇1, q̇2, . . . , q̇N)dt. (2.26)

We know that to minimize this functional, we need to take the functional derivative and set
it equal to 0. We have already previously studied how to take the functional derivative of
a similar functional. The main complication here is that we now have multiple functions
qi that make up our total Lagrangian. However, this is not a significant issue, and we can
proceed in much the same way by just taking a functional derivative with respect to each qi
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individually and then force each of the resulting Euler-Lagrange equations to be 0. Hence,
we find that our equations of motion for each qi will be

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (2.27)

As we will show shortly, these equations of motion are equivalent to Newton’s many F = ma
equations that you are familiar with from Newtonian mechanics.

Generally, Lagrange’s formulation of mechanics can be more expedient than the New-
tonian approach when dealing with complicated systems. It can also provide a unifying
framework for many areas of physics, where this same kind of principle of least action can be
used to derive the “equations of motion” for a system. For instance, it is possible to use the
principle of least action to derive Maxwell’s equations (although, one must be clever about
identifying the correct generalized coordinates and velocities). Attempting to do this from
a Newtonian approach would be ill-advised.

2.2.2 Lagrangian and Newtonian Mechanics

To see how the Lagrangian and Newtonian approaches can “connect” to one another, let’s
consider a somewhat generic example. In particular, we will consider a system of particles
that can interact with one another but with no other bodies. When we consider all parts
of the system in this way, we have what is generally described as a closed system. We will
primarily be concerned with closed systems in this course. In many practical situations, it is
necessary to consider open systems. This is a particularly challenging problem to deal with
in quantum mechanics, but is of central importance in describing the behavior of realistic
systems that we wish to do something “useful” with; e.g., quantum computation. We will
touch on this topic in a brief way toward the end of this course.

Now, to begin our description of this system of particles, we will need to determine the
Lagrangian. We will assume that a Cartesian-type description of the particles is suitable, so
we can readily determine that the kinetic energy will simply be

T =
∑
i

1

2
mi q̇i · q̇i, (2.28)

where mi is the mass of the ith particle and q̇i · q̇i is the particle’s velocity squared. For
now, we will consider the potential energy in a generic form, but will assume that it only
depends on the relative positions of the particles. A common example of this kind of potential
energy would be due to an electrostatic potential between charged particles, but many other
examples also exist (e.g., gravitational potential, masses connected between springs, etc.).
Considering this, our total Lagrangian will be

L =
N∑
i=1

1

2
mi q̇i · q̇i − V (q1,q2, . . . ,qN). (2.29)

We will now use the Euler-Lagrange equations to find our equations of motion for this
system. To begin, we note that

d

dt

(
∂L

∂q̇i

)
= mi

d

dt
q̇i = miq̈i, (2.30)
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which we can recognize as being the mass of the particle times its acceleration. From this,
we can find that our complete Euler-Lagrange equation for the ith particle will be

miq̈i = −∂V

∂qi
. (2.31)

We can identify this as being Newton’s law if

F = −∂V

∂qi
(2.32)

is the force acting on the ith particle.
To see that this is the case, let’s look at the example of an electrostatic potential between a

set of charged particles. We know from introductory electromagnetism that the electrostatic
potential for a set of point charges with charge ej at position q is

Φ(q) =
1

4πϵ0

∑
j

ej
|q− qj|

, (2.33)

where ϵ0 is the permittivity of free space. For our Lagrangian, we need the total potential
energy of the system. Hence, we need to add up the potential energy contribution for each
particle. Recalling that the electrostatic potential energy of a charged particle is the total
electrostatic potential times the particle’s charge, we can write this as

V =
1

4πϵ0

N∑
i=1

ei
∑
j ̸=i

ej
|qi − qj|

. (2.34)

Evaluating the necessary derivative with respect to qi, we get that the force acting on the
ith particle according to (2.32) is

Fi =
1

4πϵ0
ei

∑
j ̸=i

ej
qi − qj
|qi − qj|3

. (2.35)

Again, from electrostatics, we can recognize that

E(qi) =
1

4πϵ0

∑
j ̸=i

ej
qi − qj
|qi − qj|3

(2.36)

is the electric field due to all other particles evaluated at the location of the ith particle.
Recalling that the electrostatic force acting on a charged particle is F = eiE, we can see
that (2.32) does in fact yield the correct force in this case. Hence, we see that (2.31) directly
corresponds to Newton’s many F = ma equations for this case.

The basic idea that Lagrangian mechanics will provide equivalent results to Newtonian
mechanics will hold in general. However, We will not always necessarily end up with as
direct of a correspondence between the equations of motion that we will work with in the
Lagrangian and Newtonian approaches to mechanics. In particular, Lagrange’s approach will
prove to be more expedient in situations where certain constraints exist between different
particles in the system. Lagrange’s approach will remove redundant degrees of freedom due
to constraint forces from the beginning, while the Newtonian approach will require us to
formulate redundant equations that we later eliminate from the overall system.
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Figure 2.1: Free body diagram of an Atwood machine.

2.2.3 Example: Atwood Machine

Let’s now consider a simple example of how to use Lagrangian mechanics for a system with
only one degree of freedom. In particular, we will consider the Atwood machine, with it’s
free body diagram illustrated in Fig. 2.1. We will assume there is no friction and that the
string connecting the two masses has a fixed length of ℓ.

The Newtonian mechanics approach to solving this problem would begin by writing an
F = ma equation for each of the weights in the system. This is simple in this case, and gives
us

m1ẍ1 = m1g − T, (2.37)

m2ẍ2 = m2g − T, (2.38)

where T is the tension of the string and g is the gravitational acceleration. The next step
is to recognize that the velocities of the two weights are not independent, but are in fact
constrained to be equal and opposite to one another, and hence, so too are the accelerations.
As a result, we can eliminate one of our accelerations by noting that ẍ2 = −ẍ1. Using this,
we can rewrite (2.38) to get

−m2ẍ1 = m2g − T. (2.39)

We can then eliminate the common tension force between (2.37) and (2.39) to get

(m1 +m2)ẍ1 = (m1 −m2)g, (2.40)

which finishes formulating the equation of motion for the problem.
Let’s now follow the Lagrangian mechanics approach to solving this problem. To begin,

we need to determine the total kinetic and potential energies in terms of suitably defined
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generalized coordinates and velocities. For this problem, we recognize that there is only one
true degree of freedom in this problem due to the fixed length of the string connecting the
masses. As a result, we can set our generalized coordinate to be

q = x1 = ℓ− x2. (2.41)

In terms of this generalized coordinate, we can recognize that the total kinetic energy will
be

T =
1

2
(m1 +m2)q̇

2 (2.42)

because the total length ℓ of the string won’t influence the generalized velocity. Next, we
recognize that the total potential energy can be written as

V = −m1gx1 −m2gx2 = −m1gq −m2g(ℓ− q). (2.43)

Putting these results together, we find the total Lagrangian is

L =
1

2
(m1 +m2)q̇

2 − (m2 −m1)gq +m2gℓ. (2.44)

We can now evaluate our single Euler-Lagrange equation using the usual

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (2.45)

to get

(m1 +m2)q̈ = (m1 −m2)g. (2.46)

The first aspect of (2.46) to note is that it matches the Newtonian mechanics result of (2.40),
as expected. The next item of interest is to recognize that the potential energy term m2gℓ
did not factor into the final equation of motion at all. The reason for this is because this term
is a constant with respect to the generalized coordinates and velocities of the problem. As a
result, the derivatives required in evaluating the Euler-Lagrange equation caused this term
to vanish from the equation of motion. This is a general result: a constant in a Lagrangian
does not affect the dynamics of the system at all. As a result, it is a widely common practice
to ignore any constant terms that arise in formulating a Lagrangian of a system and to not
even bother to write them down in the first place.

2.2.4 Driven Systems

We will now consider how to incorporate a driving force into our Lagrangian formalism. This
is a common occurrence in many practical systems, where it is often useful to consider the
case where some “external” force drives the dynamics of our system under study. In many
cases, it will be convenient and reasonable to assume that our external drive is “perfectly”
applied to our system in the sense that the drive is unaltered by the motion of our underlying
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system. In the context of electrical circuits, this kind of “perfect” drive could be applied by
an ideal voltage or current source.

Now, let’s assume that we have a simple mechanical oscillator placed in some exter-
nal driving field. The free oscillator (i.e., the oscillator with no driving force) will have a
Lagrangian of

L =
1

2
mq̇2 − 1

2
kq2, (2.47)

where k can be thought of as a “spring constant” that occurs in a Hooke’s law kind of
restoring force. In the presence of the external field, we will gain an additional potential
energy Ve(q, t) that needs to be added to the overall Lagrangian.

In many practical cases, we will only be concerned with considering small oscillations of
the mass, meaning that q will only vary a small distance from its equilibrium value. We can
then expand the potential energy contribution in a first-order Taylor series as

Ve(q, t) ≈ Ve(0, t) + q
∂Ve(0, t)

∂q
, (2.48)

where we have assumed the equilibrium position is q = 0 for simplicity. We can simplify
this result by noting a general property of Lagrangian mechanics: Two Lagrangians differing
only by a total derivative with respect to time of some function have the same equations of
motion. This occurs because the total time derivative can be integrated out of the action
functional quite easily, and with fixed endpoints then vanishes when taking the variation of
the functional. Now, because Ve(0, t) only depends on time, we can consider it to be the
total time derivative of some other function, and hence, will not modify our final equations
of motion. As a result, we can simply omit it from our Lagrangian. We can further recall
that the force will be given by

F (t) = −∂Ve(0, t)
∂q

. (2.49)

Hence, we can write the additional potential energy term in our overall Lagrangian for the
driven oscillator case as

Ve = −qF (t). (2.50)

This basic structure for the additional potential energy will also prove useful when we con-
sider driven electrical circuits.

Considering these points, we find that our complete Lagrangian for the driven system
will be

L =
1

2
mq̇2 − 1

2
kq2 + qF (t). (2.51)

We can find the resulting equations of motion from the Euler-Lagrange equation

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (2.52)
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as

mq̈ + kq = F (t). (2.53)

It is common to simplify this as

q̈ + ω2q = F (t)/m, (2.54)

where ω =
√
k/m is the angular frequency of free oscillations in the system. If there were

no driving force, the solution to this differential equation would simply be

q(t) = C1 cos(ωt) + C2 sin(ωt), (2.55)

which is why ω is referred to as the angular frequency of the oscillator. We will consider the
effect of an external driving force in more detail later in the course, as it plays a central role
in considering the control of quantum systems.

2.2.5 First Integral and Noether’s Theorem

Another advantage of using a variational principle in deriving equations of motion is that it
can be used to quickly deduce other important properties of the system under study. We will
look at a particular instance of this concept that demonstrates the conservation of energy,
and then comment on the broader principle known as Noether’s theorem.

To begin, we will introduce the concept of a first integral of an Euler-Lagrange equation.
This concept is of importance when our functional does not have an explicit dependence
on the variable being integrated over. Hence, in the case of the action functional we would
be working with a Lagrangian of the form L(q, q̇) rather than the more general L(t, q, q̇)
that we considered earlier. In this case, we would have that the total time derivative of the
Lagrangian would be

dL(q, q̇)

dt
=
∂L(q, q̇)

∂q

∂q

∂t
+
∂L(q, q̇)

∂q̇

∂q̇

∂t
+
∂L(q, q̇)

∂t

= q̇
∂L(q, q̇)

∂q
+ q̈

∂L(q, q̇)

∂q̇

(2.56)

We can then determine that in this case

d

dt

(
L− q̇

∂L

∂q̇

)
= q̇

∂L

∂q
+ q̈

∂L

∂q̇
− q̈

∂L

∂q̇
− q̇

d

dt

(
∂L

∂q̇

)
, (2.57)

which simplifies to

d

dt

(
L− q̇

∂L

∂q̇

)
= q̇

(
∂L

∂q
− d

dt

(
∂L

∂q̇

))
. (2.58)

We can recognize that the interior of the parentheses on the right-hand side of (2.58) is the
Euler-Lagrange equation of our system, and so must be 0. Hence, we have that

d

dt

(
L− q̇

∂L

∂q̇

)
= 0, (2.59)
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and we refer to the quantity

I = L− q̇
∂L

∂q̇
(2.60)

as the first integral of the Euler-Lagrange equation.
To see the physical significance of this result, we first recognize that (2.59) is the total

time derivative of I, and that this result is 0. We can then conclude that I must equal a
constant as a function of time, and thus represents a conserved quantity. In particular, (by
definition) it turns out that −I is the total energy of the system being studied, and so its
time invariance leads to the conservation of energy.

To see this, let’s look at a relatively simple Lagrangian of a harmonic oscillator with

L =
1

2
mq̇2 − 1

2
kq2. (2.61)

Now, if we rearrange the first integral (which is acceptable since (2.59) equals 0), we can get

q̇
∂L

∂q̇
− L = q̇

(
mq̇ − 0

)
−
(
1

2
mq̇2 − 1

2
kq2

)
= mq̇2 − 1

2
mq̇2 +

1

2
kq2

=
1

2
mq̇2 +

1

2
kq2

= T + V.

(2.62)

We can recognize T +V as being the total energy of the system, which is then conserved due
to our earlier conclusions about the first integral. Although we only showed this for a simple
example, we will find more broadly that the quantity q̇ ∂L

∂q̇
−L corresponds to the total energy

of the system. Due to its importance, q̇ ∂L
∂q̇

− L goes by another name in mechanics; namely,
the Hamiltonian of the system. This will be the central element in Hamiltonian mechanics,
which we will discuss shortly.

Prior to this, we will briefly comment on a general physical principle known as Noether’s
theorem. This theorem, proved by Emmy Noether, makes an explicit connection between a
symmetry in an action functional and a resulting conservation law of the system. In the case
of the conservation of energy, the symmetry was that the system was invariant under time
translations. Noether’s theorem can be used to determine the conservation laws of many
systems, and is part of the reason why finding symmetries in systems has become such an
important concept in physics. Before moving on, it is worth mentioning that Emmy Noether
is a fascinating figure in the history of mathematics. She is consistently considered one of the
greatest mathematicians of the 20th century and was labeled as the most important woman
in the history of mathematics by many of her contemporaries, such as Albert Einstein,
Hermann Weyl, and Norbert Wiener, and is certainly worth reading more about sometime.

2.3 Introduction to Hamiltonian Mechanics

In addition to Lagrangian mechanics, there is another (closely) related framework for analyz-
ing physical systems known as Hamiltonian mechanics. As we will see repeatedly throughout
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this course, the Hamiltonian of a system plays a central role in developing a quantum the-
ory for a physical system. As a result, becoming familiar with the basics of Hamiltonian
mechanics is a necessary step in growing acquainted with quantum theory.

2.3.1 Preliminaries

We have already briefly encountered what the Hamiltonian of a system is when we discussed
the first integral and energy conservation from the Lagrangian mechanics viewpoint. There,
we showed that the first integral of the Euler-Lagrange equations derived from the principle
of least action was

q̇
∂L

∂q̇
− L. (2.63)

We also discussed that this was equal to the total energy of the system, and that the total
energy was the Hamiltonian of the system.

Although this basic idea does hold true, we will not always refer to (2.63) directly as the
Hamiltonian because the Hamiltonian mechanics framework uses differently defined gener-
alized coordinates. In particular, Hamiltonian mechanics is formulated in terms of canonical
position and canonical momenta (also, conjugate momenta) variables, which are closely re-
lated to the generalized coordinates and velocities of the Lagrangian approach. In particular,
we will have that the canonical position and generalized coordinates will be the same. How-
ever, instead of generalized velocities q̇i we will use canonical momenta, defined as

pi =
∂L

∂q̇
. (2.64)

In terms of these variables, we will generally write the Hamiltonian of a system as

H(t, qi, pi) =
∑
i

piq̇i − L(t, qi, q̇i), (2.65)

which matches the earlier definition of (2.63) when we use both generalized velocities and
canonical momenta in our expression. When we go to actually use the Hamiltonian, we must
take all of the q̇i’s in (2.65) and write them in terms of the pi’s. From our earlier discussions,
we can also recognize that in many cases we will be able to write the Hamiltonian as

H = T + V, (2.66)

where all energies would be expressed in terms of qi and pi. Although it can be tempting
to try and write down a Hamiltonian for a system directly using (2.66), it can be risky if
the canonical momenta are not correctly identified (this can particularly tricky when dealing
with coupled systems, as we will see later). Hence, it is common to follow through the
somewhat formal process of determining the Hamiltonian and canonical momenta from a
Lagrangian when first working with a new system.

Once we have determined the canonical position, canonical momenta, and Hamiltonian
of a system, we can use them to derive the equations of motion. This can be done through
taking the variation of the Hamiltonian and Lagrangian and consolidating various terms.
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Instead of this more elaborate process, we will follow a simpler approach that gives the same
core result. In particular, if we have a Hamiltonian that is not an explicit function of time,
then we can determine that the total time derivative of the Hamiltonian will be

dH(qi(t), pi(t))

dt
=

∑
i

(
∂H

∂pi

dpi
dt

+
∂H

∂qi

dqi
dt

)
= 0. (2.67)

In (2.67), we have noted that this time derivative must equal 0 due to energy conservation.
One way to ensure that (2.67) does equal 0 is for

dqi
dt

=
∂H

∂pi
,
dpi
dt

= −∂H
∂qi

. (2.68)

Typically, we will refer to (2.68) as Hamilton’s equations. Together, they give us the equations
of motion for our system. Intuitively, what (2.67) and (2.68) tell us is that the canonical
position and canonical momenta of a system vary in time in such a way to ensure that
energy is conserved. It should be noted that even though we followed a somewhat simplistic
derivation of (2.68), this result does hold in general when following a Hamiltonian mechanics
approach to analyzing a system.

Before looking at an example, a few remarks are in order about the differences between
the Hamiltonian and Lagrangian frameworks. First, when we work with a Lagrangian ap-
proach, we can often consider the generalized velocities to be a dependent variable of the
generalized coordinates in the sense that q̇i = dqi/dt. We have to be careful with not treating
this as a true dependent variable prior to evaluating the Euler-Lagrange equation, but once
that has been completed the analysis works out so that when we derive our equations of
motion we end up with a single second-order differential equation for each generalized coor-
dinate in our system. In contrast to this, when we follow a Hamiltonian approach, we must
consider the canonical position and canonical momenta to be independent variables when
we are deriving our equations of motion. This is necessary so that mathematically these can
vary independently of one another to ensure that energy is conserved. From a practical per-
spective, what this means is that we cannot take our Hamiltonian and try and rewrite parts
involving the canonical momenta if we “think” we know how the momenta should be related
to the position coordinates of our system. Another difference between the two approaches
is the equations of motion that we arrive at from our derivation. Considering (2.68), we
see that the Hamiltonian approach will give us two first-order differential equations for each
degree of freedom that we have in our system.

2.3.2 Example: Free Oscillator

Let’s now consider a concrete example to see how we can transition from a Lagrangian
description of a system to a Hamiltonian one. In particular, we will consider a simple
harmonic oscillator. This is the same kind of system that we considered when discussing
how to include driving forces in a Lagrangian framework, however, we will not consider the
driving force in this example. Considering this, we had as our Lagrangian

L =
1

2
mq̇2 − 1

2
kq2. (2.69)
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We can easily evaluate the Euler-Lagrange equations to find that our equation of motion for
this system is

q̈ + ω2q = 0, (2.70)

where ω =
√
k/m.

Now, let’s go through the process of finding the Hamiltonian for this system and deter-
mining the corresponding equations of motion. To begin, we will need to determine what
the canonical momentum should be. We do this from its definition to find that

p =
∂L

∂q̇
= mq̇. (2.71)

In this case, we see that the canonical momentum is simply the kinetic momentum of the
system (i.e., mass times velocity). It is essential to understand that this result will not always
hold – i.e., the canonical momentum and kinetic momentum of a system will often not be
the same in practical situations of interest.

Our next step is to evaluate what the Hamiltonian will be. By definition, we have that

H = pq̇ − L. (2.72)

To use this definition, we first need to express q̇ and L in terms of p. We can readily find
from (2.71) that

q̇ = p/m, (2.73)

and we can use this result to write L as

L(q, p) =
1

2m
p2 − 1

2
kq2. (2.74)

Using these expressions in (2.72), we find that our Hamiltonian will be

H = p

(
p

m

)
−
(

1

2m
p2 − 1

2
kq2

)
=

1

2m
p2 +

1

2
kq2.

(2.75)

We can recognize that this matches what we would expect H = T + V to be from a naive
perspective of the canonical momenta matching the kinetic momenta. It is stressed again
that this will not always be the case, so simply writing down these expressions in this way
without performing a more formal check can lead to incorrect results!

Now that we have our Hamiltonian, we can evaluate Hamilton’s equations to find our
equations of motion. In particular, we find that

dq

dt
= p/m (2.76)

and

dp

dt
= −kq. (2.77)
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These first-order ordinary differential equations can be integrated in time together to deter-
mine the dynamics of our system. Alternatively, we can take the time derivative of (2.76) to
get

d2q

dt2
=

1

m

dp

dt
(2.78)

and substitute in our result from (2.77) to find that

q̈ + ω2q = 0, (2.79)

in agreement with our Lagrangian mechanics result.

2.3.3 Poisson Brackets

In certain situations, it can be useful to derive equations of motion for other functions besides
the canonical position and momenta. This can be done with what is known as a Poisson
bracket. If we have two functions defined in terms of our canonical positions and momenta,
then the Poisson bracket is defined as

{f, g} =
∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (2.80)

We can use this to evaluate the equation of motion for a particular quantity by recognizing
that

d

dt
f(q, p, t) =

∑
i

(
∂f

∂qi

dqi
dt

+
∂f

∂pi

dpi
dt

)
+
∂f

∂t

=
∑
i

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
+
∂f

∂t

= {f,H}+ ∂f

∂t
,

(2.81)

where in going from the first to second line we utilized Hamilton’s equations from (2.68). In
the common situation where f does not depend explicitly on time, we simply get that

d

dt
f(q, p) = {f,H}. (2.82)

The Poisson bracket plays a very important role in quantizing a classical theory, as we will
see in more detail later in the course, and also provides a convenient way to work with some
standard problems that appear ubiquitously in analyzing quantum systems.

2.4 Lagrangian and Hamiltonian Mechanics of Simple

Circuits

We will now discuss how to apply the Lagrangian and Hamiltonian frameworks to analyzing
simple circuits. We will only focus on a simple LC oscillator at this point, but we will
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Figure 2.2: Circuit schematic of a parallel LC circuit (also referred to as an LC tank circuit).

discuss more complex systems as they naturally arise throughout this course. Examples
of more complete discussions about analyzing (quantum) lumped element circuits using a
Lagrangian or Hamiltonian mechanics approach can be found in various references, e.g.,
see [4–6].

To begin, we will consider the parallel LC circuit shown in Fig. 2.2. In principle, we can
write down the Hamiltonian of this circuit very easily using simple circuit theory results. In
particular, we would say that the total energy is given by the combination of the electrical
potential energy stored in the capacitor and the magnetic potential energy stored in the
inductor, yielding

H =
1

2
CV 2 +

1

2
LI2. (2.83)

Although this expression is accurate for this circuit, it turns out that our familiar definitions
of voltage and current do not correspond to appropriate variables to work with in either a
Lagrangian or a Hamiltonian description of our circuits. As a result, we will need to find
alternative descriptions that are more like “position” and “velocity” variables of mechanical
systems.

Various choices exist as to which variables in our circuit can be denoted as our “general-
ized position”, but we will follow the particular choice that is most prevalent due to its ease
of use with a popular experimental platform of superconducting quantum circuits [5, 6]. In
this approach, we will have our generalized position be the node flux, defined as

ϕ(t) =

ˆ t

−∞
V (τ)dτ, (2.84)

where V is our usual voltage at the node of interest. Considering this, we can find that the
energy stored in our capacitor can be given by

UC =
1

2
Cϕ̇2, (2.85)

which now looks similar to the kinetic energy of a particle with “mass” C.
To see what happens to the energy stored in the inductor, we note that the I-V relation-

ship for an inductor can be given as

V = ϕ̇ = Lİ. (2.86)
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Hence, we can find that in this case

I =
ϕ

L
, (2.87)

which shows from the definition of an inductance that the node flux in this case is also the
magnetic flux of the inductor. We can then write the energy stored in the inductor as

UL =
1

2L
ϕ2, (2.88)

which looks like the potential energy of a mass with a spring constant of 1/L. It is important
to once again stress that the identification of generalized coordinates, velocities, and canonical
momenta must be considered on a case by case basis, and so the simple relationships we are
seeing here will not always hold in general!

Considering these points, we can write the Lagrangian for our system as

L = T − V =
1

2
Cϕ̇2 − 1

2L
ϕ2, (2.89)

where we have identified the capacitive energy as our kinetic energy because it involves
the “generalized velocity” ϕ̇. We can now follow our standard process of determining the
equations of motion for ϕ from the Euler-Lagrange equation for (2.89). This will give us

ϕ̈+ ω2
0ϕ = 0, (2.90)

where ω0 = 1/
√
LC is the angular resonant frequency of our LC circuit. We see that this

matches the result for the resonant frequency of a LC circuit that we are already familiar with
from circuit theory. A similar result can also be obtained from the Hamiltonian approach to
analyzing this simple circuit, which we leave as an exercise for the reader.

2.5 Practice Problems

1. We wish to determine the shape of the soap film that will be supported between two
coaxial rings, as shown in Fig. 2.3. Physically, the soap film will adopt the shape that
minimizes its free energy, which for this case will also correspond to minimizing its
surface area. From the axial symmetry of the rings, we also expect that the solution
will be a surface of revolution. Considering this, the surface area functional for our
current case can be found as the integral of the radius of the film times the arc length.
Mathematically, this is

S[y] = 2π

ˆ x2

x1

y
√

1 + (y′)2dx, (2.91)

where y is a function of x and y′ is shorthand for dy/dx.

(a) Show that the Euler-Lagrange equation that minimizes S[y] is

1√
1 + (y′)2

− yy′′(
1 + (y′)2

)3/2 = 0. (2.92)
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Note: you may use the results derived from class, so you do not need to explicitly
compute the functional derivative of the functional given in (2.91). Instead, you
can directly evaluate the derivatives called for in forming the Euler-Lagrange
equation and fill them into the general expression to arrive at (2.92).

(b) Now, multiply the Euler-Lagrange equation by y′ and show that it can be rewritten
as

d

dx

(
y√

1 + (y′)2

)
= 0. (2.93)

Note: you can show this in the “forward” direction by simply evaluating the ex-
pression given in (2.93) and noting that it does equal y′ times the Euler-Lagrange
equation.

(c) Show that the problem in (b) reduces to the differential equation

dy

dx
=

√
y2

a2
− 1, (2.94)

where a is an integration constant.

(d) Solve (2.94) by separating variables as
ˆ
dx =

ˆ
dy√

(y/a)2 − 1
. (2.95)

To aid in the solution, make the substitution y = a cosh t, where cosh is a hyper-
bolic cosine (if you are unfamiliar with hyperbolic trig functions, which is quite
likely, you can find useful identities on the Wikipedia page for “hyperbolic func-
tions” that are similar to the “standard” trigonometric identities you are already
familiar with). Your final answer should be

y = a cosh

(
x+ b

a

)
, (2.96)

Figure 2.3: Illustration of the soap film problem discussed in Problem 3.
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Figure 2.4: Circuit schematic of an LC tank circuit.

where b is another integration constant. If we had specified the radii of the two
coaxial rings we could solve for the integration constants, but for simplicity we
will leave our answer as is.

Note: we will not be solving differential equations like this throughout this course.
This is just meant as a concrete example of how some of the machinery of the calculus
of variations can be used to approach certain minimization problems.

2. For a Hamiltonian with n degrees of freedom, derive Hamilton’s equations

dqi
dt

=
∂H

∂pi
,
dpi
dt

= −∂H
∂qi

(2.97)

using the definition of the Poisson bracket, where i is an index ranging from 1 to n.

3. Prove the following identity for Poisson brackets:

{f1f2, g} = f1{f2, g}+ f2{f1, g}. (2.98)

4. Answer the following questions for the circuit shown in Fig. 2.4.

(a) In terms of the nodal flux ϕ, the Lagrangian for this circuit is

L =
1

2
Cϕ̇2 − 1

2L
ϕ2. (2.99)

Considering this, compute the “momenta” that is conjugate to ϕ. It is typical to
denote this conjugate momenta as Q in the context of circuits such as this.

(b) What does Q correspond to physically?

Hint: look at the units of the expression defining Q.

(c) Determine the Hamiltonian for this circuit.

(d) Compute the equations of motion from the Hamiltonian and show that they are
equivalent to

ϕ̈+ ω2
0ϕ = 0, (2.100)

where ω0 = 1/
√
LC.
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5. In this problem, you will analyze the circuit shown in Fig. 2.5 using various methods.
You may assume that the voltage V (t) is a known quantity that is driving this circuit.

Figure 2.5: Circuit schematic of a voltage-drive series LC resonator.

(a) What is the Lagrangian for this circuit only considering the energy stored in the
capacitor and inductor? Your answer should be in terms of ϕ, ϕ̇, C, L, and V (t).

(b) Give an expression for the “conjugate momentum” for this circuit. Denote this
quantity as Q.

(c) What is the Hamiltonian of this circuit? Your answer should be in terms of ϕ, Q,
C, L, and V (t).

(d) Determine the equation of motion for ϕ using the Lagrangian mechanics approach.

(e) Now, show how a Hamiltonian mechanics approach can be used to derive the
result you got for (d).

(f) Use traditional circuit analysis techniques to derive the equation of motion for ϕ
that you found in (d) and (e).

6. A particle of charge e is traveling in the presence of an electric and magnetic field. The
Lagrangian for this case can be given as

L =
1

2
mq̇ · q̇− eΦ(q) + eq̇ ·A(q), (2.101)

where q is the generalized position vector of the particle, Φ(q) is the scalar electric
potential at position q, and A(q) is the magnetic vector potential at position q. For
this Lagrangian, answer the following questions.

(a) Verify that each term in the Lagrangian has units of energy. Note that the units
of the magnetic vector potential are [Wb/m], where Wb is the abbreviation for
Weber.

(b) For the generalized position q, show that the conjugate momentum p is

p = mq̇+ eA. (2.102)

Note: This is not equal to the kinetic momentum of the charged particle.
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(c) Show that the Hamiltonian for this system is

H =
1

2m

(
p− eA

)
·
(
p− eA

)
+ eΦ. (2.103)

Note: This is often referred to as the minimal coupling Hamiltonian, and is used
frequently in quantum mechanics and quantum electrodynamics.

Point of interest: Although the calculus required to do this is more complicated
than we wish to consider in this course, the Euler-Lagrange equation for the
Lagrangian given in (2.101) can be shown to be

mq̈ = e
(
E+ q̇×B

)
, (2.104)

where E = −∇ϕ − Ȧ and B = ∇ × A. This is referred to as the Lorentz force
law in electromagnetism.
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Chapter 3

Time-Independent Schrödinger
Equation

3.1 Introduction to the Time-Independent Schrödinger

Equation

Although we will mainly focus on analyzing quantum electrical circuits in this course, an
introduction to quantum mechanical principles is not complete without spending some time
discussing a common form of the Schrödinger equation for electrons. This introduces many
important concepts in a (slightly) less abstract setting, and also highlights the wave proper-
ties of matter (such as electrons). These wave properties are a foundational principle that
played a significant role in the development of quantum mechanics, and continue to be of
vital importance in areas of electrical and computer engineering concerned with designing
semiconductor electronics.

To motivate the development of the time-independent Schrödinger equation, we will con-
sider a famous experiment (the Davisson-Germer experiment) that looked at the diffraction
of electrons off a crystal. In this experiment, a beam of electrons was shined on a crystal
sample and the intensity of the scattered electrons were registered as a function of position.
The basic experimental setup is shown in Fig. 3.1.

If electrons only behaved as particles, one would perhaps expect that the resulting pattern
of scattered electrons would follow a ballistic path, i.e., similar to how a ball might bounce
off a wall. Instead, it was found that the scattered electrons followed a diffraction pattern
that looked similar to what was familiar from other experiments with waves (e.g., with
light) scattering from a diffraction grating. Since electrons were already known to behave as
particles in other contexts, this was found to be another example of wave-particle duality that
would become a common concept in quantum mechanics as it continued to be developed.

A diffraction grating is a kind of periodic structure that is composed of “small” scattering
features that are spaced an equal length from each other. If this spacing has a period that is
comparable to the wavelength of the wave that is incident on the grating, then we get some
very interesting wave behavior evident in the scattered wave. In particular, we find that
different wavelengths get scattered primarily in different directions. This occurs due to wave
interference between all the “secondary waves” emanating out from each of the different
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Figure 3.1: Schematic of the Davisson-Germer experiment (image from Wikipedia [7]).

(a)

(b)

Figure 3.2: (a) Simple schematic of light scattering from a diffraction grating and (b) illus-
tration of Huygens’ principle to understand scattering in terms of secondary waves.

scattering features in the grating (this is known as Huygens’ principle in the general study
of wave physics). This basic effect is shown schematically in Fig. 3.2. In the case of an
electron scattering from a crystal, the “scattering features” of the crystal are the different
atoms that are spaced along the crystal lattice. The highly ordered nature of the crystal is
what leads to it being able to serve as a diffraction grating for an electron.

Now, it was eventually found that the diffraction patterns seen in these electron scattering
experiments behaved like they had a wavelength given by

λ = h/p, (3.1)

where p is the momentum of the electron and h is Planck’s constant. The relation given
in (3.1) is known as the de Broglie hypothesis due to it’s role in Louis de Broglie’s 1924
proposal that matter behaved like a wave. Using this wavelength, we can expect that in
simple situations the electron could be described as a plane wave (a simple form of wave
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that has equal amplitude and phase over a planar surface in space). Then, we could propose
a wavefunction for the electron of the form

ψ ∝ eikx (3.2)

if it were propagating along the x-axis, where k is the wavenumber given by

k = 2π/λ. (3.3)

Note that this wavenumber has the same role as the ω = 2π/T that you are familiar with
for describing the periodicity of sinusoidal signals in your other courses. It is also common
to see de Broglie’s hypothesis written in terms of the wavenumber, which we can see would
give us

k = p/ℏ, (3.4)

where ℏ = h/(2π).
From other experiments, it was considered reasonable to treat the electron wavefunction

as a scalar wave (i.e., it has a scalar amplitude instead of a vector one like an electric field).
For this kind of wave, the simplest (and very common) wave equation for a monochromatic
wave is the scalar Helmholtz wave equation. For our one-dimensional example, this wave
equation is

d2

dx2
ψ + k2ψ = 0. (3.5)

We can easily check that (3.2) is a solution of this equation by simple substitution. Now,
using (3.4), we can rewrite our wave equation as

−ℏ2
d2

dx2
ψ = p2ψ. (3.6)

If we divide both sides by 2m, where m is the mass of our particle, then we would get that

− ℏ2

2m

d2

dx2
ψ =

p2

2m
ψ. (3.7)

We can recognize that the right-hand side of this equation is simply the kinetic energy of
the electron from a simple Newtonian mechanics perspective times the wavefunction.

We now need to consider one of the “big jumps” in logic provided by Schrödinger in
postulating his equation. In particular, he suggested that if the electron were traveling in
some potential that depended on the position of the electron then we could account for this
with a term in the form of V (x)ψ, i.e., the potential energy V (x) times the wavefunction.
We could then express the total energy in the system by adding our kinetic energy, expressed
by the left-hand side of (3.7), and our potential energy together. This would give us(

− ℏ2

2m

d2

dx2
+ V (x)

)
ψ = Eψ, (3.8)
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where E is the total energy. This is the famous time-independent Schrödinger equation for
a one-dimensional system. If we were to extrapolate it to three-dimensions, we would have(

− ℏ2

2m
∇2 + V (r)

)
ψ = Eψ, (3.9)

where ∇2 = ∂2x + ∂2y + ∂2z is the Laplacian operator (in Cartesian coordinates) from vector
calculus.

From our discussion of Hamiltonian mechanics, you may recognize that the left-hand side
of (3.9) can be thought of as one particular instance of an “abstract” way of writing the
Hamiltonian for our system (i.e., it has the form of T + V we are familiar with). In a purely
mathematical context, we may simplify our notation by defining a Hamiltonian operator

Ĥ = − ℏ2

2m
∇2 + V (r) (3.10)

that is essentially just a symbol to represent some set of mathematical steps we should take
when we apply this operator to a function (much like why we called ∇2 an operator). Note
that it is very common in quantum mechanics to use the “hat” over a symbol to denote that
it is an operator.

In this abstract notation, we would write (3.9) as

Ĥψ = Eψ. (3.11)

The amazing thing is that we will find that Schrödinger’s equation written in the abstract
form of (3.11) is generally applicable to a huge number of quantum systems. One of the
main difficulties comes in determining the correct form of the Hamiltonian operator (and
wavefunction) for a particular system. However, as we will see, this can be guided from the
intuition of a Hamiltonian mechanics analysis of a classical system, which is why familiar-
ity with the Hamiltonian mechanics framework is so vital to understanding most modern
quantum analyses of next-generation quantum technologies.

We will also find that the broad concept of a quantum mechanical operator is a central
component of working with quantum systems. We will return to this abstract concept in
more depth when we discuss the mathematical framework of quantum mechanics, which is
another necessary tool to help guide ourselves in developing a quantum theory for a particular
system of interest. However, before taking this more abstract mathematical approach, it is
useful to consider more examples of how to work with the Schrödinger equation in its simple
differential form given in (3.8) or (3.9).

3.2 Wavefunctions and Probability

Although we have motivated the time-independent Schrödinger equation from a combination
of basic wave physics and Hamiltonian mechanics, we find that the final form of our partial
differential equation still involves solving for the wavefunction ψ. As a result, we need to
have a better understanding of what exactly this wavefunction actually represents.
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For our particular case of(
− ℏ2

2m

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x), (3.12)

we found that our wavefunction may have a form similar to

ψ ∝ eikx. (3.13)

(This may be the case even when there is a potential V (x) present for certain simple situa-
tions.) Considering this, we see that in general ψ(x) may be a complex-valued number. As
electrical and computer engineers, we are familiar with working with complex numbers to
help simplify problems that only involve real-valued quantities; e.g., using phasors to express
sinusoidal time domain waveforms. One fascinating detail about quantum mechanics is that
the wavefunction is complex-valued in a general situation, and is not contingent on us sim-
ply electing to make it complex-valued to simplify a problem. Rather, the wavefunction is
complex-valued by its nature.

Now, for what the wavefunction actually represents, it has been found that ψ(x) has
a probabilistic interpretation. More explicitly, we have that the probability of finding the
electron near a particular location x is given by

P (x) = |ψ(x)|2. (3.14)

Due to this probabilistic interpretation of the wavefunction, it is sometimes common to refer
to the value of the wavefunction at a particular point (i.e., ψ(x)) as the probability amplitude.
It is important to remember that the actual probability is related to |ψ(x)|2, which is then
often referred to as the probability density. That this probability needs to be related to
|ψ|2 rather than just ψ is relatively obvious since we do not have a way to interpret what a
complex-valued probability would mean. However, there are also significant implications to
this result.

As an example of an important implication, we can readily see that if ψ1(x) and ψ2(x)
are two solutions to (3.12) then their summation ψ1(x) + ψ2(x) is also a solution to (3.12).
We can then find that the resulting probability of finding an electron at location x would be

P (x) = |ψ1(x) + ψ2(x)|2

= (ψ1 + ψ2)
∗(ψ1 + ψ2)

= ψ∗
1ψ1 + ψ∗

1ψ2 + ψ∗
2ψ1 + ψ∗

2ψ2

= |ψ1(x)|2 + 2Re{ψ∗
1(x)ψ2(x)}+ |ψ2(x)|2

(3.15)

This is a very important result, as it shows that the interference between two wavefunctions
can modify the probability of a particular “measurement” (e.g., in this case, determining
the position of the electron). This kind of interference is behind the diffraction pattern seen
from the Davisson-Germer experiment – in that case, we had to add all the wavefunctions
associated with the “secondary waves” emanating from each scattering feature of the diffrac-
tion grating (again, this secondary wave concept is usually referred to as Huygens’ principle
in the physics of waves).
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To see the impact of this interference more visually, let’s consider a famous example
of a double slit experiment. This is a historically important kind of experiment that has
traditionally been used to demonstrate the wave nature of various physical theories. This
was initially done for light by Thomas Young, and later for electrons and other quantum
mechanical “particles” (atoms, molecules, etc.). In this experiment, we have a uniform wave
incident on an opaque screen (meaning that the wave cannot pass through it) that has two
very small slits in it where the wave can “leak” through the screen. Far away from this
opaque screen at a position y0 we have placed a “detecting screen” where we can measure
what comes through the opaque screen. According to Huygens’ principle, we can consider
the net wave at the screen as a superposition of a “cylindrical wave” originating from each
of the slits in the opaque screen. If we consider the first slit to be located at x = x0 and
the second slit to be located at x = −x0, then the cylindrical waves emanating from the two
slits evaluated at the detecting screen will be proportional to

ψ1(x) =

exp

[
ik
√
(x− x0)2 + y20

]
(x− x0)2 + y20

, (3.16)

ψ2(x) =

exp

[
ik
√
(x+ x0)2 + y20

]
(x+ x0)2 + y20

. (3.17)

We will now consider a few different scenarios assuming that we have an incident electron
speed of 106m/s with the detecting screen placed 20λ from the opaque screen and the two
slits separated by a distance of 6λ.

The first case we will consider is what happens when “slit 2” is covered so that no part
of the wave can leak through it. In this case, the probability density that we measure will
be purely due to ψ1. Hence, if we evaluate |ψ1|2 over the region −50λ ≤ x ≤ 50λ on
the detecting screen we will get the “probability density” given in Fig. 3.3(a) (Note: we
say “probability density” because we are using un-normalized wavefunctions, so the plotted
result is only proportional to probability. We will discuss normalization of wavefunctions in
more detail shortly). If we repeat this scenario but with “slit 1” covered instead of “slit 2”
we will then get a result that only depends on ψ2, which is shown in Fig. 3.3(b).

The more interesting case happens if we open both slits simultaneously. In this case, the
total wavefunction is given by ψ1 + ψ2 and so we can now see interference between the two
wavefunctions when we compute the “probability density”. This is shown in Fig. 3.3(c),
where we see that the interference leads to a number of “lobes” to the “probability density”
where we are more likely to find the electron on the detecting screen. We also see that there
are some locations where we will never observe the electron to land! This is a classic example
of wave interference, and was a stunning result to see with something that was traditionally
considered to be purely a particle (such as an electron).

To further emphasize the importance of the interference terms in evaluating the “prob-
ability density” we also plot the incorrect result that would occur if we just added the
“probability densities” of ψ1 and ψ2 together. This would be given by |ψ1|2 + |ψ2|2 and is
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(a) (b)

(c) (d)

Figure 3.3: Illustration of the result of various double slit experiments performed with an
electron. The cases considered are for (a) “slit 2” is covered, (b) “slit 1” is covered, (c) both
slits are open, and (d) the incorrect calculation of what happens with both slits open by
simply adding the probability densities of the individual wavefunctions. Interference effects
like those observed in (c) are crucially important in many quantum mechanical systems,
including in many quantum algorithms that run on quantum computers!

shown in Fig. 3.3(d). Here, we clearly see that no interference occurs. As a result, it is es-
sential to remember the correct calculations of probability densities to observe the quantum
mechanical interference effects that are central to many quantum technologies!

The property that ψ1(x)+ψ2(x) is a solution to Schrödinger’s equation if ψ1(x) and ψ2(x)
are independently solutions is a consequence of the linearity of Schrödinger’s equation. You
are likely familiar with the concept of linearity from many of your other engineering and
mathematics courses. In many engineering applications, the linearity of a system is actually
just an approximation that can break down under certain conditions (e.g., at high powers in
an amplifier). However, the linearity of quantum mechanics is to the best of our knowledge
a very general and exact property of quantum mechanics. In particular, it is the linearity
with respect to the probability amplitude that is being solved for that seems to be an exact
property of quantum mechanics. As a result, the tools of linear algebra play a very important
role in our conceptualizing of how to analyze quantum mechanical systems. We will touch
on this in much more depth when we discuss the mathematical framework of quantum
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mechanics.
Now, determining the probability of the location of the electron in a particular setup

is of course of interest, however, there are also many other properties of our system that
we may be interested in having a probabilistic description of. It turns out that the same
wavefunction will be able to be used to describe the expected value of all of the possible
measurable properties of our system. For instance, we will be able to use it to determine the
expected value of the electron’s momentum. Understanding how to use the wavefunction for
these more general purposes is something that we will return to after building up some more
tools for working with quantum systems.

It should be mentioned that we will not always be finding ourselves concerned with
a wavefunction expressed as a function of position for an electron. However, the general
concepts we have discussed will still hold true. In particular, we will still have probability
amplitudes associated with our chosen description of our system, we will still have linearity,
and we will have interference between possible probability amplitudes. For instance, later
in this course we will touch on how quantum computers work by performing a sequence of
operations to interfere probability amplitudes to arrive at a higher probability of a desired
output from the computer!

Before moving on, it is useful to pause and emphasize some of the “weird” concepts
we have just introduced. First and foremost, when we perform a quantum mechanical
calculation we are only solving for the statistics of what will happen. Due to the underlying
probabilistic nature of quantum mechanical systems, if we prepare two systems identically
we are not guaranteed to get the same measured results each time. This goes beyond simple
ideas of noise or a lack of control over our system, there is a profound and apparently
fundamental random nature to quantum mechanical systems. Although this is weird, it has
been verified experimentally that this is apparently how these systems work. We will return
to discussing some of the interpretations of this odd result toward the end of this course.
For now, we will mention that it is fortunate that these systems do behave in this perhaps
unsettling statistical way. If they did not, many of the revolutionary quantum technologies
being built would not be able to function in a superior manner to classical systems!

Now, considering that the probability amplitude will play such an important role in
determining the probabilistic outcome of a quantum system, we will need to require an
additional property of our probability amplitudes. In particular, we will require them to be
normalized. In the context of the electron wavefunction, we have said that the probability
of finding the electron at a position x was given by

P (x) = |ψ(x)|2. (3.18)

For P (x) to be associated with a well-defined probability, we must have that

ˆ
P (x)dx =

ˆ
|ψ(x)|2dx = 1. (3.19)

In mathematics, we would refer to P (x) as a probability density, since (rigorously) speaking
it describes the probability of a particular result over some infinitesimal length.

Typically, when we first solve a differential equation like Schrödinger’s equation we will
find that our initial answer will lead to a wavefunction that is not normalized. In general,

38



CHAPTER 3. TIME-INDEPENDENT SCHRÖDINGER EQUATION

we would expect to have something that we can generically write as

ˆ
|ψ(x)|2dx = |a|2. (3.20)

We then must take an additional step of normalizing our solution before using it in any
quantummechanical calculation. This can be done very easily by just defining our normalized
wavefunction ψN as

ψN(x) =
1

a
ψ(x). (3.21)

Note that because we will always need to work with normalized wavefunctions, we will not
generally use the subscript N to denote this unless we are needing to make this explicitly
clear in the particular context.

As a short aside, we typically refer to a function for which

ˆ
|f(x)|2 <∞ (3.22)

as being square integrable. These kinds of functions play a very important role in many
areas of physics and engineering. This generally occurs because we often find that the total
energy of a system is proportional to the square of some value (for example, the kinetic
energy of a particle or the energy stored in an electric field). As a result, square integrable
functions generally also represent functions with finite energy, which are necessarily the kinds
of functions we typically want to consider as being “valid” solutions to the kinds of differential
equations we are solving. In mathematics, these are referred to as L2 functions (pronounced
as “ell-two”, where the L here is in reference to the mathematician Henri Lebesgue). These
are a special case of a more general set of functions called Lp functions, which find use in
various areas of engineering (especially in modern signal processing). In general, the set of
all L2 functions is referred to as a function space, in similarity to the concept of a vector
space from linear algebra. We will find that function spaces play a very important role in
the mathematical framework of quantum mechanics, and so, we will often hear this kind of
terminology used in various quantum mechanical contexts.

3.3 Solving the 1D Time-Independent Schrödinger Equa-

tion

We will now turn our attention to solving the one-dimensional time-independent Schrödinger
equation for a few simple (but important) cases. This essentially reduces to a standard
process for solving differential equations that describe waves, which is also applicable in many
areas of physics. As a result, the mathematical concepts we will be covering in this section
are not “that” quantum mechanical and can be picked up in other areas of engineering (e.g.,
these concepts are prevalent in engineering electromagnetics). The interesting implications
from a physics perspective are linked to this standard wave-like behavior applying to an
electron where before electrons were thought to only act as point-like particles.
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Figure 3.4: Illustration of the infinite potential well problem.

Considering that these wave physics concepts can be covered elsewhere, we will not spend
a significant amount of time discussing them in this course. Instead, we will focus more on
the broader concepts of quantum physics and interactions between different quantum systems
that are more integral to the operation of next-generation quantum technologies than the
wave behavior of electrons are. For those interested in learning more about the wave solutions
to Schrödinger’s equation, the reader is referred to many standard textbooks that cover this
in greater depth; e.g., the introductory texts of [8, 9].

3.3.1 Infinitely-Deep Potential Well

We have already seen that if there is no potential energy term in Schrodinger’s equation then
the solution reduces to a simple “plane wave”-type solution. Of course, practical situations
where there are no potential energy terms are rather limited, so we will now need to consider
the more general case where a potential energy term does exist. We will begin with the
simplest case; that of an infinitely-deep potential well.

The schematic of this situation is shown in Fig. 3.4. It consists of a region where the
potential energy is taken to be 0 for 0 < x < L, and the potential energy is assumed to be so
large for x < 0 and x > L that it can be considered infinite. Although the infinite potential
energy is of course unrealistic, solutions to this problem will be a good approximation for
cases where the potential energy is much larger than the energy of a particular solution
(we will expand on what this means after solving the problem). One prevalent example of
a practical scenario that exhibits physics similar to the infinitely-deep potential well is in
semiconductor devices that use quantum wells. These systems consist of a semiconductor
material (e.g., gallium arsenide) sandwiched between two layers of materials with wider
bandgaps (e.g., aluminum gallium arsenide). This structure forms a potential well in one
dimension, which can be used to manipulate the quantum effects in a device. This has been
found to be useful in a large range of devices, but most notably in quantum well lasers
that are a key component in fiber optic communication that serves as the backbone of the
Internet.

Now, the basic process for solving a differential equation like Schrödinger’s equation for
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this situation can typically be broken up into three basic steps. In Step 1, we first identify
the different regions of our problem and the boundaries between them. In Step 2, we propose
a suitable general solution to the differential equation in each region of the problem. These
general solutions will involve some number of unknown constants in them, which we will need
to determine the values of to solve the overall problem. This is done in Step 3, where we
apply the boundary conditions at the interfaces between the different regions of our problem
to find a set of (generally, but not always) algebraic equations to solve for the unknown
constants.

In general, the process of specifying a suitable general solution can become rather com-
plicated depending on the type of potential energy we are considering. However, it turns
out that there are so few problems that can be exactly solved “by hand” that there are
only so many general solutions we need to be able to actually remember. In this course, we
will only focus on the especially simple or especially important general solutions. Details on
other general solutions can be found as needed in standard textbooks or other mathematical
resources.

Let’s now apply our three-step process to solving Schrödinger’s equation to this particular
situation. We have already more or less done Step 1 by drawing Fig. 3.4. More explicitly,
we can say that

1. Region 1: x ≤ 0, V = ∞,

2. Region 2: 0 < x < L, V = 0,

3. Region 3: x ≥ L, V = ∞.

Now, in Step 2, we need to propose a general solution in each region of the problem.
This is relatively straightforward in Regions 1 and 3 for this case. In particular, because
the potential energy is infinite the only way that Schrödinger’s equation can be satisfied in
that region is if ψ(x) = 0. For Region 2, we need to actually propose a non-trivial general
solution. Since V (x) = 0 in this region, Schrödinger’s equation reduces to

− ℏ2

2m

d2

dx2
ψ(x) = Eψ(x). (3.23)

For convenience, it will be nice to “lump” all of the different constants in the problem on
one side to come up with our general solution. This gives us

− d2

dx2
ψ(x) =

2mE

ℏ2
ψ(x) = k2ψ(x), (3.24)

where we have rewritten all of the constants as

k =

√
2mE

ℏ2
(3.25)

for simplicity. As for choosing what our general solution should be, we can inspect this
equation and readily see that whatever functions we choose for ψ(x) will need to “return”
back to what they started as after taking two derivatives (times some constants). Options
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that should jump to mind would be cosines, sines, or complex exponentials. For this par-
ticular case, the algebra will be easier if we use cosine or sine as our general solution (this
is generally the case when the region is “closed” on both sides). Hence, we can write our
general solution as

ψ(x) = A sin(kx) +B cos(kx). (3.26)

We can now move on to Step 3, where we apply boundary conditions to determine our
unknown constants in our general solution. For this problem, we can determine our boundary
condition from the fact that the wavefunction must be continuous (this is related to the fact
that we need to be able to differentiate it twice as part of Schrödinger’s equation). Since we
have already said that ψ(x) is exactly 0 in Regions 1 and 3, we can find that the boundary
condition for ψ(x) will be

ψ(0) = 0 and ψ(L) = 0. (3.27)

Beginning with the ψ(0) = 0 constraint, we quickly find that B = 0. The next boundary
condition is a little more nuanced to work with. In particular, we find that

ψ(L) = A sin(kL) = 0. (3.28)

We cannot choose A = 0 as our solution because this would lead to a trivial solution of
ψ = 0 everywhere. Hence, we must instead have that

k =
nπ

L
, n ∈ Z, (3.29)

where n ∈ Z is a mathematical shorthand for specifying that n must be an integer (more
explicitly, only positive integers will be of interest). The “trickiness” comes about because
we have already specified that k had to equal

√
2mE/ℏ2 earlier in our solution. The way

“out” of this issue is that we have actually found that this problem will not be solvable for
any value of E. Instead, we will only be able to have a valid solution when

En =
ℏ2

2m

(
nπ

L

)2

, n ∈ Z, (3.30)

with the corresponding solution being of the form

ψn(x) = An sin

(
nπ

L
x

)
, n ∈ Z, (3.31)

where An is a constant.
In most general problems (i.e., not in quantum mechanics), we will not be able to deter-

mine what An should be explicitly. However, in quantum mechanics, we have the additional
requirement that our solutions be normalized so that we can successfully use our probabilis-
tic interpretation of the wavefunction. In this particular case, we find that our normalization
can be determined by evaluating

ˆ L

0

|ψn(x)|2dx =

ˆ L

0

|An|2 sin2

(
nπ

L
x

)
dx = |An|2

L

2
. (3.32)
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For this result to equal 1 (and thus be normalized), we need to choose

An =

√
2

L
. (3.33)

Hence, our normalized wavefunctions will then be

ψn(x) =

√
2

L
sin

(
nπ

L
x

)
, n ∈ Z, (3.34)

which completes our mathematical solution to this problem. As a general note on terminol-
ogy, we will usually refer to each of these possible wavefunctions as a state of the system.

From a physical perspective, we can conclude a few interesting things from this solution
that are generally applicable when we confine a particle in some region of space (some-
times referred to as quantum confinement). First, we have found that the total energy of
the particle can only take on a discrete set of possible values associated with a particular
spatially-varying wavefunction. This marks a kind of “quantization”, i.e., the energy in our
system can only change by discrete “steps”. Each of these different values of energy are
often referred to as energy levels of the system. Another interesting point is that there is
a minimum possible energy for the particle confined in this potential well. In this case, it
would correspond to a value of E1 = (ℏ2/2m)(π/L)2. This lowest possible value is generally
called the zero point energy. The fact that the zero point energy of a system is not generally
“0” has some very profound consequences in how different quantum systems interact, e.g., an
atom with an electromagnetic field (this leads to spontaneous emission of radiation, which
we will learn about later in the course). Finally, we also see that the probability of finding
the electron at a particular location is different for all of the different energy levels, as plotted
for a few different cases in Fig. 3.5.

3.3.2 General Properties of Eigenvalue Problems

Typically, we refer to a differential equation like the time-independent Schrödinger equation
as an eigenvalue problem. You are likely already somewhat familiar with eigenvalue problems
from your studies of linear algebra. There, we describe the matrix equation

Avn = λnvn (3.35)

as being an “eigenvalue problem” with eigenvalues λn and eigenvectors vn. In similarity, if
we write the time-independent Schrödinger equation in its abstract operator form as

Ĥψn = Enψn, (3.36)

we see that it has a similar mathematical structure with eigenvalues of En and eigenvectors
of ψn.

Generally, the terminology surrounding eigenvalue problems will take various different
forms depending on the context. When we are working with a differential equation, it is
common to refer to the eigenvectors as eigenfunctions or eigenmodes, although they still
have the same underlying meaning. Sometimes, we will specifically refer to the ψn’s of the
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Figure 3.5: Plots of |ψn(x)|2 for the first few energy levels of the infinite potential well. Note
that the vertical offset between energy levels is only for clarity of plotting purposes, with
each dashed line corresponding to the 0 probability line for a particular curve.

Schrödinger equation as eigenstates due to our terminology of referring to a general ψ as
a state of the system. Likewise, we will also sometimes refer to the En’s as eigenenergies
rather than eigenvalues. Basically, it is common to add the prefix “eigen” on about anything
we can think of in relation to an eigenvalue problem in quantum mechanics, much as it is
common to add the word “quantum” in front of something to describe it (e.g., quantum
superposition, quantum teleportation, quantum tunneling, etc.).

You will hopefully recall from your linear algebra studies that the eigenvalues and eigen-
vectors of a matrix (or more generally, a linear map) play a very important role in under-
standing the properties of that matrix. For instance, they can play an important role in
diagonalizing a matrix and also are important in forming a basis for the vector spaces that
the linear map operates on. In similarity to this, we will find that determining the eigen-
values and eigenvectors of the time-independent Schrödinger equation play a vital role in
understanding a particular quantum system. More generally, we will find that determining
the eigenvalues and eigenvectors of most operators that we can apply to one of our quantum
states will be an important step in conceptualizing many results of quantum mechanics. As
a result, we will come back to these concepts repeatedly throughout this course.

For now, we will mention a few important properties of the eigenvalues and eigenfunctions
associated with the time-independent Schrödinger equation. These properties all come from
the fact that the Hamiltonian operator Ĥ is an example of a special kind of operator, known
as a Hermitian operator (we will define what this is more rigorously when we discuss the
mathematical framework of quantum mechanics).

First, the eigenfunctions are complete. The exact notion of completeness can become
somewhat technical, but at a high level what it means is that we can expand “any” function
in terms of our eigenfunctions (there are some caveats to this statement, but these are not
important at the level of mathematical rigor that we will require in this course). As a
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(a) (b)

(c) (d)

Figure 3.6: Illustration of how the eigenmodes of the infinitely-deep potential well can be
used to recreate an arbitrary function. The recreations are performed when using the first
(a) 5 eigenmodes, (b) 10 eigenmodes, (c) 15 eigenmodes, and (d) 25 eigenmodes. As more
eigenmodes are included, the fidelity of the recreation continually increases.

result, we will be able to use our eigenfunctions as a basis to describe any possible state
of our system. As a simple example of this, we show how an arbitrary wavefunction can
be expanded in terms of the eigenmodes of the infinitely-deep potential well in Fig. 3.6. It
is clear that as the number of eigenmodes used in the expansion is increased, the fidelity
of the expansion can be made arbitrarily high. If you have already taken a linear systems
course, this should come as no surprise to you as using the eigenmodes of the infinitely-deep
potential well in this way is equivalent to a Fourier series expansion. In quantum mechanics,
we often perform this type of expansion using eigenmodes from different quantum systems
that do not correspond directly to a Fourier series. In this case, we will sometimes refer
to the eigenmode expansion as being a generalized Fourier series. However, the important
point is that the eigenmodes we will work with are complete, and so can be used to expand
any wavefunction of interest with an arbitrarily high precision.

Second, the eigenfunctions are orthogonal. Mathematically, we will typically denote this
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as ˆ
ψ∗
m(x)ψn(x)dx = δmn, (3.37)

where δmn is a Kronecker delta that is equal to 1 when m = n and is equal to 0 otherwise.
Again, this property is fairly straightforward for the infinite potential well case since we are
already familiar with sinusoids of different frequencies being orthogonal to each other. This
orthogonality is also of significant importance for making the eigenfunctions a useful basis
to expand a general state of our system in terms of.

To see how this works, we can assume that we have a general function f(x). Since our
set of eigenfunctions are complete, it is possible to write f(x) in terms of them as

f(x) =
∑
n

cnψn(x), (3.38)

where cn are called the expansion coefficients. We can determine what the mth expansion
coefficient should be by multiplying by ψ∗

m and integrating. This givesˆ
ψ∗
m(x)f(x)dx =

ˆ
ψ∗
m(x)

[∑
n

cnψn(x)

]
dx

=
∑
n

cn

ˆ
ψ∗
m(x)ψn(x)dx

=
∑
n

cnδmn

= cm.

(3.39)

If we were to try and expand f(x) using a set of functions that were not orthogonal, then
we would end up with a complicated “matrix” of relationships between how all of our basis
functions “interact” with each other in the expansion. When we use an orthogonal set, this
simplifies down to a “diagonal matrix” that is simple to work with to the point that we do
not need to even bother with thinking of it as a “matrix” at all.

3.3.3 Quantum Harmonic Oscillator

We will now briefly discuss the time-independent Schrödinger equation for a quantum har-
monic oscillator. We already discussed harmonic oscillators when learning about Lagrangian
and Hamiltonian mechanics. There, we saw that the potential energy for the harmonic
oscillator could be expressed as

V =
1

2
mω2x2, (3.40)

where ω =
√
k/m was the natural oscillation frequency of the oscillator. Considering this,

the time-independent Schrödinger equation that will describe a quantum harmonic oscillator
can be written as

− ℏ2

2m

d2

dx2
ψ(x) +

1

2
mω2x2ψ(x) = Eψ(x), (3.41)
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which we see corresponds to having a “quadratic potential well”.
Solving this problem is somewhat challenging because it requires the use of what are

referred to as special functions that are relatively unfamiliar to engineers. Basically, a special
function is a mathematical function that has an established name and notation because it
has been found to be of particular importance for solving a specific type of problem, and, as
a result, has been studied in depth by mathematicians. Special functions occur in solving
differential equations quite frequently, and are especially prevalent in quantum mechanics.

In this particular case, we first simplify the notation by defining a dimensionless unit of
distance of

ξ =

√
mω

ℏ
x. (3.42)

We can change to this variable and divide by −ℏω to write (3.41) as

d2

dξ2
ψ − ξ2ψ = −2E

ℏω
ψ. (3.43)

Through prior experience (i.e., not your prior experience, but the experiences of clever math-
ematicians), it is possible to find solutions to this equation of the form

ψn(ξ) = Ane
−ξ2/2Hn(ξ), (3.44)

where Hn is a function that is still to be determined. This solution can be substituted
into (3.43) to get (after some work) a differential equation that the Hn’s must satisfy. In
particular, we find that

d2

dξ2
Hn(ξ)− 2ξ

d

dξ
Hn(ξ) +

(
2E

ℏω
− 1

)
Hn(ξ) = 0. (3.45)

Admittedly, this looks like a mess, but it turns out that if

2E

ℏω
− 1 = 2n, n ∈ Z (3.46)

then this differential equation is one that has been studied extensively in the past. Its
solutions are known as Hermite polynomials, which are a particular example of a set of
special functions (more specifically, a set of orthogonal polynomials).

Overall, we find that the valid eigenenergies for the quantum harmonic oscillator are

En =

(
n+

1

2

)
ℏω (3.47)

and the normalized eigenfunctions are (after converting back to the original distance units)

ψn(x) =

√
1

2nn!

√
mω

πℏ
exp

(
− mω

2ℏ
x2
)
Hn

(√
mω

ℏ
x

)
. (3.48)
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Figure 3.7: The first few eigenfunctions of the quantum harmonic oscillator. Note the definite
parity of the functions (i.e., they are either even or odd functions) and how higher energies
are able to have more probability density at larger values of x (image from Wikipedia [10]).

Remembering this exact expression for the eigenfunctions is not particularly important, but
it is good to have an intuitive idea of what they “look” like when plotted. To help with this,
the first few eigenfunctions are shown in Fig. 3.7.

The important takeaways from this example are the following. First, the eigenenergies
are equally spaced for a quantum harmonic oscillator. This is a very rare phenomena, and has
important consequences in next-generation quantum technologies, as we will discuss later in
this course. Second, as with the infinite potential well case, we again see that we have a
non-zero zero point energy. Finally, although we only considered this example as a special
case for a potential well for an electron, it turns out that quantum harmonic oscillators
are an excellent approximate description of a huge number of practical quantum systems.
We will be more explicit about this later, but we will find that LC circuits behave like
quantum harmonic oscillators, as do certain aspects of electromagnetic fields and acoustic
vibrations along atomic lattices. As a result, the quantum harmonic oscillator is one of
the most important “simple” quantum systems that we can analyze, whose properties have
far-reaching effects in the design of modern quantum technologies.

3.4 Practice Problems

1. Explicitly evaluate the following expressions if ψ1(x) =
√

2/L sin(πx/L) and ψ2(x) =√
2/L sin(2πx/L).

(a)

ˆ L

0

ψ1ψ2dx

(b)

ˆ L

0

ψ1
d

dx
ψ2dx
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(c)

ˆ L

0

ψ1
d

dx
ψ1dx

2. Suppose an electron has wavefunction ψ(x) = exp[ikx], where k is the wavenumber
from de Broglie’s hypothesis.

(a) Show that this wavefunction is an eigenvector of the differential operator p̂ =
−iℏ ∂

∂x
.

(b) From your answer to (a), what then is the eigenvalue of p̂ equal to physically?

3. Normalize the following wavefunctions over the interval −1 ≤ x ≤ 1.

(a) ψ(x) = 1
2
(3x2 − 1)

(b) ψ(x) = 1
8
(35x4 − 30x2 + 3)

Note: these two polynomials are examples of Legendre polynomials. These find many
uses in mathematical analysis and the solution of various differential equations.

4. Show that the two polynomials defined in 3(a) and 3(b) are orthogonal over the interval
−1 ≤ x ≤ 1.

5. In this problem, we will consider details about generalized Fourier series expansions
using eigenmodes of the time-independent Schrödinger equation for an infinitely-deep
potential well that is 5 nm wide. In this potential well, we have been given the un-
normalized wavefunction

ψ(x) = 0.5 exp

[
− (x− L/2)2

2(0.25× 10−9)2

]
+ 0.4 exp

[
− (x− 5L/8)2

2(0.5× 10−9)2

]
+ 0.25 exp

[
− (x− 3L/8)2

2(0.15× 10−9)2

]
, (3.49)

where L = 5nm. Write a computer program to complete the following tasks, however,
no use of symbolic computation (e.g., SymPy or Matlab symbolic math toolbox) is
allowed.

Note: so long as you use a reasonable number of points to discretize the interval 0 ≤
x ≤ L (e.g., 200) all integrations can be evaluated accurately using simple numerical
integration functions like trapz in Matlab.

(a) Normalize the wavefunction given in (3.49) and plot the result (Note: plot the
wavefunction, not the probability density). It should look like Fig. 3.8.

(b) Compute the generalized Fourier series expansion of the normalized wavefunction
using the first 5 eigenmodes of the potential well. Plot the generalized Fourier
series expansion and the normalized wavefunction on a single plot. The result
should look like Fig. 3.6(a).

(c) Repeat (b), but use the first 10 eigenmodes. The result should look like Fig.
3.6(b).
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Figure 3.8: Normalized version of the wavefunction given in (3.49).

(d) Repeat (b), but use the first 25 eigenmodes. The result should look like Fig.
3.6(d).

6. Write a finite difference method program to discretize and solve the time-independent
Schrödinger equation for an infinite potential well problem. In a finite difference
method, the x-axis is discretized into a set of equally-spaced grid points, where ∆x is
the grid spacing. A derivative at the jth grid point is then approximated as

f ′(j∆x) ≈
f
(
(j + 1)∆x

)
− f

(
(j − 1)∆x

)
2∆x

, (3.50)

and a second derivative as

f ′′(j∆x) ≈
f
(
(j + 1)∆x

)
− 2f

(
j∆x

)
+ f

(
(j − 1)∆x

)
(∆x)2

. (3.51)

(These approximations are known as central differences, and can be derived by trun-
cating various Taylor series expansions.)

Using these approximations, the time-independent Schrödinger equation can be con-
verted into a matrix equation, where you get one equation for each grid point. For
instance, the matrix representation of the second derivative away from boundary points
looks like

d2

dx2
→ 1

(∆x)2



. . .
...

...
...

...
...

... . .
.

. . . 1 −2 1 0 0 0 . . .

. . . 0 1 −2 1 0 0 . . .

. . . 0 0 1 −2 1 0 . . .

. . . 0 0 0 1 −2 1 . . .

. .
. ...

...
...

...
...

...
. . .


. (3.52)
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Some logic inspired by the knowledge of what happens in a region with an infinite
potential can help you to determine how to find the complete finite difference dis-
cretization of d2/dx2 including next to the boundary points of the potential well.

Once the matrix form of the Schrödinger equation has been fully assembled, you can
compute the eigenvalues and eigenvectors using built-in functions like Matlab’s eig.
Note that this entire process can be done in about 10 lines of code if you’re efficient,
but shouldn’t take substantially more than that if you’re not.

For consistency, do this problem for an electron confined in the interval 0 < x < 5 nm
and use a total of 400 grid points (excluding the boundary points of x = 0 and x =
5nm which are accounted for implicitly since we know that ψ(x) = 0 at those points
and so do not need to solve for its value there). Verify that the first 3 eigenvalues
and eigenvectors closely match the analytical results derived in class. Note that the
eigenvectors computed by the numerical method will not have the same normalization
as the analytical solution. For comparison purposes, you will want to multiply the
eigenvectors computed by the numerical method by 1/

√
∆x.

7. For the following questions, assume that an electron has been confined inside an
infinitely-deep potential well in the region −L/2 < x < L/2. For this potential well,
the wavefunctions can be found to be

ψn(x) =


A cos

(
nπ

L
x

)
, n is odd

B sin

(
nπ

L
x

)
, n is even

, (3.53)

where A and B are constants to be determined and the energy associated with each
state is given by

En =
ℏ2

2m

(
nπ

L

)2

, (3.54)

where m is the mass of the electron.

(a) Determine what A and B should equal so that the wavefunctions given in (3.53)
are normalized.

(b) Assume now that the initial state of the electron is given by

ψ(x, 0) =
1√
2

(
ψ1(x) + eiφψ2(x)

)
(3.55)

and that the potential well is 10 nm wide. Evaluate the expectation value of
the electron position ⟨x(t)⟩ at t = 0.1 ps and t = 0.2 ps given that the position
operator x̂ = x for this problem (i.e., it is just the x-coordinate) and that φ = π/4.
You may compute the requested expectation value using hand calculations or by
writing a simple numerical program (no symbolic computation tools allowed).
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Chapter 4

Time-Dependent Schrödinger
Equation

4.1 Introduction to the Time-Dependent Schrödinger

Equation

Up to now, we have only considered the time-independent Schrödinger equation to begin un-
derstanding quantum mechanical systems. Obviously, a completely time-independent theory
is not going to be able to fully describe quantum mechanical effects. Hence, we now turn our
attention to discussing the time-dependent Schrödinger equation. As we will see, the results
of the time-independent Schrödinger equation still typically play a vital role in building our
understanding of the behavior of the time-dependent Schrödinger equation, and are also still
of valuable use in practical calculations.

Thus far, we have worked with the time-independent Schrödinger equation in the form
of (

− ℏ2

2m

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x), (4.1)

which we saw defined an eigenvalue problem that could be solved for a particular potential
energy to find the valid energies and wavefunctions for this system. The time-dependent
Schrödinger equation looks very similar, and is given for this same kind of system (e.g., an
electron subject to some potential energy) by(

− ℏ2

2m

d2

dx2
+ V (x, t)

)
ψ(x, t) = iℏ

∂

∂t
ψ(x, t). (4.2)

In many situations, the potential energy may be time-independent (e.g., a fixed potential
well) so that we can simplify (4.2) to(

− ℏ2

2m

d2

dx2
+ V (x)

)
ψ(x, t) = iℏ

∂

∂t
ψ(x, t). (4.3)

In this case, we see that the only substantive change between (4.1) and (4.3) comes by
“replacing” the energy by iℏ∂t. It is because of this “small” change that we will find solutions
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of (4.1) are still very useful in understanding (4.3). Even when the total potential energy is
not time-independent, it can still be a useful strategy to separate it into time-varying and
time-stationary parts so that the time-independent Schrödinger equation is still useful. We
will discuss how to deal with this kind of common occurrence later in this course when we
discuss time-dependent perturbation theory in quantum mechanics.

Before moving on, we will comment that we can again write (4.3) in the same kind
of more abstract operator notation that we discussed in relation to the time-independent
Schrödinger equation. In this case, we would be able to write (4.3) as

Ĥψ = iℏ
∂

∂t
ψ. (4.4)

This form of Schrödinger’s equation is of significant interest as it is applicable to an extremely
broad set of systems. As we discussed previously, we “simply” must find the suitable form
of Ĥ and ψ and then we can use this equation to calculate the time-dependence of most
practical quantum systems of interest for developing quantum technologies. For instance,
even something as complex as the operation of a quantum computer can be thought of in
terms of (4.4).

4.1.1 Stationary States

Let’s now look at how a solution of the time-independent Schrödinger equation behaves if we
consider it as the spatial part of a wavefunction in the time-dependent Schrödinger equation.
In particular, we will assume that we have some eigenstate ψn with corresponding energy En.
We will then assume as a “trial solution” that we can write our time-dependent wavefunction
as

ψ(x, t) = cn(t)ψn(x), (4.5)

where cn(t) describes the time-dependence of the wavefunction that we would like to deter-
mine by solving (4.3). (Note: this kind of trial solution is known as a separable solution. We
will comment more on this concept at the end of this section.)

If we plug (4.5) into (4.3), we will get(
− ℏ2

2m

d2

dx2
+ V (x)

)(
cn(t)ψn(x)

)
= iℏ

∂

∂t

(
cn(t)ψn(x)

)
. (4.6)

By factoring cn through the terms in the large parentheses on the left-hand side and ψn
through ∂t on the right-hand side, we get

cn(t)

(
− ℏ2

2m

d2

dx2
+ V (x)

)
ψn(x) = iℏψn(x)

∂

∂t
cn(t). (4.7)

We can recognize from the time-independent Schrödinger equation that(
− ℏ2

2m

d2

dx2
+ V (x)

)
ψn(x) = Enψn(x), (4.8)
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so we can rewrite (4.7) as

cn(t)Enψn(x) = iℏψn(x)
∂

∂t
cn(t). (4.9)

We can now cancel the common terms of ψn(x) on both sides of this equation to arrive at
the very simple ordinary differential equation

Encn(t) = iℏ
∂

∂t
cn(t). (4.10)

You should recall from your differential equations course that the solution to this equation
is

cn(t) = cn(0)e
−i(En/ℏ)t, (4.11)

where cn(0) is a constant that comes from the initial conditions to the problem. If we assume
that the initial condition is simply cn(0) = cn,0, then we can write our solution as

cn(t) = cn,0e
−i(En/ℏ)t. (4.12)

We can then find that the time-dependence of (4.5) calculated by the time-dependent
Schrödinger equation is

ψ(x, t) = cn(t)ψn(x) = cn,0ψn(x)e
−i(En/ℏ)t. (4.13)

The state ψn is referred to as a stationary state because all properties of measurable values
(typically referred to as observables in quantum mechanics) of this state are constant in
time. As a simple illustration of this, we can calculate the probability density of finding our
particle at a position x by evaluating

P (x, t) = |ψ(x, t)|2

=

(
cn,0ψn(x)e

−i(En/ℏ)t
)∗

×
(
cn,0ψn(x)e

−i(En/ℏ)t
)

= |cn,0|2|ψn(x)|2,

(4.14)

which we see does not depend on time. (Note that in this very simple example |cn,0| = 1
so that ψ(x, t) is appropriately normalized.) Although we only showed this for one simple
“observable”, this property does hold in general for all observables of an eigenstate of the
time-independent Schrödinger equation, and is the origin of the terminology stationary state.

Before moving on, it is worth briefly commenting on some of the general mathematical
techniques that were utilized here. To begin, we usually refer to a function like

ψ(x, t) = cn(t)ψn(x), (4.15)

as being separable because we have been able to write its behavior in terms of independent
functions that only depend on a single variable. Although this kind of solution is not possible
for all partial differential equations, it is a very common strategy that works for many
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problems that can be solved “by hand”. The general technique is known as the separation of
variables, and is valuable because it allows us to simplify a complicated partial differential
equation into a set of simpler differential equations that can be solved by themselves. In this
case, our separation of variables in the form of (4.15) reduced the time-dependent Schrödinger
equation into two simpler differential equations: namely, the time-independent Schrödinger
equation of (4.1) and the temporal ordinary differential equation of (4.10). You will come
across this general technique in many different areas of physics that must solve partial
differential equations, including in the area of electromagnetics in electrical engineering.

4.1.2 Superpositions of Stationary States

We have just seen how solutions to the time-independent Schrödinger equation are stationary
states whose observable properties do not change as a function of time. This is interesting,
but obviously to describe a general quantum system evolving in time we are going to need to
find solutions whose observable properties do evolve in time. To see one simple way for this
to occur, let’s start by looking at an example of a superposition of two stationary states.

In this case, we will assume that the initial state of our quantum system is given by

ψ(x, 0) = cm,0ψm(x) + cn,0ψn(x), (4.16)

where cm,0 and cn,0 are complex constants that “weight” the contributions of the two eigen-
states ψm and ψn, which have corresponding energies Em and En. For this to be a well-defined
state, we will need it to be normalized. We can make sure this is the case by evaluating the
integral of |ψ(x, 0)|2 and ensuring that its value is 1. To see what this works out to be, we
note that

ˆ
|ψ(x, 0)|2dx =

ˆ [
|cm,0|2ψ∗

mψm + c∗m,0cn,0ψ
∗
mψn + c∗n,0cm,0ψ

∗
nψm + |cn,0|2ψ∗

nψn

]
dx (4.17)

can be simplified greatly using the orthonormality of the normalized eigenstates ψm and ψn.
This causes the cross terms like ψ∗

mψn to integrate to 0 and the common terms like ψ∗
mψm

to evaluate to 1. The final normalization condition then reduces to

|cm,0|2 + |cn,0|2 = 1. (4.18)

Assuming that this relationship holds for cm,0 and cn,0, we can now proceed with determining
the time-dependence of our system given the initial condition of (4.16).

To do this, we propose

ψ(x, t) = cm(t)ψm(x) + cn(t)ψn(x) (4.19)

as a “trial solution” to the time-dependent Schrödinger equation. We can substitute this in
and separate terms out to get

cm(t)Ĥψm(x) + cn(t)Ĥψn(x) = iℏ
∂

∂t

(
cm(t)ψm(x) + cn(t)ψn(x)

)
, (4.20)
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where we are using Ĥ as the shorthand operator notation to denote the Hamiltonian operator
from the typical Schrödinger equation we have been working with. We can now use the
properties of the different eigenstates to then arrive at

cm(t)Emψm(x) + cn(t)Enψn(x) = iℏ
∂

∂t

(
cm(t)ψm(x) + cn(t)ψn(x)

)
. (4.21)

Solving this equation looks slightly tricky at first glance, but we can isolate the time depen-
dence of the different parts of the equation by multiplying by the conjugate of one of our
eigenstates and integrating over the spatial region of interest. (As an aside, performing this
kind of step is a very common in the formulation of numerical methods used to solve a wide
variety of partial differential equations.) For instance, we can multiply by ψ∗

m and integrate
to get

ˆ
ψ∗
m

[
cm(t)Emψm(x) + cn(t)Enψn(x)

]
dx =

ˆ
ψ∗
m

[
iℏ
∂

∂t

(
cm(t)ψm(x) + cn(t)ψn(x)

)]
dx.

(4.22)

We can use the orthonormality of the eigenstates to evaluate the spatial integrals to then
see that this reduces to

cm(t)Em = iℏ
∂

∂t
cm(t). (4.23)

This will have as its solution

cm(t) = cm(0)e
−i(Em/ℏ)t. (4.24)

To determine what the initial condition is for cm(t), we can return to (4.16) and multiply by
ψ∗
m and integrate. This gives us

ˆ
ψ∗
m(x)ψ(x, 0)dx =

ˆ [
cm,0ψ

∗
m(x)ψm(x) + cn,0ψ

∗
m(x)ψn(x)

]
dx, (4.25)

which we can quickly recognize will evaluate to cm,0 due to the orthonormality of the eigen-
states. Hence, we find that the complete solution for cm(t) will be

cm(t) = cm,0e
−i(Em/ℏ)t. (4.26)

A similar set of steps allows us to find that

cn(t) = cn,0e
−i(En/ℏ)t. (4.27)

Putting these results together, we finally have that our solution to the time-dependent
Schrödinger equation is

ψ(x, t) = cm,0ψm(x)e
−i(Em/ℏ)t + cn,0ψn(x)e

−i(En/ℏ)t. (4.28)
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Let’s now look at the probability density of finding the particle at a particular position
for this superposition of stationary states. We find that

P (x, t) = |ψ(x, t)|2 = |cm,0|2|ψm(x)|2 + |cn,0|2|ψn(x)|2

+ c∗m,0cn,0ψ
∗
m(x)ψn(x)e

−i([En − Em]/ℏ)t + c∗n,0cm,0ψ
∗
n(x)ψm(x)e

i([En − Em]/ℏ)t, (4.29)

which now clearly exhibits time dependence due to the interference between the oscillations
of the two stationary states. It is interesting to note that this interference oscillates at a
frequency of

ωmn = (En − Em)/ℏ, (4.30)

where we have assumed that En is from a higher energy level so that the frequency is posi-
tive. We will find in many areas of quantum mechanics that the observable dynamical effects
depend on frequencies associated with the difference in energies of the eigenstates involved.
For instance, when an atom transitions between two energy levels the electromagnetic radi-
ation that is absorbed or emitted as part of this process will be found to have an angular
frequency defined by (4.30). Due to this dependence of the dynamics on the relative spacing
of energy levels, we are often unconcerned with our “reference value” to measure energies
from (i.e., what our 0 value is) since any constant shift to all our energies will not impact
the dynamics of the system.

General Procedure

Although we have only considered the specific case of the superposition of two stationary
states, it should hopefully be clear that this basic process immediately generalizes to as many
stationary states as we need to work with for a particular problem due to their orthonormal-
ity. The key result is that due to the completeness of the eigenstates of the time-independent
Schrödinger equation we can expand any valid initial spatial condition of the time-dependent
problem in terms of these eigenstates. For example, if we have a specified initial condition
of ψ(x, 0) we can readily compute the expansion coefficients of each eigenstate by evaluating

cn,0 =

ˆ
ψ∗
n(x)ψ(x, 0)dx. (4.31)

We can then write ψ(x, 0) in terms of the eigenstates as

ψ(x, 0) =
∑
n

cn,0ψn(x), (4.32)

subject to the normalization constraint that∑
n

|cn,0|2 = 1. (4.33)

(Note: checking your calculated coefficients to ensure they are normalized can be good test
to make sure you evaluated your integrals correctly.) Now that we have expressed our initial
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(a) (b) (c)

Figure 4.1: Time evolution of a quantum harmonic oscillator for (a) equal superposition
of the first four eigenstates (b) equal superposition of states {ψ0, ψ2, ψ3}, and (c) equal
superposition but random phase of states {ψ0, ψ2, ψ3}.

state in terms of the eigenstates of the system, the time evolution of this system can be
easily found to be

ψ(x, t) =
∑
n

cn,0ψn(x)e
−i(En/ℏ)t. (4.34)

Visualizing the interference between all of these terms can be relatively challenging, but the
important point is that the time evolution can be found quite easily assuming we are able
to solve the time-independent Schrödinger equation for our particular system of interest. To
help visualize this, we will now look at some examples.

Example 1: Time Evolution in a Harmonic Oscillator

We now briefly look at the time evolution of states that correspond to a superposition of the
first four eigenstates of the harmonic oscillator. We have previously discussed the spatial
profile of these eigenstates and will not review that here. We will simply show the plots for
a few different snapshots of the time evolution in Fig. 4.1. The main takeaway is that the
time variation is periodic, as would be implied by (4.34), but that the spots where we are
most likely to find the particle can significantly deviate from what we would expect for a
classical particle trapped in this kind of potential well. We also see that the time variation
can appear qualitatively quite different by simply changing the starting phase of the different
expansion coefficients. This serves as a reminder to us that it is the complex-valued nature
of the wavefunction that is so important in allowing for the interference between different
eigenstates in the probability density.

Example 2: Time Evolution of a Coherent State in a Harmonic Oscillator

We have just seen that superpositions of the first few eigenstates of the harmonic oscillator
can lead to trajectories that significantly differ from the expected classical motion. A natural
question to then ask is whether there is some way for the quantum mechanical trajectory to
closely follow the expected classical trajectory. It is sensible for us to expect that this must
somehow be the case, since we expect that quantum mechanics as a more “fundamental”
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Figure 4.2: Snapshots of a coherent state oscillating in a quadratic potential well.

theory should still be able to (at some point) replicate the physics we experience in our day-to-
day lives that classical mechanics describes. This is the basic idea behind the correspondence
principle (due to Niels Bohr), which provides more structure to the notion of how quantum
mechanics should reproduce classical physics. Typically, we will sometimes use the phrase
the classical limit to describe the conditions for which the quantum and classical results
agree.

In the context of the quantum harmonic oscillator, a very special superposition of eigen-
states can be generated to most closely replicate the classical motion expected for this prob-
lem. This particular combination of eigenstates is known as a coherent state. Coherent states
play a very important role in quantum mechanics. This is particularly the case in quantum
optics, where they are found to provide a good description of widely-used electromagnetic
fields, such as those produced by a laser. We will postpone a more detailed discussion of
coherent states until later in this course, but will refer the interested reader to an intro-
ductory description in [8, Ch. 3] or a more advanced description that is useful in quantum
optics [11, 12] for now.

An image showing the snapshots of the time evolution of a coherent state is included in
Fig. 4.2. Although it is not easy to tell from the snapshots, the oscillations of the mean
value of the coherent state occurs at the frequency of the classical motion. It is also seen
that the spatial profile of the superposition of eigenstates maintains a consistent shape as it
oscillates, which is in sharp contrast to the examples shown in Fig. 4.1.

4.2 Quantum Mechanical Measurements

Now that we have some understanding of time-dependent wavefunctions we can begin to
discuss the very peculiar, but essential, role that measurements play in quantum mechan-
ics. Although measurements form a very important piece of quantum mechanics, precisely
defining what constitutes a “measurement” in a given context can be difficult. As a result,
the “rules” surrounding quantum mechanical measurements can seem quite bizarre and can
often lead to conceptual difficulties. This problem has puzzled physicists for many decades,
and still continues to be an important question that is asked. However, recent work (well, in
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the 1980’s) gave sufficient experimental evidence in support of one particular interpretation
of quantum mechanics and measurements that has made that interpretation become the
standard “correct” answer up to this point. This groundbreaking experimental work was so
important that the main contributors were awarded the Nobel Prize in Physics in 2022 for
their efforts. However, it should be mentioned that further work on these fronts continues
to this day, and so our understanding of quantum mechanical measurements may yet de-
velop in the future. Until then, we are left with what is typically known as the Copenhagen
interpretation, which is associated with Niels Bohr and his followers.

We have already been following the Copenhagen interpretation up to this point based on
our probabilistic interpretation of the wavefunction. We will now add to that interpretation
an “explanation” of what happens when a quantum system is measured. In particular,
when a measurement is performed, the system is said to collapse into an eigenstate of the
quantity being measured (e.g., position, momentum, energy, etc.). If we have a wavefunction
described by eigenstates ψn through

ψ =
∑
n

cnψn, (4.35)

then the probability that the wavefunction will collapse into state ψn upon measurement is
determined by

Pn = |cn|2, (4.36)

with the result of the measurement being the eigenvalue associated with the state ψn. We
have already discussed states like (4.35) and have seen that their normalization constraint
is that

∑
n |cn|2 = 1, so we see that the definition of (4.36) can indeed be interpreted as a

probability. If the result of the measurement is the eigenvalue associated with state ψn, then
immediately after the measurement has occurred the wavefunction of the system becomes

ψ = ψn; (4.37)

i.e., it has collapsed into only the state ψn. Now, after the measurement the system begins to
evolve in time again according to the time-dependent Schrödinger equation for the system. A
consequence of this is that if we make a repeated measurement of the same quantity within a
short enough time we are guaranteed to get the same result. For instance, we could measure
the position of an electron, wait a very short time, and then measure the position again. If
the evolution time was short enough, the wavefunction of the electron will not have enough
time to “spread out” from the point of the first measurement, and so we will get the same
result.

We can now consider preparing our quantum system in an identical manner many times
and repeating our measurement process each time. Every time we perform the measurement,
we will in principle get some “new” result based on the probability distribution described
by the |cn|2’s. We can then determine the expectation value of our measurement based on
all of these results. We can calculate what this expectation value would be using standard
statistics, which give us

⟨A⟩ =
∑
n

AnPn =
∑
n

An|cn|2, (4.38)
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where A is the quantity we are measuring (e.g., energy, position, momentum, etc.) and An
is the eigenvalue of this measurable quantity associated with the nth eigenstate. This is
an important result, which we will return to shortly when we consider a slightly broader
discussion of operators in quantum mechanics than we have considered up to this point.

Now, an extremely important (and weird!) aspect of the Copenhagen interpretation
is that prior to us performing the measurement the system is in an “indeterminate state”
described by the wavefunction. More explicitly, if we are measuring the position of an electron
we cannot interpret the result of the measurement as being a consequence of the electron
just already “happening” to be in the position where we found it. Rather, the electron
wasn’t really anywhere prior to the measurement, and it is the act of measuring the system
that forced the electron into a particular position that we found it at. This is one of the
central aspects of “quantum weirdness” at the heart of the famous Schrödinger’s cat thought
experiment, which was coincidentally postulated to try and express how absurd this view of
the world could appear to be. However, this seems to be our best way to successfully perform
quantum mechanical calculations to date, so we simply must live with this particularly weird
aspect of quantum mechanics! It should also be emphasized that this apparent “weirdness”
is central to the operation of many next-generation quantum technologies. For instance, if
quantum systems didn’t behave this way, many applications of quantum information (e.g.,
quantum communication and quantum computing) simply wouldn’t be able to work!

4.2.1 Stern-Gerlach Experiment

To reinforce some of the important aspects of quantum mechanical measurements and wave-
function collapse, we will now discuss the famous Stern-Gerlach experiment and some key
extensions to it. This experiment was originally performed in the early 1920’s and played an
important role in decisively demonstrating the quantization of particular aspects of atomic
systems (in particular, the angular momentum). The basic setup of this experiment is shown
in Fig. 4.3.

For simplicity, we will imagine that we are performing this experiment with a set of
electrons rather than the more complex atoms that the experiment was originally performed
with. In addition to this, we will need to have a basic notion of what spin is to understand
these experiments. At a high-level, spin is a kind of intrinsic angular momentum of a particle
that can take on only discrete values. The spin is an intrinsic property of the particle being
considered, much like the charge of a particle is an intrinsic property, and does not depend
on any actual movement of the particle (i.e., it is simply always there). For the purposes of
this experiment, it suffices to understand that an electron can only have a spin of ±1/2 and
that one consequence of spin is that it causes the electron to have what we can consider to
be a small magnetic dipole moment.

In this experiment, an electron is “fired” through a device that produces an inhomoge-
neous magnetic field between the two poles of the magnet. If we consider the electron with
its spin to behave like a tiny “bar magnet” we would expect the inhomogeneous magnetic
field to deflect the trajectory of the electron depending on how the magnetic dipole moment
is aligned with the inhomogeneous magnetic field of our device. For the purposes of this ex-
periment, we will consider that the inhomogeneous magnetic field is inhomogeneous purely
along one of our coordinate axes. As a result, if we take no effort to align the magnetic
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Figure 4.3: Basic configuration of the Stern-Gerlach experiment, where 4 denotes the ex-
pected classical result and 5 denotes the observed quantum mechanical result (image from
Wikipedia [13]).

dipole moment of our electron prior to firing it through our system, we would expect that
the distribution of points we find the electron at would be a continuous line along the di-
rection of the inhomogeneous magnetic field. This expected distribution is marked by the
number “4” in Fig. 4.3.

However, when we actually perform this measurement with a set of electrons we observe a
result that significantly differs from our classical expectation. Instead of seeing a continuous
set of deflections, we see that there are exactly two points that every electron fired through
our setup deflects to. These points are marked by the number “5” in Fig. 4.3. The quantum
mechanical explanation for this peculiar result is that our experimental setup has measured
the spin of the electron as it passes through the magnetic field. More specifically, it has
measured the spin along the axis of the inhomogeneous magnetic field. Since the spin
property of the electron only has the two possible spin states of ±1/2, the measurement
collapses our originally randomly prepared electron state into either a spin up or spin down
orientation with respect to our measurement axis. After the wavefunction has collapsed into
either the spin up or spin down orientation, the magnetic field then deflects the particle
accordingly to one of the two positions where we see the electrons “pile up” in the actual
measurement.

To emphasize a few other aspects of quantum measurements, it is instructive to consider
a sequence of “Stern-Gerlach experiments” as illustrated in Fig. 4.4. The first experiment
shown in Fig. 4.4(a) illustrates the wavefunction collapse property of repeated measure-
ments; namely, that performing the same measurement in quick succession yields the same
result. This is shown by taking one of the deflected electron paths from the first Stern-
Gerlach experiment and passing this immediately into another Stern-Gerlach experiment
oriented along the same axis. At the output of the second Stern-Gerlach experiment we see
all the electrons “pile up” at a single point because the wavefunction has not had enough
time to evolve between the two measurements to allow the second possibility to occur.
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(a) (b)

Figure 4.4: Examples of sequential Stern-Gerlach experiments and the final detected results.
Discussion of the two experiments is in the main text (images from Wikipedia [13]).

In the next experiment, shown in Fig. 4.4(b), we twist the second Stern-Gerlach ex-
periment so that the magnetic field is oriented along a new orthogonal axis to our original
measurement. The outcome of this measurement is again two deflected trajectories for all
electrons. The reason for this is that our input state has its magnetic dipole moment oriented
along an axis orthogonal to our measurement direction. The effect of the measurement is
to project the magnetic dipole moment onto the axis of our measurement system, which in
this case corresponds to an equal probability of the dipole moment being oriented along the
+ or − directions of our measurement axis. The end result is the two deflected trajectories
that we observe.

4.3 Operators and Expectation Values

Earlier, one of the principles of quantum mechanical measurements that we discussed was
that we can compute the expectation value of our measurement from

⟨A⟩ =
∑
n

AnPn =
∑
n

An|cn|2, (4.39)

where A is the quantity we are measuring, An is the eigenvalue of this measurable quantity,
and cn is the expansion coefficient for the nth eigenstate of the measurable quantity. Al-
though this formula is useful, it does have the drawback that it requires us to have expanded
our wavefunction in terms of the eigenstates of the quantity we are measuring. To avoid
needing to do this, it is useful to develop a more general method of computing expectation
values.

The particular formula that achieves this is

⟨A(t)⟩ =
ˆ
ψ∗(x, t)Âψ(x, t)dx, (4.40)

where Â is the operator associated with the quantity we are attempting to measure. To
see an example of how this works, let’s consider the case of calculating the expectation
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value of energy for a particular system. We have already seen that if we have expanded our
wavefunction in terms of energy eigenstates as

ψ(x, t) =
∑
n

cn(t)ψn(x), (4.41)

then the result for the expectation value of energy would be

⟨E(t)⟩ =
∑
n

En|cn(t)|2. (4.42)

We can also arrive at this result using our formula in (4.40). In particular, we initially have

⟨E(t)⟩ =
ˆ (∑

m

cm(t)ψm(x)

)∗

Ĥ

(∑
n

cn(t)ψn(x)

)
dx. (4.43)

Note that it is essential that when substituting summations like this into a general expression
you must use independent summation indices for each summation (the m and n in this
case)! Due to the linearity of our operators, we can apply the Hamiltonian operator to each
of the eigenstates in the summation over n to get

⟨E(t)⟩ =
ˆ (∑

m

cm(t)ψm(x)

)∗(∑
n

cn(t)Enψn(x)

)
dx. (4.44)

We can then flip the order of integration and summation to get

⟨E(t)⟩ =
∑
m,n

ˆ
Enc

∗
m(t)cn(t)ψ

∗
m(x)ψn(x)dx. (4.45)

Using the orthogonality of the eigenstates, we can easily evaluate this integral to find

⟨E(t)⟩ =
∑
m,n

Enc
∗
m(t)cn(t)δmn. (4.46)

Due to the Kronecker delta function, we can eliminate one of these summations by forcing
m = n to finally arrive at

⟨E(t)⟩ =
∑
n

En|cn(t)|2, (4.47)

which matches our earlier result of (4.42).
Although we have only shown this result work for the expectation value of energy, the

formula given in (4.40) holds for any measurable quantity in quantum mechanics (albeit,
with some slight generalizations to the mathematical form that we will discuss when covering
the mathematical framework of quantum mechanics). For now, it is important to emphasize
why (4.40) is often a more convenient way to compute the expectation value than (4.39). The
main disadvantage of (4.39) is that it requires us to have expressed our wavefunction in terms
of the eigenstates of the particular operator we are computing the expectation value of. If we
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find ourselves wanting to evaluate the expectation value of multiple properties of our system
(which is often a reasonable thing to do), we are then “stuck” with the laborious process
of constantly rewriting our wavefunction in terms of different eigenstates. The advantage of
(4.40) is that as long as we can evaluate the effect of Â on ψ(x, t) we can then compute the
desired expectation value, completely avoiding any need to re-express our wavefunction in
terms of different eigenstates.

As an example, another operator that is commonly used when working with the Schrödinger
equation for a particle is the momentum operator. In our current setting, this would be given
by

p̂ = −iℏ d
dx
, (4.48)

which allows us to write our overall Hamiltonian as

Ĥ = − ℏ2

2m

d2

dx2
+ V (x) =

p̂2

2m
+ V (x). (4.49)

This form of expression makes this look even more like the Hamiltonian of a particle we are
familiar with from classical mechanics. However, the important point is that the momentum
operator defined in (4.48) can be easily applied to a general wavefunction ψ(x, t) so long as
we know how to evaluate the necessary derivatives. This can often be far simpler than first
expressing our wavefunction in terms of momentum eigenstates and then using (4.39).

As a short aside, it is interesting to note the mathematical form of momentum eigenstates.
By definition, we will need

p̂ψ = −iℏ d
dx
ψ = pψ. (4.50)

It turns out that we have already encountered a form of ψ that would satisfy this property. In
particular, it is the “plane wave” expression for an electron that we considered when originally
rationalizing the Schrödinger equation. To see this, we recall that these wavefunctions were

ψ(x) = eikx, (4.51)

where through the de Broglie relation k = p/ℏ. We can then explicitly evaluate

p̂eikx = −iℏ d
dx
eikx = −iℏ(ik)eikx = peikx (4.52)

to see that it is indeed the eigenstate of the momentum operator.
We can now think about expressing a particular eigenstate ψn of the time-independent

Schrödinger equation in terms of momentum eigenstates rather than using a representation
as a function of position (often called a position basis or coordinate space representation).
Following our rule for evaluating the expansion coefficient for a particular state [e.g., see
(4.31) as a motivating example], we find that we can determine the coefficients in the mo-
mentum representation for a particular value of k as

ck =

ˆ (
eikx

)∗

ψn(x)dx. (4.53)
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Since k is a continuous variable, it makes more sense to index these coefficients like

C(k) =

ˆ
e−ikxψn(x)dx. (4.54)

Inspecting this formula, we see that we can find the coefficients for all of the different mo-
mentum eigenstates by taking the Fourier transform of a state in the position basis! We can
similarly think of taking the inverse Fourier transform of a state expressed in a momentum
representation to return to a coordinate space representation. This correspondence ties into
many deep concepts in quantum mechanics, like the uncertainty principle. We will return
to these concepts in a more general setting after discussing the mathematical framework of
quantum mechanics that generalizes some of the concepts we have just introduced.

4.4 Practice Problems

1. You have been given an electron in a 5 nm wide infinitely-deep potential well that is in a
superposition of two low-lying eigenstates (for our purposes here, let’s say 1 ≤ n ≤ 4).
You have observed that the electron probability density oscillates at a frequency of
29.097 THz (this is a linear frequency, not an angular frequency). Considering this,
which two eigenstates is the electron in a superposition of?

Note: there isn’t a procedure to directly calculate which two eigenstates are involved.
Rather, it will take some basic “trial and error” to see which frequencies of oscillation
are possible. If you keep trying different combinations of eigenstates you will eventually
land on the frequency mentioned above.

2. An electron in a 5 nm wide infinitely-deep potential well is placed in an equal su-
perposition of the first three eigenstates. List all of the frequencies that the electron
probability density function will be observed to oscillate at.

Hint: you should find 3 different frequencies.

3. Repeat Problem 2 for an electron in a quadratic potential well with potential energy
given by V = 1

2
mω2x2. Give your answer in terms of ω.

Note: the hint from Problem 2 does not apply to this problem.

4. For the wavefunctions we have been working with up to this point, the position operator
x̂ can be found to just equal the regular position variable x. Considering this, evaluate
⟨x⟩ for an electron in a 5 nm wide infinitely-deep potential well for the following cases.

(a) Perform the calculation “by hand” for the electron in the first eigenstate.

(b) Perform the calculation by writing a simple numerical program for the electron
in the second eigenstate.

Note: this program should be something you write. It cannot be something eval-
uated via a tool like Wolfram Alpha or symbolic computation in Python/Matlab.
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(c) Provide a simple explanation for why the answers to (a) and (b) are the same.
Your explanation should be more than just “that’s what it evaluated to”. It may
help to look at Fig. 3.5 in coming up with your explanation.

5. Evaluate ⟨p(t)⟩ for an electron that has been placed in an equal superposition of the
first two states of a 5 nm wide infinitely-deep potential well in the form

ψ(x, t) =
1√
2

(
ψ1(x)e

−i(E1/ℏ)t + ψ2(x)e
−i(E2/ℏ)t

)
. (4.55)

Make sure to write your answer in a manner that it is clear the result is real-valued
and do not forget to label the units of your answer.

6. For the following questions, assume that an electron has been confined inside an
infinitely-deep potential well in the region −L/2 < x < L/2.

(a) Assume that the initial state of the electron is

ψ(x, 0) =


2√
L
cos

(
2π

L
x

)
, −L

4
≤ x ≤ L

4
,

0, elsewhere.

(4.56)

Determine what the initial value should be for the expansion coefficients of the
first two stationary states of this potential well if we were to use these as part of
a basis expansion to describe the time dynamics of this system.

(b) Assume now that the initial state of the electron is given by

ψ(x, 0) =
1√
2

(
ψ1(x) + ψ2(x)

)
, (4.57)

where ψn is the nth stationary state of the potential well. Evaluate ⟨x(t)⟩ and
give your answer in a form that it is clear that the result is real-valued at all
times.

(c) Assume now that the initial state of the electron is given by

ψ(x, 0) =
1√
2

(
ψ1(x) + eiφψ2(x)

)
, (4.58)

where φ is a real-valued constant and ψn is the nth stationary state. Evaluate
⟨p(t)⟩ and give your answer in a form that it is clear that the result is real-valued
at all times.

7. For this problem, consider a double slit experiment with electrons. For each statement
below, determine whether the statement is true or false according to the Copenhagen
interpretation of quantum mechanics. Clearly state your answer (i.e., true or false)
and provide an explanation for why this should be the correct interpretation.
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(a) It is possible to measure the location of the electron immediately before the slits,
but having made this measurement we will no longer see an interference pattern
on the detecting screen.

(b) It is possible to measure which slit each electron went through and see an inter-
ference pattern on the detecting screen.

(c) If we do not make a measurement before the detecting screen, each electron can
be considered to have gone through one slit or the other and the averaging of the
results of many experiments will produce an interference pattern at the detector
screen.

8. At a given moment in time t1, the state of an electron in an infinitely-deep potential
well that is 10 nm wide is given by

ψ(x, t1) =
1√
8
ψ1(x) +

i√
2
ψ2(x) +

i

2
ψ3(x) +

1√
8
ψ4(x), (4.59)

where ψn is the nth stationary state of the potential well.

(a) What is ⟨E(t1)⟩ for this system?

(b) Assume we allow the system to evolve freely in time until time t2 > t1. What is
⟨E(t2)⟩?

(c) At time t2, we now make a measurement of the energy of the system and get a
result of E2 (the energy of the second stationary state). Write down the state of
the system just after this measurement has been made.
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Chapter 5

Mathematical Framework of Quantum
Mechanics

5.1 Introduction to Function Spaces

Up to now, we have focused on solving Schrödinger’s equation for a charged particle in very
simple settings. At times, we have alluded to the fact that the general form of Schrödinger’s
equation, written as

Ĥψ = iℏ∂tψ, (5.1)

will still be very useful when considering very complex systems like the operation of a quan-
tum computer. To be able to consider these more sophisticated cases, we need to develop a
suitable mathematical framework to better describe quantum mechanics of systems where a
representation of Ĥ as a differential equation and ψ as a simple position-dependent function
may no longer be relevant. This more general mathematical framework is described in terms
of function spaces and their properties. Function spaces can be viewed as an extension of
the concept of a vector space you will have learned about in a linear algebra course to the
more complex mathematical objects of functions. Considering this, it will be useful to recall
some basic properties of finite-dimensional vector spaces.

5.1.1 Finite-Dimensional Vector Spaces

You should recall from linear algebra that a vector space is a very broad concept. At a high
level, we can say that a vector space can be defined by anything that satisfies the following
general properties. In describing these properties, we must specify what field our vector
space is defined over. A field is a general mathematical concept, but for our purposes we
will only be concerned with cases where the field is the set of complex-valued numbers. We
then refer to elements of the vector space V as vectors and elements of the field as scalars.

In terms of these, our vector space must have two well-defined operations that it is closed
with respect to. The first operation is vector addition, and the second is scalar multiplication.
For our vector space to be closed with respect to these operations, we require that the vector
addition of any two vectors in our space returns a new vector in our vector space and that
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the scalar multiplication of any vector by any scalar also produces a new vector in our vector
space. In addition to these two properties, there are eight axioms of a vector space. We will
not review these in detail, but they include properties like the associativity or commutativity
of vector addition, and that there are identity elements for vector addition (i.e., a zero vector
exits) and scalar multiplication (e.g., the scalar 1).

The important result is that once we have determined that something is a vector space,
we can use our powerful tools from linear algebra to think about and process aspects of a
situation being considered. This includes tasks like determining whether a set of vectors are
linearly independent, establishing a basis for our vector space, or developing a procedure to
best approximate a vector using only a subspace of our overall vector space. All of these
operations have many applications in a broad set of areas, especially in electrical engineering
(e.g., signal processing and control theory make heavy use of many of these concepts).

For many practical purposes, engineers tend to try and work with finite-dimensional
vector spaces. These are simply vector spaces for which a basis that spans the entire space
can be built out of a finite number of vectors in the space. Unfortunately, many practical
situations do not fit into this finite-dimensional picture particularly well. As a result, it
has traditionally been a very important area of mathematics to determine how to work
with infinite-dimensional vector spaces. In general, this can be a difficult subject to grasp.
Fortunately, there are special examples of infinite-dimensional vector spaces for which much
of our intuition built from finite-dimensional vector spaces is still typically applicable. The
types of spaces that we will work with in quantum mechanics will generally fall into this
important category of infinite-dimensional spaces that are easier to work with.

Before moving on to discuss these more complex spaces, it will be useful to discuss some
typical notations used with vector spaces. You should recall that when we are going to be
working with matrices, it is typical to write our finite-dimensional vectors as a column vector
like

v =


v1
v2
...
vN

 , (5.2)

where N would be the dimension of the vector space and all the vi’s would be some element
of the field the vector is defined with respect to. When working with complex-valued vector
spaces, it is also typically very useful to take the Hermitian transpose (also called conjugate
transpose) of a vector. This is generally denoted as v† and can be found by taking the
transpose of the vector v and then taking the complex conjugate of every element of the
vector (hence, the alternate name conjugate transpose). As an example, we would have

v† =
[
v∗1 v∗2 . . . v∗N

]
. (5.3)

With this shorthand notation, we can write down important operations like the inner product
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of two vectors as

v†w =
[
v∗1 v∗2 . . . v∗N

]

w1

w2

...
wN

 =
N∑
i=1

v∗iwi. (5.4)

In quantum mechanics, it is typical to use the Dirac bra-ket notation as a shorthand for
working with all the different kinds of vectors that we will be concerned with. This notation
takes a little time to become acquainted with in its most abstract form, but it is relatively
simple to understand if we consider vectors like in (5.2). Then, we would denote our vector
using a ket as

|v⟩ →


v1
v2
...
vN

 . (5.5)

It should be emphasized that the ket notation will be used in much more abstract settings
where we may not be able to write our vector down as a simple column vector. Regardless,
the ket is still meant to denote our abstract vector, where we will typically replace the
symbol inside the | ⟩ to be some suggestive symbol to remind us what the ket represents.
For instance, it will be very common to work with kets that are denoted as |ψ⟩ to represent
the state of our quantum mechanical system. In addition to the ket, there is the bra which
is defined as the “Hermitian transpose” of the ket (interpreting exactly what the Hermitian
transpose means for a particular vector must be determined by the context of what is being
worked with). For our simple case here, the bra would be denoted as

⟨v| →
[
v∗1 v∗2 . . . v∗N

]
. (5.6)

The inner product between two vectors would then be denoted by the shorthand

⟨v|w⟩ → v†w. (5.7)

You will become more comfortable with manipulating Dirac’s bra-ket notation as you work
with it more throughout this course. With these basics now understood, we can move to
generalizing our notions of a vector space.

5.1.2 Function Spaces

A function space is a generic name for a broad class of vector spaces where the vectors are
actually functions. If you think of the properties required of a vector space, it should not
be too difficult to come to terms with the idea that functions could act as suitable vectors.
For instance, we can easily take a vector v1 = x2 and add to it v2 = exp(x) and see that the
result is obviously just another function.

We have also already touched on other important aspects of function spaces when we dis-
cussed solutions to the time-independent and time-dependent Schrödinger equations. There,
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we discussed how the eigenfunctions of the time-independent Schrödinger equation were
complete so that we could use them to express any other function of interest as a linear
combination of eigenfunctions. As a result, we can consider these eigenfunctions to form a
basis for the function space defined by all solutions to Schrödinger’s equation for a particular
system. Considering that there are an infinite number of eigenfunctions to the Schrödinger
equation, we see that this then is an example of an infinite-dimensional function space (which
we have already been successful in working with).

As an example of how the Dirac bra-ket notation will typically be used for this more
general setting, consider the wavefunction

ψ(x) =
∑
n

cnψn(x), (5.8)

where ψn is an eigenfunction of the relevant Schrödinger equation. In quantum mechanics,
we can use the ket |ψ⟩ as a shorthand for (5.8), or to denote a different way to express the
same function, e.g.,

|ψ⟩ ⇐⇒


c1
c2
c3
...

 , (5.9)

where the length of this “column vector” of expansion coefficients would be infinitely long.
As mentioned previously, we can use a variety of different symbols inside the ket notation to
denote a different kind of vector. For instance, we might write

|1⟩ ⇐⇒ ψ1(x) ⇐⇒


1
0
...
0

 (5.10)

as a shorthand for the first state of the system we are considering.
Likewise, we can use the bra ⟨ψ| to denote equally well the expression

⟨ψ| ⇐⇒
∑
n

c∗nψ
∗
n(x) (5.11)

or

⟨ψ| ⇐⇒
[
c∗1 c∗2 c∗3 . . .

]
. (5.12)

Whether we choose to use the expression (5.11) or (5.12) just depends on the context and on
what calculation we are attempting to perform at any given moment. As a result, we often
find it much more convenient to write expressions using the bra-ket shorthand rather than
constantly carrying around the “baggage” of a particular representation of each of the vectors
involved. Once we simplify things as far as we can using general mathematical properties
of our vector spaces we can then choose a particular representation of our vectors to finish
computing a result.
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As a simple example, we can consider evaluating the inner product ⟨ψ|ψ⟩. If we use a
representation like (5.8), we would evaluate this as

⟨ψ|ψ⟩ =
ˆ (∑

m

cmψm(x)

)∗(∑
n

cnψn(x)

)
dx =

∑
m,n

δmnc
∗
mcn =

∑
n

|cn|2. (5.13)

We can see that we will get the same result if we use an expression like (5.9) by evaluating

⟨ψ|ψ⟩ =
[
c∗1 c∗2 c∗3 . . .

]

c1
c2
c3
...

 =
∑
n

|cn|2. (5.14)

The key thing is that regardless of how we calculate ⟨ψ|ψ⟩ we get the same result because
we have defined our representations of the bras and kets in an appropriate manner. It is
then our job to determine the most suitable representation for a given problem to make the
mathematics simpler.

As a further short example, we can also see how to express the orthonormality and
calculation of expansion coefficients in terms of the bra-ket notation. In the first case, we
can easily see that the orthonormality would be expressed by various expressions like

⟨ψm|ψn⟩ = ⟨m|n⟩ = δmn. (5.15)

Similarly, we can determine an expansion coefficient by taking the inner product of our basis
vector with the function of interest. This would be denoted as

cm = ⟨ψm|f⟩ (5.16)

if we are computing the expansion coefficient for vector ψm of the function f .

5.1.3 Types of Function Spaces

As mentioned previously, working with infinite-dimensional function spaces can be rather
challenging. In the course of considering these complicated spaces, mathematicians have
found it useful to categorize function spaces into different groups based on additional prop-
erties they have.

One of the simplest examples of an “extra property” that is particularly useful for many
engineering applications is that the function space have a norm. A function space that is
complete and has a norm is referred to as a Banach space. A norm is a generalization of
the geometric notion of the length or magnitude of a vector. Although it can be useful to
compare the “lengths” of two functions, it is typically of most interest to use a norm as a
metric; i.e., as a way to compute the “distance” between two functions. This provides us
with a way of comparing functions within an abstract setting, e.g., by determining whether
two functions are more similar to each other than another set of functions. Some of the
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most widely used norms come from the function spaces known as Lebesque spaces. These
are denoted as Lp spaces, and have a norm defined by

||g||p =
( ˆ

|g|pdx
)1/p

. (5.17)

We would compute the similarity of two functions g and h using a norm by evaluating
||g − h||p. Typically, the most useful Lebesque spaces are those with p = 1, 2. These Lp

spaces are particularly useful in signal processing and optimization applications, where being
able to define the similarity of two functions is vital in the formulation and solution of many
practical engineering problems.

Although having a norm is very useful, it turns out that being able to define an inner
product for a function space is extremely valuable. This allows us to not only determine
the relative “distance” between two functions, but to also generalize our geometric intuition
about the angle between two vectors. Amazingly, if we do have an inner product in our
function space, in many cases we can safely extrapolate our geometric intuition from working
with something as simple as a three-dimensional Cartesian space to the abstract setting of
working with an infinite-dimensional function space! As a result, inner product spaces are
of intense interest. These are typically referred to as Hilbert spaces, and are the particular
type of function space that quantum mechanics is mathematically described in.

5.2 Operators and Function Spaces

Now that we have a basic understanding of what function spaces are, we can begin to discuss
the role of operators in function spaces. As we have already seen, operators can take various
forms depending on the situation we are considering. At its most basic, we can think of
an operator as a mathematical “object” that defines some set of operations that we should
perform on a function in our function space that yields another function as its output. This
definition is extremely broad, and obviously encompasses many different things. Just as the
basic definition of a function space was broader than we will typically need, we will find
that there are special kinds of operators that we will be most interested in for quantum
mechanics.

5.2.1 Preliminaries

As a reminder, we have already seen that a simple example of an operator would be the
derivative. For example, we can define the operator

Â =
d

dx
, (5.18)

and write its operation on a function f(x) in a generic manner as

g(x) = Âf(x). (5.19)

In this case, we see that the output function g(x) still “lives” in the same space as f(x) in
the sense that it depends on the same variable x. However, we can also have cases where our
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operator maps a function into a different kind of space. A common example of this would
be a Fourier transform, which we could define as

g(y) = F̂ f(x) =
1√
2π

ˆ ∞

−∞
f(x)e−iyxdx. (5.20)

(Note that physicists often define the Fourier transform with this 1/
√
2π normalization so

that the only difference between the Fourier transform and its inverse transform is a change
of sign in the exponential function). These two examples also highlight that operators can
involve only “local” values of the function, like for the differential operator in (5.18), or they
can involve all values of the function, like for the Fourier transform in (5.20).

Earlier, we used the phrase map to describe how the Fourier transform “took” our input
function and returned one in a new space. This term should “ring a bell” for you with
respect to the concept of a linear map that you would have learned about during a linear
algebra course. You should recall that one of the key aspects of a linear map was that we
could always express its operation on a vector space through the use of a matrix. In a similar
manner we can think of linear operators in our function spaces as being like a (potentially
infinitely-sized) matrix.

For an operator Â to be linear, we require that for any complex number c and any two
functions f and h that

Â

[
f(x) + h(x)

]
= Âf(x) + Âh(x), (5.21)

Â

[
cf(x)

]
= cÂf(x). (5.22)

In quantum mechanics, we will be exclusively interested in linear operators, which is another
consequence of the linearity of quantum mechanics. One important consequence of this is
that we will be able to form a matrix representation of an operator in such a way that we
can describe the effect of the operator on a function in the form of a matrix-vector product
following the rules of linear algebra you are already familiar with.

5.2.2 Matrix Representation of an Operator

To see how to form the matrix representation of an operator, we need to establish the bases
we will use to form it. As an example, we will assume the basis for the domain space (the
space of functions/vectors we apply the operator to) to be composed of a set of |ψn⟩ and
the range space (the space of output functions/vectors) to be composed of a set of |φm⟩. To
form the matrix representation, we can begin by applying the operator Â on one of our basis
vectors |ψn⟩ to get

|g⟩ = Â|ψn⟩, (5.23)

where |g⟩ is some function in the range space. Now, because |g⟩ is in the range space, we
can always express it in terms of our basis |φm⟩ as

|g⟩ =
∑
m

Amn|φm⟩, (5.24)
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where we keep the index n on our coefficient Amn to remind ourselves that this coefficient is
due to the input vector |ψn⟩. We can then isolate how the operator maps our basis vector
|ψn⟩ into the range space by taking the inner product of |g⟩ with a range space basis vector
|φm⟩. In bra-ket notation, we would find that

⟨φm|g⟩ = ⟨φm|
(∑

m′

Am′n|φm′⟩
)

=
∑
m′

Am′n⟨φm|φm′⟩ =
∑
m′

Am′nδmm′ = Amn. (5.25)

We can then determine that the value Amn is the coefficient for the matrix representation of
Â in the mth row and nth column. We can also see that by comparing the first expression
in (5.25) with (5.23) that we can alternatively write

Amn = ⟨φm|Â|ψn⟩. (5.26)

We can in principle do this for all of our basis vectors |ψn⟩ and |φm⟩ to eventually find that
the full matrix representation is

Â ⇐⇒


⟨φ1|Â|ψ1⟩ ⟨φ1|Â|ψ2⟩ ⟨φ1|Â|ψ3⟩ . . .

⟨φ2|Â|ψ1⟩ ⟨φ2|Â|ψ2⟩ ⟨φ2|Â|ψ3⟩ . . .

⟨φ3|Â|ψ1⟩ ⟨φ3|Â|ψ2⟩ ⟨φ3|Â|ψ3⟩ . . .
...

...
...

. . .

 . (5.27)

Finding the matrix representation of an operator is typically a very useful operation involved
in solving complex quantum mechanical calculations. Generally, we must only use a finite-
sized basis to represent our operator numerically, but when done properly we can still achieve
very accurate numerical results.

An important point to note about operators is with respect to their commutativity. You
should recall from linear algebra that matrix multiplication is generally not commutative.
That is, we generally have that

AB ̸= BA (5.28)

for matrices A and B. Since a general matrix will have non-square dimensions, it should
be easy to convince yourself of this fact as it could very easily be the case that while AB
is well-defined via matrix multiplication the product BA may be completely meaningless.
Considering that we can always form a matrix representation of our linear operators, it
should hopefully not surprise you then that linear operators will also typically not commute.
This is such an important concept in quantum mechanics that we will frequently work with
the commutator of two operators, defined as

[Â, B̂] = ÂB̂ − B̂Â. (5.29)

In fact, we will see later that there is a very deep connection between the commutator of
two quantum operators and the Poisson bracket of the corresponding classical quantities.
This correspondence is exploited frequently in determining how to “quantize” a particular
classical theory (we will discuss this more later).
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In addition to finding the matrix representation of an operator, another very important
way to represent an operator is through a bilinear expansion. In essence, this can be viewed
like a generalization of expanding a function in terms of basis vectors to expanding the
operator in terms of the basis vectors. We will motivate the form of this expansion to
illustrate some other useful operations with manipulating bra-ket notation. Considering
this, we begin with

|g⟩ = Â|f⟩ (5.30)

and the basis expansions of |g⟩ and |f⟩ given by

|g⟩ =
∑
m

dm|φm⟩, (5.31)

|f⟩ =
∑
n

cn|ψn⟩. (5.32)

From our earlier matrix representation of Â, we know that the dm’s can be computed
from the cn’s as

dm =
∑
n

Amncn. (5.33)

We also know that the expansion coefficients cn can be found by

cn = ⟨ψn|f⟩. (5.34)

Substituting this expression into (5.33), we find that

dm =
∑
n

Amn⟨ψn|f⟩. (5.35)

We can substitute this new expression for dm into (5.31) to then find that

|g⟩ =
∑
m,n

(
Amn⟨ψn|f⟩

)
|φm⟩. (5.36)

Recognizing that ⟨ψn|f⟩ is simply a scalar, we can rearrange this expression in a more
suggestive form as

|g⟩ =
∑
m,n

(
Amn|φm⟩⟨ψn|

)
|f⟩. (5.37)

Comparing this to (5.30), we see that we can write the operator as

Â =
∑
m,n

Amn|φm⟩⟨ψn|, (5.38)
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which is known as the bilinear expansion of Â.
In your linear algebra course you may have discussed a similar expression for expanding a

matrix through the use of an outer product. In contrast to the inner product that “collapses”
two vectors into a scalar, an outer product “expands” the two vectors into a matrix. The
outer product of two vectors can be easily computed through the matrix multiplication of
vectors v and w as

Outer Product = vw†. (5.39)

Expanding matrices through the outer products of vectors is very common in more advanced
studies due to its role in the singular value decomposition of a matrix (we won’t discuss
singular value decompositions in this course, but it is a very valuable tool to learn about if
you intend to pursue advanced studies in your career).

5.3 Some Important Types of Operators

We will now discuss a few examples of “important” kinds of operators that are used frequently
in quantum mechanics. Although not an exhaustive list, the kinds of operators we do
discuss will continue to acquaint us with common techniques used in manipulating quantum
mechanical calculations.

5.3.1 Identity Operator

The identity operator is abstractly defined as

|ψ⟩ = Î|ψ⟩ (5.40)

for any |ψ⟩ that exists in the function space the identity operator is defined for. It’s matrix
representation is simply the identity matrix for the basis being used to define the represen-
tation.

Although this appears quite simple at face value, utilizing identity operators is a very
useful technique in various quantum mechanical calculations. The particular form of the
identity operator that is generally most useful is it’s bilinear expansion, which in this case is
also sometimes referred to as the resolution of the identity operator. This can be written as

Î =
∑
n

|ψn⟩⟨ψn|, (5.41)

where the |ψn⟩ are any complete basis on the function space of interest. It is important to
note that in contrast to the previous bilinear expansions we discussed, this one only involves
a single index that is being summed over. The reason for this is that the identity operator is
“diagonal” in the basis we are using. In view of this, we will generally refer to an operator
as being diagonalized if the bilinear expansion of it only involves a single index to sum over.
However, it is also important to recognize that even though we think of (5.41) as being a
“diagonalized” form of the operator, it’s matrix representation need not be.
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To illustrate this subtle point, let’s look at the matrix representation of (5.41) expressed
in a different complete basis composed of |φm⟩. From earlier, we know that an element of
the matrix representation in this new basis will look like ⟨φi|Î|φj⟩. We can focus on any of
these arbitrary elements of the matrix and see that

⟨φi|Î|φj⟩ = ⟨φi|
(∑

n

|ψn⟩⟨ψn|
)
|φj⟩ =

∑
n

(
⟨φi|ψn⟩

)(
⟨ψn|φj⟩

)
. (5.42)

This final result is “just” a scalar value (as it should be for being an element of a matrix
representation), but will clearly not be a diagonal matrix since there is not guaranteed to
be any kind of orthogonality relationship between the |ψn⟩ and |φi⟩.

To see how using the resolution of the identity operator can be useful in more complex
cases, it is instructive to prove that the trace of an operator is independent of the basis used
to express it. The trace is defined as the sum of the diagonal elements of an operator, which
we would typically write using the orthonormal basis |ψn⟩ as

Tr
(
Â
)
=

∑
n

⟨ψn|Â|ψn⟩. (5.43)

From this general expression, it is not at all obvious that the trace would be an intrinsic
property of the operator Â that does not depend on the basis used in expressing it. However,
we can demonstrate this is the case by inserting the identity operator before or after Â in
our expression. This is guaranteed to not change the result, since ÎÂ = Â by definition. If
we expand Î using a new basis |φm⟩ we find that

Tr
(
Â
)
=

∑
n

⟨ψn|Â|ψn⟩ =
∑
n

⟨ψn|ÎÂ|ψn⟩ =
∑
n

⟨ψn|
(∑

m

|φm⟩⟨φm|
)
Â|ψn⟩. (5.44)

We can rearrange this as

Tr
(
Â
)
=

∑
n

∑
m

(
⟨ψn|φm⟩

)
⟨φm|Â|ψn⟩, (5.45)

which can be further rearranged as

Tr
(
Â
)
=

∑
n

∑
m

⟨φm|Â|ψn⟩⟨ψn|φm⟩ (5.46)

since all of the quantities in the above expression are simply scalars so their order doesn’t
matter. However, we now realize that we can rewrite this expression in the more suggestive
form as

Tr
(
Â
)
=

∑
m

⟨φm|Â
(∑

n

|ψn⟩⟨ψn|
)
|φm⟩. (5.47)

We recognize the terms in the parentheses as being a resolution of the identity operator using
the |ψn⟩ basis, so that we can finally arrive at the result that

Tr
(
Â
)
=

∑
m

⟨φm|ÂÎ|φm⟩ =
∑
m

⟨φm|Â|φm⟩. (5.48)
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Comparing this to (5.43), we see that the result of the trace will be the same regardless of
whether we use the |ψn⟩ or |φm⟩ basis to compute it. This is an important result in its own
right, as we will see later on that the trace of operators plays an important role in quantum
mechanical calculations. More generally, we often find that many intrinsic properties of
operators that do not depend on the basis used are of significant value.

5.3.2 Unitary Operators

A broad class of operators that are very important in quantum mechanics are unitary oper-
ators. A unitary operator is one whose inverse is given by the Hermitian transpose of itself
(in the context of operators, this is sometimes referred to as an adjoint). Mathematically,
this is written as

Û−1 = Û †, (5.49)

so that

Û †Û = Û Û † = Î . (5.50)

One of the key properties of a unitary operator is that it does not change the “length”
of a vector, or more generally, it does not change the inner product between two vectors. To
see this, let’s define two new vectors through the operation of Û on vectors |f⟩ and |g⟩ as

|f ′⟩ = Û |f⟩, |g′⟩ = Û |g⟩. (5.51)

We then wish to see that ⟨g′|f ′⟩ = ⟨g|f⟩. To do this, we need to recognize that taking the
Hermitian transpose of |g′⟩ follows the rules similar to a matrix transpose in that

⟨g′| = ⟨g|Û †. (5.52)

That is, we take the Hermitian transpose of each “matrix” and “flip” the order. Considering
this, we then have that

⟨g′|f ′⟩ = ⟨g|Û †Û |f⟩ = ⟨g|Î|f⟩ = ⟨g|f⟩, (5.53)

as desired. If we do this with ⟨f ′|f ′⟩, we would see that ⟨f ′|f ′⟩ = ⟨f |f⟩, which establishes
the preservation of the length of the vector as well.

Unitary operators appear in quantum mechanics in a number of different contexts. One
prevalent use is for changing the basis representation of a vector. If we have a vector
represented using the expansion coefficients from a particular basis set |ψn⟩ and wish to
convert this into a vector of expansion coefficients for the basis set |φm⟩, we can use a
unitary operator to handle this. In particular, the unitary operator that will achieve this
can be found using two resolutions of the identity as

Ûφψ =
∑
m,n

|φm⟩⟨φm| |ψn⟩⟨ψn| =
∑
m,n

(
⟨φm|ψn⟩

)
|φm⟩⟨ψn|. (5.54)
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Intuitively, we can think of this operator as finding how “much” of an arbitrary function |f⟩
lies along the vector |ψn⟩. The factors ⟨φm|ψn⟩ then help us understand how much the basis
vector |ψn⟩ overlaps with one of our new basis vectors |φm⟩ to then reconstruct |f⟩ in our
new basis. That this operator is unitary can be seen by evaluating

Û †
φψÛφψ =

∑
m′,n′

(
⟨φm′|ψn′⟩

)∗|ψn′⟩⟨φm′ |
∑
m,n

(
⟨φm|ψn⟩

)
|φm⟩⟨ψn|

=
∑

m,m′,n,n′

(
⟨φm′ |ψn′⟩

)∗(⟨φm|ψn⟩)|ψn′⟩⟨φm′|φm⟩⟨ψn|.
(5.55)

We can proceed by recognizing that ⟨φm′|φm⟩ = δmm′ due to the orthonormality of the basis
vectors. Also, because

(
⟨φm′ |ψn′⟩

)∗
is just a scalar resulting from an inner product, we can

recognize that this also equals
(
⟨ψn′|φm′⟩

)
. Using these two properties, we get that

Û †
φψÛφψ =

∑
m,m′,n,n′

(
⟨ψn′ |φm′⟩

)(
⟨φm|ψn⟩

)
|ψn′⟩⟨ψn|δmm′

=
∑
m,n,n′

⟨ψn′|φm⟩⟨φm|ψn⟩|ψn′⟩⟨ψn|.
(5.56)

We can now rearrange the order of summations to write this as

Û †
φψÛφψ =

∑
n,n′

⟨ψn′ |
(∑

m

|φm⟩⟨φm|
)
|ψn⟩|ψn′⟩⟨ψn|. (5.57)

Recognizing the resolution of the identity operator using the |φm⟩ basis, we can simplify this
to become

Û †
φψÛφψ =

∑
n,n′

⟨ψn′ |ψn⟩|ψn′⟩⟨ψn|. (5.58)

Using the orthonormality of the |ψn⟩ basis, we can further simplify this to find

Û †
φψÛφψ =

∑
n,n′

δnn′|ψn′⟩⟨ψn| =
∑
n

|ψn⟩⟨ψn| = Î , (5.59)

which establishes the unitarity of Ûφψ, as desired.
Similarly, we can use a unitary operator defined like (5.54) to change the basis represen-

tation of an operator. In particular, we have that

Ânew = ÛÂoldÛ
†. (5.60)

We can interpret this formula by recognizing that Û † takes a vector in our new basis and
converts it back into the old basis. We can then apply Âold to this vector expressed in
the old basis representation before converting the result back into our new basis using Û .
In quantum mechanics, it can often be convenient to use unitary operators to transform
the Hamiltonian operator into a new representation. Although this can be done rigorously,
this is most frequently done when attempting to make some approximation to simplify the
Hamiltonian of a complex system.
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5.3.3 Time Evolution Operator

A special example of a unitary operator often used in quantum mechanics is the time evolu-
tion operator. This operator can be beneficial when we want to consider a somewhat more
abstract description of the time evolution of a state of a quantum system. In certain cases,
this is simply a formal result that illustrates the particular principle of something without
necessarily being a viable computational approach. However, in other cases, this more ab-
stract view can be very beneficial in providing us a way to manipulate a result into a form
that is more conducive to improving our understanding of a system or developing a suitable
numerical computation technique.

To develop the desired result, we return to the time-dependent Schrödinger equation
written in its operator form as

∂

∂t
|ψ(t)⟩ = − i

ℏ
Ĥ|ψ(t)⟩, (5.61)

where we have rearranged a few of the constants for later convenience. Looking at this
equation, we see that it has a very similar format to the simple ordinary differential equations
like

∂

∂t
cn(t) = − i

ℏ
Encn(t) (5.62)

that we solved previously. Considering this, we may be tempted to solve (5.61) directly and
write the answer as

|ψ(t)⟩ = e−iĤt/ℏ |ψ(0)⟩. (5.63)

This looks nice and compact, but raises the fundamental question of whether writing some-
thing like

e−iĤt/ℏ (5.64)

is even meaningful (or allowed for that matter). It turns out that it is meaningful to write
such an expression, but we first need to understand how to work with a function of an
operator.

The basic idea of how to work with a function of an operator is that to evaluate something
like

e−iĤt/ℏ |ψ(0)⟩ (5.65)

we must rewrite the function of the operator in terms of its Taylor series and then apply this
to the function |ψ(0)⟩. In the case of an exponential, we know that the Taylor series is

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + . . . , (5.66)

so we interpret the exponential of an operator to mean

eX̂ = 1 + X̂ +
1

2!
X̂2 +

1

3!
X̂3 + . . . . (5.67)
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In using an expression like (5.67), we interpret the square (or higher power) of an operator
as simply meaning that we apply the operator repeatedly two (or more) times. For instance,
we have that

X̂2|ψ⟩ = X̂
(
X̂|ψ⟩

)
, (5.68)

with the generalization to higher powers like X̂m being straightforward.
Now, considering that an operator like Ĥ can have a complicated form like

Ĥ =

(
− ℏ2

2m

d2

dx2
+ V (x)

)
(5.69)

it should not be surprising that applying something like Ĥm to a generic function is a rather
daunting task that is not particularly likely to end well. This is true, which is why we
generally think of expressions involving functions of operators to mostly be meaningful when
we apply them to an eigenstate of the operator under consideration. For instance, if |ψn⟩ is
an energy eigenstate of Ĥ, then we can easily see that

Ĥ3|ψn⟩ = ĤĤ(Ĥ|ψn⟩) = ĤĤ(En|ψn⟩) = Ĥ(E2
n|ψn⟩) = E3

n|ψn⟩, (5.70)

where we have used the linearity of our operator to note that the successive multiplications
by En do not affect how Ĥ acts on |ψn⟩. We can then return to our expression (5.65) and
see that it evaluates on an energy eigenstate |ψn⟩ as

e−iĤt/ℏ |ψn⟩ =
[
1 +

(
− iĤt/ℏ

)
+

1

2!

(
− iĤt/ℏ

)2
+

1

3!

(
− iĤt/ℏ

)3]|ψn⟩
=

[
1 +

(
− iEnt/ℏ

)
+

1

2!

(
− iEnt/ℏ

)2
+

1

3!

(
− iEnt/ℏ

)3]|ψn⟩
= e−iEnt/ℏ |ψn⟩,

(5.71)

which we can see matches our expressions for the time evolution of an energy eigenstate
derived previously. Due to the linearity of all the aspects involved here, we see that this
expression also generalizes immediately to a superposition of eigenstates, and hence, is ap-
plicable to any function that can be expanded in terms of the eigenstates (which, again, is
all states we would be interested in).

More generally, it is common in quantum mechanics to talk of a time evolution operator
that when applied to a quantum state advances it forward (or backward) in time a given
amount. We would typically write this as

Û(tf , ti) = e−iĤ(tf − ti)/ℏ, (5.72)

which when applied to a state |ψ(ti)⟩ gives the result

Û(tf , ti)|ψ(ti)⟩ = |ψ(tf )⟩. (5.73)

Again, writing an expression like this is not always meaningful from a numerical calculation
perspective, but it can tend to be very useful in establishing general results to guide our
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understanding. This will become particularly prevalent if you pursue more advanced studies
in quantum mechanics, but is something that we will find ourselves not needing to use
substantially in this course.

The importance of Û(tf , ti) being a unitary operator stems from the probabilistic inter-
pretation of quantum mechanics. So long as our time evolution is defined through unitary
operators, we guarantee that the “length” of our state vector |ψ(t)⟩ remains a constant value
normalized to one. Hence, we can continue to use our probabilistic interpretation without
fear of our state vector becoming un-normalized as it advances in time.

5.4 Hermitian Operators in Quantum Mechanics

One of the most fundamentally important kind of operator in quantum mechanics is a Her-
mitian operator. A Hermitian operator is one that is its own adjoint, which is often referred
to as being self-adjoint. Mathematically, we have that

Â† = Â (5.74)

for a Hermitian operator.

5.4.1 Preliminaries

As you may expect, a Hermitian operator is a generalization of a Hermitian matrix, which is

an important type of matrix in linear algebra. In matrix form, we see that havingA
†
= A can

only occur if Amn = A∗
nm. Along the diagonal of our matrix, we also see that Amm = A∗

mm,
which can only be true if the diagonal of the matrix is purely real.

Although these definitions are important to have, we need to have a more general way
of determining if an operator is Hermitian without insisting on having some matrix repre-
sentation of it. Toward this end, the Hermitian property of an operator is most generally
defined by viewing its role in the course of evaluating an inner product. In particular, the
adjoint of a linear operator Â is defined as the operator Â† for which

⟨Âx, y⟩ = ⟨x, Â†y⟩ (5.75)

for any vectors x and y in the vector space. We have used the mathematical notation for
the inner product here with ⟨x, y⟩ = ⟨y|x⟩ in bra-ket notation. The reason for temporarily
using the mathematical notation here is to emphasize that we think of the adjoint Â† as
being applied to y in the inner product on the right-hand side of (5.75). This point is more
subtle to recognize in bra-ket notation (somewhat by design). Returning to the idea of a
Hermitian operator, we then see that what we actually need is for

⟨Âx, y⟩ = ⟨x, Ây⟩ (5.76)

to hold for any vectors x and y in the vector space.
To see an important result surrounding Hermitian operators in bra-ket notation, it is

instructive to consider the quantity
(
⟨y|Â|x⟩

)∗
. Since this is just a scalar, we can consider
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this to be the same as
(
⟨y|Â|x⟩

)†
. We can now use some manipulations of “matrices” (which

also hold for our state vectors and operators) due to the Hermitian transpose to arrive at
our desired result. In particular, we find that(

⟨y|Â|x⟩
)∗

=
(
⟨y|Â|x⟩

)†
=

(
⟨y|

[
Â|x⟩

])†
=

(
Â|x⟩

)†(⟨y|)† = (
|x⟩

)†(
Â
)†(⟨y|)† = ⟨x|Â†|y⟩.

(5.77)

Using the Hermitian property of the operator Â we then arrive at the final result that

⟨x|Â|y⟩ =
(
⟨y|Â|x⟩

)∗
(5.78)

for a Hermitian operator Â. This is a particularly useful result for proving certain general
properties that Hermitian operators have, which we will turn to shortly.

Before continuing, it is worth mentioning that in some situations it can be useful to
think of applying our operators to the “left” in bra-ket notation rather than just acting to
the “right”. By this, we mean that we can group different parts of an inner product together.
For instance, we have that

⟨x|Â|y⟩ =
(
⟨x|Â

)
|y⟩ = ⟨x|

(
Â|y⟩

)
(5.79)

due to the associativity of the operations involved (namely, matrix multiplication). This can
be useful in simplifying certain intermediate calculations before using a specific representa-
tion of all the quantities involved to evaluate a final result. As an example, the applicability
of this kind of intermediate simplification is not as obvious to determine when working with
operators written explicitly in their differential form where we need to be very careful with
their ordering, chain rules, etc. to get the correct result.

5.4.2 Important Properties of Hermitian Operators

There are three crucial properties of Hermitian operators that make them extremely useful.
In addition to this, it turns out that they play a central role in quantum mechanics, which
we will comment on after discussing the important properties of Hermitian operators.

Reality of Eigenvalues

It is quite easy to prove that all eigenvalues of Hermitian operators are real-valued. To see
this, we assume that we have a normalized eigenvector of the Hermitian operator Â. If the
eigenvalue of eigenvector |ψn⟩ is λn, then we have by definition that

Â|ψn⟩ = λn|ψn⟩. (5.80)

We can then take the inner product of this equation with |ψn⟩ to get

⟨ψn|Â|ψn⟩ = λn⟨ψn|ψn⟩ = λn. (5.81)

Now, because Â is Hermitian, we can use the property established in (5.78) to see that

λn = ⟨ψn|Â|ψn⟩ =
(
⟨ψn|Â|ψn⟩

)∗
= λ∗n. (5.82)

The only way for λn = λ∗n is for λn to be purely real, which shows the desired property.
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Orthogonality of Eigenvectors

Another easy property to show is that the eigenvectors that correspond to different eigen-
values must be orthogonal. We can start with the trivial expression that

⟨ψm|Â|ψn⟩ − ⟨ψm|Â|ψn⟩ = 0. (5.83)

The key to the proof is to now use Â to operate to the “left” in one of these expressions and
operate to the “right” in the other. To see this, we explicitly group our operations as(

⟨ψm|Â
)
|ψn⟩ − ⟨ψm|

(
Â|ψn⟩

)
= 0. (5.84)

To evaluate the first term, we recognize that(
⟨ψm|Â

)
=

(
Â†|ψm⟩

)†
=

(
Â|ψm⟩

)†
=

(
λm|ψm⟩

)†
= λm⟨ψm|, (5.85)

where we have used the Hermitian property of Â and that λm must be real to simplify the
result. Using this result in (5.84), we see that

λm⟨ψm|ψn⟩ − ⟨ψm|
(
Â|ψn⟩

)
= 0. (5.86)

We can now simplify the second term easily to arrive at

λm⟨ψm|ψn⟩ − λn⟨ψm|ψn⟩ = (λm − λn)⟨ψm|ψn⟩ = 0. (5.87)

Now, because by assumption we have that λm ̸= λn, the only way for this equation to hold
is for ⟨ψm|ψn⟩ = 0, which is simply a statement of the orthogonality of the two eigenvectors.

It is possible for a Hermitian operator to have multiple eigenvectors with the same eigen-
value. This is referred to as degeneracy, and invalidates our proof for the orthogonality of
the eigenvectors. However, it is still generally possible to form linear combinations of the
degenerate eigenvectors to find an orthogonal set in the degenerate space. This can compli-
cate working with them somewhat, but this is not something we will need to consider in this
course.

Completeness of Eigenvectors

We will not provide a proof for this property, but it turns out that for the Hermitian operators
we will typically be interested in working with in quantum mechanics it can be shown that
the eigenvectors of the operator are complete. As with our earlier discussions, the primary
importance of this result is that we can then use the eigenvectors as a basis set to represent
any function/state that we would find ourselves needing to work with in practice. As a
result, all Hermitian operators we will consider “come” with a basis set that we can use in
analyzing particular problems. This can often be a very useful result in interpreting certain
quantum mechanical expressions and in computing specific results.
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Hermitian Operators in Quantum Mechanics

Clearly, Hermitian operators have many useful properties that would make us want to work
with them. Fortunately, it turns out that all physically measurable quantities in quantum
mechanics (referred to as observables) can be represented by a Hermitian operator. As a
result, Hermitian operators play a central role in quantum mechanics.

Up to now, the main Hermitian operator we have worked with is the Hamiltonian op-
erator. However, due to the general properties of Hermitian operators, many of the math-
ematical techniques we have used to manipulate expressions involving the eigenvectors and
eigenvalues of the Hamiltonian operator will be directly applicable to many other operators
we will work with. As a result, we have built up a fairly useful set of mathematical tools to
begin considering more complicated quantum mechanical calculations.

5.5 Commutation of Operators and the Uncertainty

Principle

As alluded to previously, one of the most important concepts in quantum mechanics is related
to the commutation of two operators. We defined the commutator as

[Â, B̂] = ÂB̂ − B̂Â, (5.88)

which helps determine whether two operators commute or not. We say that two operators
commute if [Â, B̂] = 0. The result of the commutator between two quantum mechanical
operators (e.g., if it is 0 or equals something else) plays a very important role in understanding
quantum systems, and is also a central component of the uncertainty principle that we will
discuss shortly.

5.5.1 Commutation of Hermitian Operators

Before considering the uncertainty principle, it is useful to establish that two Hermitian
operators commute if and only if they share the same set of eigenfunctions. To prove this,
we need to show both “directions” of this statement. To begin, we will show that if Hermitian
operators Â and B̂ commute then they have the same eigenfunctions. We will assume that
the functions |ψn⟩ are eigenfunctions of Â with eigenvalue An. We then have that

ÂB̂|ψn⟩ = B̂Â|ψn⟩ = B̂An|ψn⟩ = AnB̂|ψn⟩. (5.89)

We can then equate the first and last expressions and write them in the suggestive form

Â
(
B̂|ψn⟩

)
= An

(
B̂|ψn⟩

)
. (5.90)

For this expression to hold, we must have that the function B̂|ψn⟩ is an eigenfunction of Â.
If we ignore the case of degenerate eigenvalues (which can be handled, but we won’t worry
about this), we actually conclude that the function B̂|ψn⟩ must be proportional to |ψn⟩ for
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(5.90) to have eigenvalue An. Another way to write that B̂|ψn⟩ is proportional to |ψn⟩ is
that

B̂|ψn⟩ = Bn|ψn⟩, (5.91)

where Bn is the proportionality constant. However, we can recognize that (5.91) is also the
statement that |ψn⟩ is an eigenfunction of B̂ with eigenvalue Bn. As a result, we see that it
is the case that if Â and B̂ commute then they have the same eigenfunctions.

Let’s now show that if two Hermitian operators have the same eigenfunctions they com-
mute. We will assume we have an arbitrary function expanded in terms of the eigenfunctions
|ψn⟩ as

|x⟩ =
∑
n

cn|ψn⟩. (5.92)

We now look to show that

[Â, B̂]|x⟩ = 0. (5.93)

To begin, we expand the commutator out as

ÂB̂|x⟩ − B̂Â|x⟩ =
∑
n

cnÂB̂|ψn⟩ −
∑
n

cnB̂Â|ψn⟩. (5.94)

If we denote the eigenvalues of Â and B̂ for eigenfunction |ψn⟩ as An and Bn, respectively,
then we can easily see that∑

n

cnÂB̂|ψn⟩ −
∑
n

cnB̂Â|ψn⟩ =
∑
n

cnÂBn|ψn⟩ −
∑
n

cnB̂An|ψn⟩

=
∑
n

cnAnBn|ψn⟩ −
∑
n

cnBnAn|ψn⟩ = 0.
(5.95)

As desired, this shows that if two Hermitian operators share the same eigenfunctions they
commute.

We are almost in a position to consider a general form of the uncertainty principle. What
we will see is that there exists an uncertainty principle relationship between any observables
associated with operators that do not commute. We will comment more on the physical
meaning of this after establishing the particular result.

5.5.2 Variance and Standard Deviation

Before considering the uncertainty principle, we need to determine how to compute some
additional statistical properties from our operators and wavefunctions. In particular, we
will find that the uncertainty principle involves the variance or standard deviation of the
operators involved, so we will need to be able to compute these. Toward this end, we will
need recall that we can compute the mean value of an observable A through the expectation
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value of an operator Â with the state of our quantum mechanical system. For our current
purposes, it will be useful to simplify our notation, so we will write this mean value as

A = ⟨A⟩ = ⟨x|Â|x⟩, (5.96)

where |x⟩ is the state of the system. Part of computing the variance requires “re-centering”

the mean value, so we will define a “new” operator δ̂A as

δ̂A = Â− A. (5.97)

To continue, the variance will involve the expectation value of the operator δ̂A
2
, which

we now turn to computing. To do this, we assume that |x⟩ is expanded on our set of
eigenfunctions |ψn⟩ for Â as

|x⟩ =
∑
n

cn|ψn⟩. (5.98)

We then compute

(δA)2 = ⟨x|
(
Â− A

)2|x⟩ = (∑
m

c∗m⟨ψm|
)(
Â− A

)(∑
n

cn
(
Â− A

)
|ψn⟩

)
. (5.99)

Using that |ψn⟩ has eigenvalue An, we can simplify this as

(δA)2 =

(∑
m

c∗m⟨ψm|
)(
Â− A

)(∑
n

cn
(
An − A

)
|ψn⟩

)
=

(∑
m

c∗m⟨ψm|
)(∑

n

cn
(
An − A

)2|ψn⟩) (5.100)

Since
(
An−A

)2
is now just a number, we can further simplify this using the orthonormality

of the eigenfunctions to get

(δA)2 =
∑
m,n

c∗mcn
(
An − A

)2⟨ψm|ψn⟩ = ∑
m,n

c∗mcn
(
An − A

)2
δmn =

∑
n

|cn|2
(
An − A

)2
.

(5.101)

Recalling the statistical interpretation of |cn|2 as the probability the system will return a
value of An upon measurement, we see that the final result in (5.101) can be expressed in
words as being the expectation value of the squared deviation of the random variable A from
its mean A. This is, by definition, the variance. In addition to variances, it is typical to
work with standard deviations. These are simply the square root of the variance; i.e.,

σA =

√
(δA)2. (5.102)

Often, it is more convenient to compute the variance directly in terms of our original
operators rather than defining a “new” operator like δ̂A. To determine the more convenient
formula, we first note that

(δA)2 = ⟨x|
(
Â− A

)2|x⟩ = ⟨x|
[
Â2 − 2AÂ+ A

2
]
|x⟩. (5.103)
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We can simplify the term

⟨x|2AÂ|x⟩ = 2A⟨x|Â|x⟩ = 2A
2
= ⟨x|2A2|x⟩, (5.104)

so that we find

(δA)2 = ⟨x|
[
Â2 − A

2
]
|x⟩ = ⟨A2⟩ − A

2
. (5.105)

It is this final expression that is often used to compute the variance of a quantum mechanical
operator.

5.5.3 Uncertainty Principles

In quantum mechanics, it is typical to write the commutator between two Hermitian opera-
tors in the general form

[Â, B̂] = iĈ, (5.106)

where Ĉ is sometimes called the commutation rest. To establish the uncertainty principle, we
will consider two non-commuting Hermitian operators according to (5.106). The proof used
is mainly mathematical, but once completed the physical intuition of it is easy to interpret.

To derive the uncertainty principle, we consider for an arbitrary real number α the
quantity

G(α) = ⟨(αδ̂A− iδ̂B)x|(αδ̂A− iδ̂B)x⟩ ≥ 0. (5.107)

We recognize that this quantity is always greater than 0 because G(α) is simply the inner

product of the somewhat “odd” looking vector defined by (αδ̂A− iδ̂B)|x⟩ with itself. Now,
to proceed we rearrange our expression for G(α) as

G(α) = ⟨x|
(
αδ̂A− iδ̂B

)†(
αδ̂A− iδ̂B

)
|x⟩ = ⟨x|

(
αδ̂A

†
+ iδ̂B

†)(
αδ̂A− iδ̂B

)
|x⟩. (5.108)

Since all our operators here are Hermitian, we can further rewrite this as

G(α) = ⟨x|
(
αδ̂A+ iδ̂B

)(
αδ̂A− iδ̂B

)
|x⟩. (5.109)

We proceed as

G(α) = ⟨x|
[
α2δ̂A

2
+ δ̂B

2
− iα

(
δ̂A δ̂B − δ̂B δ̂A

)]
|x⟩

= ⟨x|
[
α2δ̂A

2
+ δ̂B

2
− iα[δ̂A, δ̂B]

]
|x⟩.

(5.110)

Recognizing that

[δ̂A, δ̂B] = [Â− A, B̂ −B] = [Â, B̂] = iĈ (5.111)
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because the scalar numbers A and B commute, we find that

G(α) = ⟨x|
[
α2δ̂A

2
+ δ̂B

2
+ αĈ

]
|x⟩ = α2σ2

A + σ2
B + αC. (5.112)

We can rearrange this in a non-obvious way to get

G(α) = σ2
A

(
α +

C

2σ2
A

)2

+ σ2
B − C

2

4σ2
A

≥ 0. (5.113)

Now, because this must hold for any α we can choose α in a way to simplify this expression.
The sensible choice is to make α eliminate the first term in our earlier expression, which
requires

α = − C

2σ2
A

. (5.114)

Choosing α in this way, then rearranging and taking the square root gives us

σAσB ≥ 1

2
|C|. (5.115)

This is the generalized uncertainty principle, which holds for any set of non-commuting
quantum mechanical operators associated with two measurable quantities.

This is a rather profound result that has many consequences in quantum mechanics.
It expresses the relative minimum size of the distributions of two measurable quantities
if we were to perform many measurements on identically prepared systems. One important
consequence of this result is that it is impossible for us to simultaneously know with arbitrary
precision both quantities. To get a better feel for this, it is helpful to consider a few of the
most “famous” uncertainty principles.

Heisenberg (Position-Momentum) Uncertainty Principle

The Heisenberg (or position-momentum) uncertainty principle expresses the relationship
between the standard deviations of position and momentum. To determine this uncertainty
principle, we need to evaluate C. We are already acquainted with the momentum operator
as

p̂ = −iℏ d
dx
, (5.116)

but we will also need the position operator. It turns out that within this coordinate space
representation, the position operator x̂ is simply the function x. Hence, we need to evaluate
[p̂, x̂]. Since this involves differential operators, it is easiest to think of this being applied to
an arbitrary function |f⟩. Then, we have that

[p̂, x̂]|f⟩ = −iℏ
(
d

dx
x− x

d

dx

)
|f⟩ = −iℏ

(
d

dx

(
x|f⟩

)
− x

d

dx
|f⟩

)
. (5.117)
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It is essential to recognize that the first term in this last expression needs to be evaluated
using the product rule from calculus. This then gives us

[p̂, x̂]|f⟩ = −iℏ
(
|f⟩+ x

d

dx
|f⟩ − x

d

dx
|f⟩

)
= −iℏ|f⟩. (5.118)

Since |f⟩ is arbitrary, we see that we can write in general that

[p̂, x̂] = −iℏ. (5.119)

The commutation rest operator in this case is then just Ĉ = −ℏÎ, so that the expectation
value is C = −ℏ. Finally, we have the Heisenberg uncertainty principle that

σpσx ≥
ℏ
2
. (5.120)

This tells us that it is impossible to known both the position and momentum of a particle
simultaneously. For example, if we were to measure the position of our particle, then the
uncertainty in the momentum would necessarily become very large. This result can actually
be readily understood in terms of Fourier theory. If we have a very localized function in
one space (e.g., a delta function), then we have a very broad function in our Fourier space.
Similarly, we find that if we measure something and collapse it into an eigenfunction of one
operator we will need to use a large number of eigenfunctions (generally, all of them) from
our other non-commuting operator to express the corresponding state of the system.

Energy-Time Uncertainty Principle

There is also an almost identical uncertainty principle between energy and time. We already
know that the operator corresponding to energy is the Hamiltonian operator. Similar to the
function x being the position operator x̂, we also have the time operator t̂ just being the
function t. Then, for an arbitrary quantum state, one can find that

[Ĥ, t̂] = iℏ. (5.121)

As a result, there is an energy-time uncertainty principle of

σEσt ≥
ℏ
2
. (5.122)

This can also be recast in the form of a frequency-time uncertainty principle by noting
E = ℏω. We then have

σωσt ≥
1

2
, (5.123)

which is a relation that is common in traditional Fourier analysis.
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5.6 Practice Problems

1. Problem 4.1.1 from D. A. B. Miller.

2. Problem 4.2.1 from D. A. B. Miller.

3. Problem 4.10.3 from D. A. B. Miller.

4. Problem 4.11.4 from D. A. B. Miller.

5. There are two quantum-mechanically measurable quantities A and B associated with
quantum operators Â and B̂, respectively. The possible eigenvalues of Â are A1 and A2

associated with eigenvectors |ψ1⟩ and |ψ2⟩, while the possible eigenvalues of B̂ are B1

and B2 associated with eigenvectors |ϕ1⟩ and |ϕ2⟩. Further, we know that the relation
between these eigenvectors is

|ϕ1⟩ =
1

5

(
3|ψ1⟩+ i4|ψ2⟩

)
, (5.124)

|ϕ2⟩ = −1

5

(
i4|ψ1⟩+ 3|ψ2⟩

)
. (5.125)

We will now consider a sequence of measurements that are performed in quick suc-
cession such that you do not need to consider any free time evolution of the system
according to the time-dependent Schrödinger equation occurs in between the measure-
ments.

(a) A measurement of quantity B is performed and the result is B2. What is the
state of the system immediately after this measurement?

(b) We now immediately measure the quantity B again. What will the result be?

(c) If we were now to make a measurement of quantity A, what is the probability the
result will be A1 and what is the probability the result will be A2?

(d) We now perform a measurement of quantity A and find that the result is A1. If
we were to now make a measurement of quantity B, what is the probability the
result will be B1 and what is the probability the result will be B2?

6. You have been given a Hermitian operator Â whose bilinear expansion is given by

Â =
∑
n

An|αn⟩⟨αn|, (5.126)

where An is the eigenvalue associated with the nth-eigenvector |αn⟩ of a complete
orthonormal basis. Now, find the inverse operator to Â such that Â−1Â = Î. By
correctly manipulating the bra-ket notation of Â−1 and Â, also explicitly show that
Â−1Â = Î.
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7. In this problem, we will consider the manipulation of terms that occur in the Hamil-
tonian of many superconducting qubits. These systems involve a “charge operator”
n̂ (that we will learn about more later in the course) that has a complete set of or-
thonormal eigenstates typically denoted by |N⟩ in Dirac bra-ket notation where N is a
positive or negative integer. The action of the charge operator on these states follows
the simple rule that

n̂|N⟩ = N |N⟩. (5.127)

Now, using two “resolution of the identity operator” written in terms of charge states,
show how to rewrite the left-hand side of (5.128) to become the right-hand side:

4EC
(
n̂− ng

)2 → 4EC
∑
N

(
N − ng

)2|N⟩⟨N |, (5.128)

where EC and ng are real-valued constants.

Hint: To show this, you will need to put one identity operator before
(
n̂−ng

)2
and one

identity operator after this. Don’t forget that when you introduce these resolution of
the identity operators that the dummy indices for the summations *must* be different!

8. Quantum logic gates that operate on a single quantum bit (qubit) are defined in a
two-dimensional Hilbert space. Three canonical single qubit gates are the Pauli-X, Y,
and Z gates (these are also called Pauli spin matrices for reasons we will discuss later).
These are denoted as

X̂ =

[
0 1
1 0

]
, Ŷ =

[
0 −i
i 0

]
, Ẑ =

[
1 0
0 −1

]
. (5.129)

(a) Find the commutation relations between each pair of operators through explicit
matrix multiplication. You should be able to simplify your answer so that the
result is some scalar times one of the Pauli matrices (i.e., X̂, Ŷ , or Ẑ).

(b) Using the results of (a), construct an uncertainty principle between Ŷ and Ẑ.
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Chapter 6

Basics of Quantum Computing

6.1 Introduction to Quantum Computing

We will now begin to discuss the operation of a quantum computer at a high level. Quantum
computing is one of the most intriguing technological applications of quantum information
processing, and has driven much of the interest in pushing the boundaries of implementing
next-generation quantum technologies. At a high level, a quantum computer is a machine
designed to modify the quantum state of a collection of qubits to achieve some computational
task. The interest in using a quantum computer arises from the fact that there are certain
computational tasks of great importance that are known to become essentially impossible
to solve once the number of variables involved gets large enough. Simple examples include
many kinds of optimization problems, as well as simulating quantum systems.

We will begin our discussion by considering how to mathematically express the state
of a quantum computer before then reviewing one of the simpler quantum algorithms that
shows a speedup compared to classical algorithms. Later, we will go through a more detailed
introduction to the different parts of a quantum computer from the physical layer through
to more abstracted interfaces. We will then continue through much of the remaining part of
the course by learning in more detail about the various physical components that make up
a quantum computer to have a more fundamental understanding of what goes into building
and controlling these fascinating new technologies.

To begin, we will first note that the most common form of quantum computer involves a
number of interconnected quantum bits (qubits). As its name suggests, a qubit is abstractly
defined as any quantum system that either exactly or approximately can be considered to
consist of two states. It is conventional to then consider these two states to be represented
as |0⟩ or |1⟩. One of the defining features of a qubit is that the complete state of it can then
be considered to be given by a superposition of these two states, such as

|ψ⟩ = c0|0⟩+ c1|1⟩, (6.1)

where c0 and c1 are complex-valued coefficients subject to the usual normalization constraint
so that they can be interpreted in a probabilistic manner.

Of course, a quantum computer with only one qubit is hardly of interest, so we also need
to be able to describe the state of a more complex system such as a quantum computer
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composed of many qubits. The mathematical “tool” that is used to achieve this is known
as a tensor product. Tensors are a generalization of matrices to be able to extend to higher
dimensional sets of data. We can think of a tensor as having a number of indices that can
run over the entire range of the Hilbert space that makes up each dimension of the tensor.
If we initially consider the case of a system with only two qubits, we would have the Hilbert
spaces of qubits 1 and 2, which we denote as H1 and H2, respectively. The total Hilbert
space that our system is analyzed in then becomes the tensor product of these two spaces,
denoted as

H = H1 ⊗H2. (6.2)

A state within the overall Hilbert space then becomes the tensor product of states from
the individual Hilbert spaces. As an example, if we have qubit 1 in its 0 state and qubit 2 in
its 1 state, we could write the state as |0⟩1⊗|1⟩2. This notation becomes rather cumbersome,
especially if we have many coupled qubits, and so simpler notations are often adopted. For
instance, we could write this same state equivalently as

|0⟩1 ⊗ |1⟩2 = |0⟩1|1⟩2 = |0⟩|1⟩ = |0, 1⟩ = |01⟩. (6.3)

All of these notations are entirely equivalent, it is just a matter of preference for picking
between one or another. Another point to note is that because each set of qubit states
represents an orthonormal basis for that particular qubit, our tensor product of these different
states can be used as an orthonormal basis in the larger Hilbert space H. One important
consequence of this is that all of the states are mutually orthonormal, i.e.,

⟨m′, n′|m,n⟩ = δmm′δnn′ . (6.4)

It should also be emphasized, that each state can exist in a quantum superposition with
the same rules as before applied in regards to normalization of coefficients and statistical
interpretation. For example, we could have the state

|ψ⟩ = 1√
2
|01⟩ − 1√

2
|00⟩ (6.5)

as a valid quantum state. More generally, we can have

|ψ⟩ =
∑
m,n

cmn|mn⟩,
∑
m,n

|cmn|2 = 1. (6.6)

More broadly, we can quickly find that the size of the Hilbert space spanned by N qubits
coupled to each other will be given by 2N . Amazingly, if we had a quantum computer with
only 300 qubits, the size of this state space would already be so large that there are not
enough atoms in the known universe to be able to fully represent all of the possible states!
One of the key aspects of a quantum computer is the idea of quantum parallelism, i.e., we
can utilize a superposition of these enormous quantum states to in some sense “query” a
problem a huge number of times simultaneously in a manner that is not possible with classical
computing. We can also utilize quantum entanglement to process information in a manner
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distinct from any classical system, although we will have to defer our discussion on quantum
entanglement until later in the course. The goal of quantum computers is to utilize these
effects in novel ways to try and approach the solution of important computational tasks that
are known to be nearly impossible for classical computers.

As such, the design of these quantum algorithms can be very challenging because it
requires us to think of ways to utilize non-intuitive quantum effects in a manner to solve a
computational problem. The difficulty is further enhanced because we are only interested
in these quantum algorithms if they solve a particularly important problem in a manner
that is better than any known classical algorithm, otherwise the effort in using a quantum
computer would not be worth it. Hence, the bar is quite high to achieve success with a
quantum algorithm!

Despite this, the interest in quantum computers has been steadily growing due to mount-
ing evidence that they can be implemented experimentally and theoretical results demon-
strating their performance improvement over classical computers for certain problems. One
problem that significantly ignited interest was the proof that a quantum computer could
provide an exponential speedup for finding the prime factors of an integer (this is Shor’s al-
gorithm). The assumed difficulty of this problem for very large numbers forms the backbone
of many public-key cryptography schemes that underlie much of modern secure data trans-
mission. As a result, the development of a quantum computer could significantly undermine
large parts of how society currently functions, making many governments and companies
very motivated to stay on top of the development of these revolutionary technologies.

6.2 Grover’s Search Algorithm

We will now look at one of the simpler quantum algorithms to get a taste at how the
effects of quantum mechanics can be leveraged to solve a particular computational task.
In particular, we will discuss Grover’s search algorithm, which is often described as being
useful to locate an item in an unstructured database. However, Grover’s search algorithm
has application to a rather broad set of problems that require “searching” for something of
interest. In many cases, a classical algorithm that must perform this “searching” will usually
require O(N) operations if there are N possible items to search through. Grover’s search
algorithm provides a quadratic speedup by being able to accomplish this task in O(

√
N)

operations. Although this speedup is not as exciting as the exponential speedup of other
quantum algorithms (e.g., Shor’s algorithm), it still can be substantial when N is large.
As a simple example to emphasize this point, an algorithm for solving a linear system of
equations using a single processor that requires O(N2) operations will take over 100 days
to perform this task for N = 106. Meanwhile, an algorithm that perform this in O(N)
operations will reduce this computational time to less than 1 hour. Hence, when the number
N becomes large even a quadratic speedup can be exceptionally important in making a
particular computational task practical!
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6.2.1 Basic Process

The basic structure of Grover’s search algorithm is shown in Fig. 6.1. The algorithm works
with a set of n qubits that we use to index into our “search space” and another set of qubits
that we use for auxiliary computations in an oracle function. The oracle function is where
we embed information about the actual search problem we are attempting to solve, and we
will discuss it in more detail later. The number of qubits we need depends on the size of the
space we are searching and the specifics of the oracle function. In general, we will assume
that there are N elements in the search space so that we can choose the number of qubits
we need such that N < 2n. For simplicity, we will assume that N = 2n.

To begin the algorithm, we first use a set of Hadamard gates to place all of our n qubits
into an equal superposition state. More specifically, a single-qubit Hadamard gate has as its
matrix representation

H =
1√
2

[
1 1
1 −1

]
. (6.7)

If we apply this to a qubit beginning in its ground state we will have

H|0⟩ = 1√
2

(
|0⟩+ |1⟩

)
. (6.8)

If we were to instead perform a Hadamard gate to all of our n qubits starting in the ground
state, then we would have

H⊗n(|0⟩1 ⊗ |0⟩2 . . .⊗ |0⟩n
)
=

1√
2n

(
|0⟩1 + |1⟩1

)
⊗
(
|0⟩2 + |1⟩2

)
. . .⊗

(
|0⟩n + |1⟩n

)
. (6.9)

By explicitly expanding all the terms in this tensor product, one can find that it results in
an equal superposition state of all are n qubits, as desired. As a shorthand, we will denote
this superposition by

|ψ⟩ = 1√
N

N−1∑
x=0

|x⟩, (6.10)

where |x⟩ is a number corresponding to a particular bit string that indexes into our search
space (also, recall that N = 2n). The purpose of this superposition state is to exploit the
quantum parallelism that is possible with quantum states. Next, we input our quantum
state into a sequence of Grover iterations. Each Grover iteration is meant to modify the
quantum state of our system so that it is closer to the correct answer. We repeat this Grover
iteration a sufficient number of times so that we can maximize the statistics of our output
state matching the solution to our search problem. Clearly, a lot is going on inside this
Grover iteration, which we now turn to considering in more detail.

6.2.2 Grover Iteration

The layout of each Grover iteration is shown in Fig. 6.2. Conceptually, it performs two
operations. The first involves evaluating the oracle function, with the second step involving
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Figure 6.1: Circuit schematic of Grover’s search algorithm. Each G block corresponds to a
Grover iteration.

Figure 6.2: Circuit schematic of a single Grover iteration.

the three remaining gates. Hence, we now need to consider a more specific definition of what
the oracle function actually does.

At a high level, the oracle function is meant to be an abstract concept to allow us to
analyze quantum circuits in a generic sense without getting too “hung up” on the details.
Unfortunately, this often leads to the operation of the oracle seeming particularly mysterious,
which is certainly not helped by its name or the abstract language often used to describe
it. In essence, the purpose of the oracle is to be a black box that performs a specific target
operation on the input state. The design of the oracle function depends on the specific details
of the search problem being considered, and as a result is not able to be defined explicitly
for a general analysis. Overall, the oracle is designed to recognize whether something is a
solution to the search problem and to then mark this state in some way.

It should be emphasized that recognizing whether something is a solution to the search
problem does not require actually computing the solution, or even knowing the solution a
priori. In many cases, we can utilize classical logic statements to test whether a particular
item matches the “pattern” we are looking for. The oracle function encodes this logic into
our quantum circuit.

It is typical to consider this operation in terms of some function f(x) that takes as input
an integer x that indexes into our search space and returns a value of f(x) = 1 if x is a
solution and f(x) = 0 if x is not a solution to the search problem. To “mark” the result of
the oracle function, we utilize an oracle qubit where the evaluation of f(x) will be stored.
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This is typically done in the form

O|x⟩|q⟩ = |x⟩|q ⊕ f(x)⟩, (6.11)

where O is a unitary operator that implements the oracle function, |q⟩ is the oracle qubit,
and q ⊕ f(x) denotes addition modulo 2. We see that if |x⟩ is a solution to the search
problem, then the oracle function will flip the value of the oracle qubit.

For Grover’s search algorithm, we actually prepare the oracle qubit in the superposition
state

|q⟩ = 1√
2

(
|0⟩ − |1⟩

)
. (6.12)

The result of this is that if the trial state |x⟩ is not a solution to the search problem then
the oracle qubit will remain unchanged, but if the trial state |x⟩ is a solution to the search
problem then we get that

|q⟩ = 1√
2

(
|0⟩ − |1⟩

)
→ 1√

2

(
|1⟩ − |0⟩

)
= −|q⟩. (6.13)

Hence, we can write the overall action of the oracle function on our quantum state as

O|x⟩
(
|0⟩ − |1⟩√

2

)
= (−1)f(x)|x⟩

(
|0⟩ − |1⟩√

2

)
. (6.14)

Since the oracle qubit state does not change (we just get the sign flip on the rest of the state),
we can “drop” it when writing our expressions to simplify things down a bit. However, it is
important to emphasize that it is still there and is essential in achieving the end goal of the
Grover search algorithm by marking the states that are solutions to the search problem by
flipping their sign.

Now, the remaining three gates in each Grover iteration are lumped together to achieve
the other important step of the algorithm. We have already encountered the Hadamard
gates, but the middle operation of a conditional phase shift is new to us. The idea is that
we should flip the sign of every state in the computational basis except for the |0⟩ state. We
can write this operation mathematically as

|x⟩ → −(−1)δx0|x⟩, (6.15)

where δx0 is a Kronecker delta. The unitary operator that achieves this conditional phase
shift is

2|0⟩⟨0| − I. (6.16)

Combined with the two Hadamard gates we get that the remaining step of the Grover
iteration implements

H⊗n(2|0⟩⟨0| − I
)
H⊗n = 2|ψ⟩⟨ψ| − I. (6.17)

From this, we see that an entire Grover iteration is equivalent to G =
(
2|ψ⟩⟨ψ| − I)O. To

see why this accomplishes our goal of finding the solution to the search problem, it is useful
to look at a geometric visualization of what is happening.
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6.2.3 Geometric Visualization

At this point, the purpose of the oracle function and Grover iteration are likely still rather
perplexing. Fortunately, it turns out there is a very simple and intuitive geometric explana-
tion for what these two operations are performing. To see this, it helps to think of our state
as being decomposed into an equal superposition of states that are solutions to the search
problem and an equal superposition of states that are not solutions to the search problem.
If we have M valid solutions, then we can denote these two states as

|α⟩ = 1√
N −M

∑
x∈N

|x⟩, (6.18)

|β⟩ = 1√
M

∑
x∈S

|x⟩, (6.19)

where S (N ) denotes the set of states that are (not) solutions to the search problem. The
states |α⟩ and |β⟩ are easily seen to be orthogonal to each other, and so we can think of
using them as a basis to describe our initial state |ψ⟩ as

|ψ⟩ =
√
N −M

N
|α⟩+

√
M

N
|β⟩. (6.20)

We can now introduce the geometric idea of what the different steps of the Grover itera-
tion accomplish. To start, we recognize that the operation of the oracle function on a state
described in terms of |α⟩ and |β⟩ is

O
(
a|α⟩+ b|β⟩

)
= a|α⟩ − b|β⟩. (6.21)

If we consider |α⟩ and |β⟩ to define two orthogonal axes in a plane we can recognize that the
operation of O is to reflect the state vector about the |α⟩ axis. The remaining part of the
Grover iteration can also be interpreted as a reflection, but this time about the axis defined
by the vector |ψ⟩. The product of these two reflections is a rotation of the state vector in
the direction of |β⟩ – i.e., the equal superposition of all solutions to the search problem. By
performing more and more Grover iterations, we keep rotating our state vector closer and
closer to the correct answer |β⟩. This process is illustrated for a single Grover iteration in
Fig. 6.3.

6.2.4 Summary

Now that we’ve discussed the Grover search algorithm fully, let’s reflect briefly on how it
accomplishes its processing goal in a manner that is not possible with classical computers.
The first and obvious point is that it relies on us beginning with a quantum state that is
an equal superposition of all possible indexes in our search space. We then process this
superposition state in a coherent manner to exploit the quantum parallelism that is possible
with this kind of state. The second important point was that we were able to modify the
phase of specific portions of our state space while operating on the coherent superposition.
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Figure 6.3: Geometric visualization of a single Grover iteration. The two reflections involved
lead to a rotation of the state vector in the direction of the equal superposition of solutions
to the search problem.

Once these portions had been “marked”, we could design a set of operations to amplify the
probability amplitude of these states. Since our coefficients must remain normalized, this
amplification is accompanied by reducing the portion of our probability amplitude on the
states that were not marked by our algorithm. By repeating this process enough times,
we will arrive at a quantum state that approximately only contains appreciable probability
amplitudes for states that solve our search problem. We can then measure the output state
of our computer and be relatively certain that it is a solution to our problem. We can always
perform a quick check on our output state to verify that it is indeed one of the desired
solutions. We can then repeat this process as many times as we wish to find additional
solutions to the search problem (assuming they exist). Of course, we may also remeasure
a solution we have already found, but given that all solutions have an equal probability of
being measured it should not take us too long to find all the solutions to our search problem.

6.3 Building Blocks of a Quantum Computer

We will discuss the building blocks of a quantum computer from a bottom-up approach. We
will not go into depth on each topic, but will give a very broad overview of some of the
important concepts.

6.3.1 Physical Layer

As with any computer, the foundation of a quantum computer is its physical layer. As
we have mentioned previously, a quantum computer is composed of a number of qubits
that we need to be able to coherently control. The core capabilities needed of our physical
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system have been encapsulated in DiVincenzo’s criteria [14]. These are an agreed upon set
of characteristics needed of a physical system to have it be able to perform as a quantum
computer. They are:

1. A scalable physical system with well-characterized qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state.

3. Long relevant decoherence times.

4. A “universal” set of quantum gates.

5. A qubit-specific measurement capability.

The discussion we will have in a few weeks on the physics of superconducting circuit
artificial atoms will be a good example of the kind of details that need to be understood for
a physical system to be a “well-characterized qubit”. The notion of scalability encapsulates
the need for us to combine many of these qubits without fundamentally changing their
properties. For instance, if each time we added a new qubit it reduced our ability to measure
the state of all other qubits then we may have a system that is not scalable.

Next, it should not be surprising that for a particular quantum algorithm to run in a
desirable manner we will generally need to have it begin from a known “starting point”.
If the initial state of all the qubits are not controllable, it becomes impossible to achieve
this desired property. In many cases, the simple fiducial state that will be used to initialize
the qubits will be the ground state. This is usually the most accessible option because the
ground state is often the equilibrium state for the qubit that it “wants” to return to (e.g.,
through spontaneous emission of an excitation).

In order to successfully run a quantum algorithm, it is vital that uncontrollable errors
do not ruin the coherence of our quantum state. We will discuss more details about this
later in the course, but at a high level uncontrollable perturbations to our qubits in the
form of various environmental fluctuations can over time cause the “phase coherence” of our
quantum states (i.e., the relative phases involved in the superposition state) to be lost. This
makes our superposition states “fall apart”, leading to our possible quantum parallelism
breaking down. Hence, we need to make sure that the decoherence times of our qubits are
long enough that we can successfully complete our desired quantum algorithm before the
phase coherence is lost.

Our physical system also must be able to be controlled in such a way that we can have a
universal set of quantum gates. This is similar to the idea of a universal gate set for classical
computing, where it is well known that we can synthesize any possible logical operation
using only a subset of all possible logic gates. For instance, clever combinations of NAND
gates can be used to realize any other logic gate (e.g., an OR gate or a NOT gate, etc.).
In the quantum case, the number of quantum logic gates that can be performed is in one
sense broader than the classical case, but also more restrictive in another sense. The possible
quantum gates can be viewed as broader because we can define “partial” operations of gates
that leave a quantum state in various superpositions. However, any quantum gate also
must follow certain quantum mechanical principles, which restricts the types of gates that
are possible. In particular, all quantum gates must be defined by unitary operators, which
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Figure 6.4: Examples of the most commonly used single qubit gates. The circuit symbol
is how these gates are denoted schematically when one draws out a quantum algorithm in
terms of a sequence of gates. The matrix representation helps us understand the actual
operation of the gate and prove certain correspondences between various gates (e.g., how to
synthesize one gate through the use of other gates). Visualizing the action of these gates
through a geometric depiction on the Bloch sphere is also very useful. Examples of this can
be found in [15].

in turn correspond to unitary matrices in a matrix representation. This has a number of
consequences, including that all quantum gates must be reversible. This is not the case with
classical logic gates, such as an AND gate, where it is not possible to reconstruct what the
inputs were given the output state. However, it is still possible to synthesize any “standard”
logic gate we are familiar with using only reversible logic gates (a good example is the
Fredkin gate). Due to this, it is possible to use only reversible gates and still implement
any logical operation, although the reversible implementation may have some additional
overhead associated with this.

Importantly, despite the many possible quantum gates it is still possible to reconstruct
any possible quantum gate to sufficient fidelity using a smaller subset (i.e., a finite number)
of quantum gates. This often involves needing to produce relatively arbitrary single qubit
operations combined with some controlled multi-qubit gate. These controlled gates are a
kind of conditional operation that only applies a particular function depending on the value
of a control qubit. One particularly popular gate is a CNOT (controlled NOT) gate that
only performs the NOT operation if the control qubit is in the |1⟩ state. These controlled
gates help facilitate entanglement between different qubits, and hence, play a vital role in
quantum computation. Examples of many of the most commonly used single and multiple
qubit gates are shown in Figs. 6.4 and 6.5, respectively.

Finally, we also must be able to measure the states of the qubits in our quantum computer.
This certainly must be done at the end of an algorithm to get our result out of the computer,
but can also be a handy tool at an intermediate state of a computation. This often occurs
when we wish to take the result of the intermediate measurement, process it with a classical
computer, and then use this result to condition further operations of the quantum algorithm.
Although these classical computations can actually be done on a quantum computer (any
classical computation can be done with a quantum computer), it may not be the most efficient
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Figure 6.5: Examples of some of the most commonly used two qubit gates. These gates are
important for generating entangled states.

way to do things. Hence, interfacing with a classical computer can still be a valuable resource.
It should also be noted that these intermediate measurements can certainly be needed for
the running of a particular quantum algorithm, but also form a key part of many quantum
error correction protocols as well. Hence, the intermediate measurement of qubits in the
process of an algorithm is an extremely important capability.

6.3.2 Compiler

The next layer up from the physical layer is the compiler. The purpose of the compiler is
to take a quantum algorithm defined in terms of an arbitrary set of gates and convert this
into an equivalent set of gates that can actually be implemented on the hardware platform
being used. A good compiler will be aware of certain details about the performance of
the underlying hardware so that it can attempt to choose equivalent gates that perform
better on the specific hardware being used. It may also insert additional operations in the
algorithm to try and stave off decoherence effects in idling qubits (i.e., one’s that aren’t
actively being used at a given step of the algorithm). The compiler also must be aware of
the interconnectivity of the different qubits in the quantum processor so that it can “move”
the particular state of qubits around the processor to facilitate different multi-qubit gates.
These “movements” themselves need to be accomplished via application of particular gates,
which the compiler handles so that the algorithm designer does not need to think about these
details. The compiler can also be viewed as converting all of these gates into a sequence of
actual physical biases that should be applied to the qubits in the quantum computer.

Current quantum computers are limited in size, but as they become bigger the compilers

107



CHAPTER 6. BASICS OF QUANTUM COMPUTING

will also need to help facilitate the use of quantum memories. In these situations, it is
anticipated that quantum computing architectures will begin to resemble those of classical
computers more and more. This includes having structures like RAM, optimized registers
for facilitating different operations, etc.

6.3.3 Higher-Level Programming

The next layer above the compiler would be a quantum programming language. This would
be something that is written on a classical computer and defines the steps of a quantum algo-
rithm. The higher-level programming language can facilitate additional abstraction through
user-defined “functions” that would be repeated in common algorithms. The higher-level
language can also be used to interface with classical machines to support parts of a quantum
algorithm. Due to how “far” away these higher-level languages are from the actual quantum
hardware, they are able to resemble classical programming languages to a significant degree.

6.3.4 Additional Comments

This has, of course, been a very abbreviated discussion about the different parts of a quantum
computer. As the field continues to evolve, it is anticipated that more and more sophisticated
quantum computers will be built. This will lead to the kinds of abstraction layers that
are familiar from classical computer engineering. However, current devices are still quite
primitive in this grand scheme, and so some knowledge of all of the different layers of the
machine are important. The current era of quantum computers are often referred to as
noisy intermediate-scale quantum (NISQ) devices. This is meant to emphasize that current
machines are still fraught with errors due to decoherence effects and only contain a relatively
small number of qubits compared to what is needed for practical applications. For instance,
the first claim of a “quantum advantage” was made with a machine that only contained 53
qubits [16], but current estimates for the number of qubits needed to solve practical problems
is usually in the hundreds to thousands [17].

It should also be emphasized that to solve practical problems the qubits need to be error
correctable. These are often referred to as logical qubits to make a distinction between them
and a single physical qubit. The reason for this is because each logical qubit is actually
composed of many physical qubits to add the needed redundancy in the system to be able
to detect and then correct errors in the qubit state. Although each hardware platform is
different, some of the current best estimates for superconducting circuit platforms suggest
that as many as 1,000 physical qubits may be needed in each logical qubit of an error-
correctable quantum computer [18]. Hence, there is still a long way to go before we have
a full error-correctable quantum computer! This kind of device is often referred to as a
large-scale fault-tolerant quantum computer, and is the kind of quantum computer that is
often meant when one talks about the revolutionary potential of quantum computation.
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Figure 6.6: Example of a device with multiple transmon qubits that are directly coupled to
each other through a capacitive interaction (image from [19]).

6.4 Physical Implementation of a Quantum Computer

There are many different hardware platforms being explored to realize a large-scale fault-
tolerant quantum computer. Each requires having a sufficiently deep understanding of the
physics involved in the hardware layer to gain a useful level of understanding of the advan-
tages and disadvantages of the particular technological approach. Due to this, we will not
attempt to review the various approaches exhaustively. Instead, we will focus on the ap-
proach using superconducting circuits that largely fits within the kind of analysis quantized
circuit framework we will consider throughout this course.

Although many different superconducting circuit qubits have been developed, the most
popular for current implementations is the transmon qubit, which we will learn about in
more depth in the coming weeks. Being a planar technology, it is natural to array the trans-
mon qubits in a 2D grid with each qubit designed to facilitate nearest-neighbor qubit-qubit
interactions. This can be achieved through a direct capacitive coupling, or can be mediated
through an electromagnetic resonator or tunable coupler. In a very simplistic description,
a single mode of the electromagnetic resonator behaves like a parallel LC oscillator circuit
that is coupled capacitively to the nearby transmon qubits. In the case of a tunable cou-
pler, the coupler can take on various forms, but the most common approaches involve a
tunable inductance (implemented with a SQUID) either directly connecting the qubits or
implemented in a separate “transmon” that acts as the coupler between two actual transmon
qubits. Example devices using these different coupling approaches are shown in Figs. 6.6 to
6.8.

Each of these different approaches have a number of tradeoffs that will dictate which
kind of architecture is preferable for a given application. Some of the tradeoffs include how
single and multi-qubit gates can be implemented, how many additional control lines are
needed to operate a device, whether the design is robust to manufacturing imperfections,
etc. All of these design decisions also impact other key figures of merit, such as how quickly
different gates and measurements can occur and the ultimate susceptibility to noise of the
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Figure 6.7: Example of a device with multiple transmon qubits that are coupled to each
other through an electromagnetic resonator (image from [20]).

Figure 6.8: Example of a device with two transmon qubits that are coupled to each other
through a tunable inductance (image from [21]).

different qubits. Overall, this represents a very challenging systems engineering problem,
with significant progress still needing to be made to reach the desired performance levels to
achieve a large-scale fault-tolerant quantum computer.

In addition to the coupling needed between different qubits, it is also necessary to mea-
sure the state of the qubit. This is accomplished by coupling the qubit to an electromagnetic
resonator, known as the readout resonator. The effect of this interaction leads to a shift
in the resonant frequency of the readout resonator. Importantly, the magnitude of this
shift depends on the state of the qubit, which allows one to infer the state of the qubit by
measuring the characteristics of the electromagnetic resonator. This is a “straightforward”

110



CHAPTER 6. BASICS OF QUANTUM COMPUTING

Figure 6.9: (a) Example of all of the features needed to control a single transmon qubit.
(b) Simplified equivalent circuit schematic of the single qubit device. (c) Response of the
electromagnetic resonator depending on the state of the transmon qubit. The shift in reso-
nant frequency due to the transmon state can be used to infer the state of the qubit from a
measurement of the electromagnetic resonator. Images are from [23].

measurement to perform in principle, although there are many important complexities that
make this more challenging than a traditional measurement of an electromagnetic resonator.
In particular, the amplitude of the probing signal must be kept very low to not acciden-
tally “drive” the qubit and to allow for rapid measurements. This then requires a very
sophisticated amplification chain to be implemented to successfully read out the state of the
qubit [22].

Beyond reading the state of the qubit, it is also necessary to be able to implement
drives on the different qubits to control their state. To achieve this, a drive line needs to be
coupled to each of the qubits. Further, if the qubits are tunable via a superconducting circuit
element known as a SQUID (which can be thought of as a magnetic-flux tunable inductor),
an additional flux line needs to be brought close to the qubit as well to modify the magnetic
flux intersecting the SQUID. Overall, this leads to a rather crowded number of control lines
needed to interface with the various qubits, making this an area for future improvement as
more and more qubits are integrated into larger quantum computers. An example of all
the needed control lines to operate a single transmon qubit is shown in Fig. 6.9. In this
figure, we also show the equivalent circuit schematic that can be used to (coarsely) analyze
the behavior of this single qubit system. Simple generalizations to this circuit model can be
used to conceptualize the behavior of more complicated multi-qubit circuits.
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6.4.1 Summary

As we have just seen, the physical implementation of a quantum computer primarily consists
of a few basic parts. We must have some physical implementation of qubits and a convenient
scheme for interfacing them to each other, as well as interfacing them to measurement
electronics. In current implementations, this coupling and interfacing to external electronics
is most often achieved in the form of electromagnetic resonators, which at a very basic level
behave similarly to LC oscillators.

To achieve a deeper understanding of the operation of a quantum computer, we will
then need to study in more detail the quantum mechanical description of these constituent
parts and (eventually) the quantum interactions between them. We will begin our study by
revisiting the analysis of a quantum harmonic oscillator before linking this to the quantum
description of an LC oscillator. We will study this system in depth, as well as consider what
happens when we couple two quantum LC oscillators to each other. Later, we will consider
the detailed analysis of a transmon qubit before then considering the interactions of such a
qubit with our LC oscillators.
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Chapter 7

Quantum Mechanics of Simple
Circuits

7.1 Quantum Harmonic Oscillator – Revisited

As we discussed when first learning about the quantum harmonic oscillator, this problem
represents one of the most commonly encountered models for many practical situations. Now
that we have a better understanding of the mathematical framework of quantum mechanics,
it is worth revisiting this problem to introduce a particularly useful approach to analyzing
this system. We will use this description extensively as we go on to learn about how quantized
circuits interact with complex quantum systems, such as artificial atoms. These interactions
form a central part of hardware implementations of quantum information processing (such
as in quantum computers), and as a result are of intense practical interest in the engineering
of next-generation quantum technologies.

7.1.1 Factoring the Hamiltonian

To begin, recall that the Schrödinger equation for the quantum harmonic oscillator in di-
mensionless units could be written as

1

2

[
− d2

dξ2
+ ξ2

]
ψ(ξ) =

E

ℏω
ψ(ξ), (7.1)

where ω is the angular frequency of oscillations for the oscillator. We will find that the
quantum harmonic oscillator provides a useful description of many physical systems, but
that this occurs in a more abstract form where retaining an explicit “position” variable like
ξ may not be particularly meaningful. As a result, it is useful to recast (7.1) into our more
abstract operator notation as

1

2

[
π̂2 + ξ̂2

]
|ψ⟩ = E

ℏω
|ψ⟩, (7.2)

where

π̂ = −i d
dξ

and ξ̂ = ξ (7.3)
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in the dimensionless coordinate space representation.
The trick now is to notice that π̂2+ ξ̂2 looks like a “sum of squares”, so maybe it is useful

to try and factor this operator expression somehow. Recalling basic algebra, we could factor
the expression a2 + b2 as

a2 + b2 = (−ia+ b)(ia+ b). (7.4)

Considering this, we wish to see whether the factorization

1√
2

(
− iπ̂ + ξ̂

)
× 1√

2

(
iπ̂ + ξ̂

)
(7.5)

may be useful in expressing the Hamiltonian of (7.2). It turns out this doesn’t quite work
perfectly, but will still be very useful.

To see this, we expand out (7.5) to get

1√
2

(
− iπ̂ + ξ̂

)
× 1√

2

(
iπ̂ + ξ̂

)
=

1

2

[
π̂2 + ξ̂2

]
− i

2

[
π̂ξ̂ − ξ̂π̂

]
=

1

2

[
π̂2 + ξ̂2

]
− i

2
[π̂, ξ̂],

(7.6)

which we see differs from our desired Hamiltonian only by the commutator of π̂ and ξ̂.
However, we can recall that the commutation relation for momentum and position has a
very simple relationship of

[p̂, x̂] = −iℏ. (7.7)

Within our particular choice of dimensionless units, this reduces to

[π̂, ξ̂] = −i (7.8)

so that (7.6) becomes

1√
2

(
− iπ̂ + ξ̂

)
× 1√

2

(
iπ̂ + ξ̂

)
=

1

2

[
π̂2 + ξ̂2

]
− 1

2
. (7.9)

If we define two “shorthand” operators (known as ladder operators for reasons we will get
to shortly)

â† =
1√
2

(
− iπ̂ + ξ̂

)
and â =

1√
2

(
iπ̂ + ξ̂

)
, (7.10)

then we can express the Hamiltonian for the quantum harmonic oscillator in the simple form
(after some slight rearranging)

Ĥ =
ℏω
2

[
π̂2 + ξ̂2

]
= ℏω

(
â†â+

1

2

)
(7.11)
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so that Schrödinger’s equation would be written as

Ĥ|ψ⟩ = ℏω
(
â†â+

1

2

)
|ψ⟩ = E|ψ⟩. (7.12)

Before looking at some useful properties of the operators â and â†, it is important to
comment on our notation. First, we have denoted â† using our † symbol, which suggests
that this is the adjoint to the operator â. This is the case, although we won’t go through the
details of proving this. Second, we can quickly see from the explicit expressions for â and â†

that these are distinct (i.e., they don’t equal each other), and so we can conclude that these
operators are not Hermitian. We have almost exclusively worked with Hermitian operators
up to this point, so it is useful to emphasize that because â and â† are not Hermitian
operators they do not correspond to measurable quantities and they are not guaranteed to
have other useful properties such as completeness of their eigenfunctions. Despite this, we
will see that these operators are still extremely useful.

7.1.2 Properties of the Ladder Operators

Now that we’ve seen how to write the Hamiltonian in terms of the ladder operators â and â†,
it is time to see how they can be used and determine some other useful properties of them.
To begin, we can recall from our previous analysis of the quantum harmonic oscillator that
the eigenvalues are all evenly spaced with specific values of

En =

(
n+

1

2

)
ℏω. (7.13)

Comparing this to the eigenvalue equation of (7.12), we quickly see that

â†â|ψn⟩ = n|ψn⟩. (7.14)

(Note, this property can also be derived without already knowing the eigenvalues of the
quantum harmonic oscillator.) We can interpret the value n here as denoting the number of
quanta in the quantum harmonic oscillator, so it is typical to call the Hermitian operator

N̂ = â†â (7.15)

the number operator. As a Hermitian operator, this does correspond to a measurable quantity
even though our individual ladder operators were not themselves directly measurable.

As with many quantum operators, the commutator of the ladder operators is often of
importance. The commutator for these operators is

[â, â†] = 1, (7.16)

which is able to be established easily using the commutation relation for π̂ and ξ̂. Due to
the prevalence of these kinds of operators, this commutation relation will also sometimes be
referred to as the standard bosonic commutation relation. The phrase boson here is a particle
physics term for subatomic particles that have integer values of spin. This is in contrast to
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fermions, which have odd half-integer values of spin. Bosons and fermions represent two
fundamental classes of subatomic particles, and posses very different properties. We will
not discuss these differences in significant depth in this course, but we will mention that an
electron is an example of a fermion and a photon is an example of a boson, and that these
different kinds of particles do exhibit significantly different behavior.

Now, with the commutation relation (7.16) we can examine some more properties of the
ladder operators. In particular, we wish to see what happens to an eigenstate of the harmonic
oscillator when we operate on it with â. To determine what happens, we can operate on
(7.14) with â to get

â
(
â†â

)
|ψn⟩ = nâ|ψn⟩. (7.17)

We can make a trivial regrouping to write this as(
ââ†

)(
â|ψn⟩

)
= n

(
â|ψn⟩

)
. (7.18)

We can now rearrange the commutation relation (7.16) as

ââ† − â†â = 1 → ââ† = 1 + â†â (7.19)

and substitute this result into the the left-hand side of (7.18) to get(
1 + â†â

)(
â|ψn⟩

)
= n

(
â|ψn⟩

)
. (7.20)

We can move one
(
â|ψn⟩

)
to the right-hand side to find that

â†â
(
â|ψn⟩

)
= (n− 1)

(
â|ψn⟩

)
. (7.21)

Considering that we know the operator â†â returns as eigenvalue the number of the eigen-
state, we see that the state

(
â|ψn⟩

)
must in fact be proportional to |ψn−1⟩. Specifically, this

proportionality constant can be determined to be
√
n so that

â|ψn⟩ =
√
n|ψn−1⟩. (7.22)

We see that the operator â lowers our eigenstate by a single level. As a result, it is common
to refer to â as the lowering operator or, more commonly, as the annihilation operator since
it removes one quanta from the system.

A similar process can be performed by operating on (7.14) with â† to determine its
properties. This shows that

â†|ψn⟩ =
√
n+ 1|ψn+1⟩. (7.23)

We see that the operator â† raises our eigenstate by a single level. As a result, it is common
to refer to â† as the raising operator or, more commonly, as the creation operator since it
add one quanta to the system. The terminology of referring to â and â† as ladder operators
can also now be understood. We can use these to go “up” and “down” the “ladder” of
evenly-spaced eigenstates of the harmonic oscillator.
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The ladder operators can also be used to determine the eigenstates of the harmonic oscil-
lator in a simpler way than the “brute force” approach to solving a complicated differential
equation we considered earlier. In particular, we can deduce that the harmonic oscillator
has a lowest state that would correspond to n = 0. We would then determine that

â|ψ0⟩ = 0. (7.24)

This can be written back in the coordinate space representation as

1√
2

(
d

dξ
+ ξ

)
ψ0(ξ) = 0. (7.25)

This is a much simpler differential equation that can be solved with

ψ0(ξ) = π−1/4e−ξ
2/2. (7.26)

Higher eigenstates can then be found through repeated application of the creation operator
to find (

â†
)n|ψ0⟩ =

√
n!|ψn⟩ (7.27)

so that the normalized eigenstates become

|ψn⟩ =
1√
n!

(
â†
)n|ψ0⟩, (7.28)

which will replicate the Hermite polynomial solution approach we discussed briefly earlier.
Although this approach is not necessarily needed for solving the simple quantum harmonic
oscillator problem, other more complex forms of the Schrödinger equation can be solved
using a similar strategy if it is possible to factorize the differential operator [2]. As a result,
this can be a useful strategy for solving other problems in quantum mechanics.

A final note is in order about a common terminology used when dealing with quantum
harmonic oscillators. When we use ladder operators to work with harmonic oscillators in
the abstract cases where a reference to “position” and “momentum” may no longer make
sense, it is common to use a simplified representation for our basis set. In particular, we
index them simply with the energy level number as |ψn⟩ → |n⟩. We typically refer to these
states as numbers states or Fock states, and then sometimes refer to a number-state or Fock-
state representation of a problem. This Fock-state representation is particularly useful when
considering fundamental interactions between two physical systems that swap small numbers
of quanta; for example, the absorption or emission of a finite number of photons by an atom
is conveniently analyzed in the Fock-state representation. It should be noted that these Fock
states do still correspond to different energy states in the quantum harmonic oscillator, and
so they are still constitute an orthonormal basis. Hence, we have that ⟨m|n⟩ = δmn.

7.2 Canonical Quantization of an LC Oscillator

Now that we have built up the necessary tools, we can begin to analyze the quantum me-
chanics of broader classes of physical systems. In particular, we will consider the parallel
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Figure 7.1: Circuit schematic of a parallel LC circuit (also referred to as an LC tank circuit.)

LC oscillator within the framework of canonical quantization. This example will illustrate
some extremely fundamental techniques that can be applied with minimal changes to a
surprisingly wide range of physical systems, including more complicated electrical circuits,
electromagnetic fields, vibrations in crystal lattices, and many more!

Canonical quantization earns its name due to its link with Hamiltonian mechanics, where
canonical position and momentum variables play a central role in the physical description of
a system. Recall that for the LC oscillator shown in Fig. 7.1, we could easily write the total
Hamiltonian in terms of voltage and current as

H =
1

2
CV 2 +

1

2
LI2. (7.29)

Unfortunately, our familiar quantities of voltage and current are not canonically conjugate
variables, and so we had to determine a new set of variables to use in our Hamiltonian
description of this system. Although there are different ways to do this, the particular
option that will be most useful for us was to choose our canonical position variable to be the
node flux, defined as

ϕ(t) =

ˆ t

−∞
V (τ)dτ. (7.30)

In your homework, you then showed that the canonical momentum that was conjugate to
the node flux was equal to

Q = Cϕ̇. (7.31)

Using this result and that the current could be expressed as

I = ϕ/L, (7.32)

we can rewrite our Hamiltonian of (7.29) into canonically conjugate variables as

H =
1

2C
Q2 +

1

2L
ϕ2. (7.33)

We now had multiple ways to find the equations of motion for this system. We could
evaluate Hamilton’s equations using the canonically conjugate variables ϕ and Q, or we
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could evaluate the Poisson bracket of our functions with the Hamiltonian. For our current
purposes, it will be better to follow the Poisson bracket route. In terms of our conjugate
variables ϕ and Q, the Poisson bracket is

{f, g} =
∂f

∂ϕ

∂g

∂Q
− ∂f

∂Q

∂g

∂ϕ
. (7.34)

We then find our equation of motion for ϕ is

d

dt
ϕ = {ϕ,H} =

(
∂

∂ϕ
ϕ

)
∂H

∂Q
− 0 = Q/C, (7.35)

and our equation of motion for Q is

d

dt
Q = {Q,H} = 0−

(
∂

∂Q
Q

)
∂H

∂ϕ
= −ϕ/L. (7.36)

We can consolidate these into a single equation by taking the time derivative of (7.35) and
substituting in the result from (7.36) to get

d2

dt2
ϕ+ ω2

0ϕ = 0, (7.37)

where ω0 = 1/
√
LC.

We can now quantize our description of this LC oscillator in a number of ways. One way
is to suggest that because our Hamiltonian in (7.33) “looks” like that of a simple harmonic
oscillator, we could simply rewrite our variables until this correspondence is more explicit and
then just substitute conjugate variables for quantum “position” and “momentum” operators
that we have been working with previously. This will work, but the more general process
that works in a broader context is to follow Paul Dirac’s canonical quantization procedure.
In this approach, we quantize our classical theory by rewriting the Poisson bracket between
two variables as a commutator between two quantum operators. More explicitly, we rewrite
the Poisson bracket between two variables A and B of the classical theory as

{A,B} → 1

iℏ
[Â, B̂], (7.38)

where Â and B̂ are now quantum operators within the general mathematical framework of
quantum mechanics.

For our case here, we would evaluate the Poisson bracket between ϕ and Q to get

{Q, ϕ} = −1. (7.39)

Under canonical quantization, we then promote ϕ and Q to be quantum operators with
commutation relation

1

iℏ
[Q̂, ϕ̂] = −1. (7.40)
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It is conventional to rewrite this commutation relation as

[Q̂, ϕ̂] = −iℏ. (7.41)

It is common to refer to a commutation relation of this form as a canonical commutation
relation, because all quantum operators that correspond to our canonical “position” and
“momentum” variables from a classical theory will have this same commutation relation. In
terms of these canonical operators, we can also write our quantum Hamiltonian operator by
simply promoting our variables in the classical Hamiltonian to be quantum operators. For
our case here, we get that (7.33) becomes

Ĥ =
1

2C
Q̂2 +

1

2L
ϕ̂2. (7.42)

As mentioned previously, this Hamiltonian is of the same form as that of a quantum
harmonic oscillator, and so similar strategies are applicable for working with this system.
In particular, it is often very useful to introduce creation and annihilation operators for
quantum harmonic oscillators. For this particular case, we will find that if we define

â =
1√

2Lℏω0

ϕ̂+ i
1√

2Cℏω0

Q̂, (7.43)

â† =
1√

2Lℏω0

ϕ̂− i
1√

2Cℏω0

Q̂, (7.44)

we will be able to write our Hamiltonian in the desired form of

Ĥ = ℏω0

(
â†â+

1

2

)
. (7.45)

We can also find that the introduced creation and annihilation operators satisfy the standard
bosonic commutation relation of

[â, â†] = 1. (7.46)

When we write our Hamiltonian like in (7.45), it becomes convenient to express the states of
our system in a Fock-state representation that counts the number of quanta in our “quan-
tum harmonic oscillator”. We can then use the convenient properties of the Fock-state
representation to learn important details about the quantum aspects of our system.

Before using the Fock-state representation, we should recall that when we first discussed
the quantum harmonic oscillator we were able to develop an explicit solution in the “coordi-
nate space” representation. In that representation, our wavefunction followed the form of a
Gaussian times Hermite polynomials. Since our current problem is completely analogous to
the quantum harmonic oscillator, we should still be able to have these same wavefunctions
still describe our LC oscillator in some way. However, in this case we no longer have a “co-
ordinate space” representation exactly, but instead have the variable that the Gaussian and
Hermite polynomials are defined in terms of being our canonical “position” of nodal flux ϕ.
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Hence, we interpret our wavefunction ψ as a function of ϕ with the quantity |ψ(ϕ)|2 giving
us the probability distribution of the amplitude of the nodal flux in our LC oscillator.

Now, it is instructive to look at evaluating some of the statistical properties of our
quantized ϕ̂ and Q̂ in terms of Fock states to learn more about our quantum LC oscillator.
To do this, it is useful to “invert” the expressions given in (7.43) and (7.44) to find that

ϕ̂ = ϕZPF(â+ â†) (7.47)

Q̂ = −iQZPF(â− â†), (7.48)

where

ϕZPF =

√
Lℏω0

2
(7.49)

QZPF =

√
Cℏω0

2
. (7.50)

The subscript ZPF stands for zero-point fluctuations for reasons that we will elucidate
shortly.

We can now evaluate statistical properties of our canonical conjugate operators quite
readily for different Fock states of our quantum LC oscillator. For instance, if we look at the
expectation value of the ground state we can readily find that

⟨0|ϕ̂|0⟩ = ⟨0|ϕZPF(â+ â†)|0⟩ = 0, (7.51)

with a similar result easily shown for ⟨0|Q̂|0⟩ = 0. This seems to match our classical intuition,
since in the ground state we have no quanta in the oscillator and we would think that it should
then not be “moving”. However, if we instead evaluate a higher-order statistical moment
like the variance, we will find a perhaps somewhat surprising result. We have already seen
that the expectation value of ϕ̂ and Q̂ for the the ground state are 0, so we do not need to
“remove” these from our operators to calculate the variance. Instead, we can just evaluate

⟨0|ϕ̂2|0⟩ = ϕ2
ZPF⟨0|(â+ â†)(â+ â†)|0⟩. (7.52)

For practice, let’s be very explicit with evaluating the operation of these combinations of
ladder operators on the ground state. We can expand this result as

⟨0|ϕ̂2|0⟩ = ϕ2
ZPF

[
⟨0|ââ|0⟩+ ⟨0|â†â|0⟩+ ⟨0|ââ†|0⟩+ ⟨0|â†â†|0⟩

]
. (7.53)

We know that â|0⟩ = 0 by definition, so the first two terms on the right-hand side vanish.
We can then apply the first creation operators in the remaining two terms to get

⟨0|ϕ̂2|0⟩ = ϕ2
ZPF

[
⟨0|â|1⟩+ ⟨0|â†|1⟩

]
. (7.54)
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Applying the next creation or annihilation operator we then get

⟨0|ϕ̂2|0⟩ = ϕ2
ZPF

[
⟨0|0⟩+

√
2⟨0|2⟩

]
= ϕ2

ZPF. (7.55)

The final simplification occurs because the Fock states are orthonormal so that ⟨0|0⟩ = 1
and ⟨0|2⟩ = 0. We now see the surprising result that in the ground state of our oscillator
the variance of our nodal flux is non-zero! This means that even when there are no quanta
in the oscillator the nodal flux is still fluctuating around the mean value of 0 that we orig-
inally expected the system should be in. These fluctuations are referred to as zero-point
fluctuations because they occur at the zero-point of our system. We also now see that the
normalization of our operators in (7.47) and (7.48) are physically meaningful, as they repre-
sent the fundamental uncertainty of the value of these operators when in the ground state of
the oscillator. We also see that we can in some sense “control” the amount of uncertainty in
the various components of our oscillator by changing the values of L and C. In particular,
if we design an oscillator with fixed frequency ω0 and increase C, we will increase the size of
fluctuations in Q̂ while decreasing the fluctuations in ϕ̂. This kind of interplay in the uncer-
tainty or sensitivity to different zero-point fluctuations can be an important consideration in
designing quantum systems, as we will see in a different context when considering the design
of “artificial atoms”.

Before moving on, it is important to unpack this result of non-zero zero-point fluctuations.
At face value, this result seems rather counter-intuitive. How is it possible that our oscillator
is in some sense “moving” when we have put no quanta/energy into the system? The answer
lies in the Hamiltonian, which we rewrite here for convenience as

Ĥ = ℏω0

(
â†â+

1

2

)
. (7.56)

If we evaluate the mean value of the energy in the ground state of our oscillator we can
quickly find that

⟨0|Ĥ|0⟩ = 1

2
ℏω0, (7.57)

which is non-zero! This value of ℏω0/2 is referred to as the zero-point energy of the system.
It shows that even when we are in the ground state of the system, there is some amount
of energy still existing in the oscillator. It is this zero-point energy that allows the zero-
point fluctuations to occur in some sense. Although the zero-point energy of the system is
an extremely important physical result, it turns out that a constant term like this in our
Hamiltonian does not affect the equations of motion of a quantum system. As a result, it is
extremely common in physics to simply leave off the zero-point energy from our Hamiltonian
to be more concise. However, the zero-point energy is still “there”, we just choose not to write
it in contexts where it does not matter. In these cases, you will often see the Hamiltonian
of a quantum harmonic oscillator written as

Ĥ = ℏω0â
†â. (7.58)
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Figure 7.2: Circuit schematic of two capacitively-coupled LC oscillators.

One final note on terminology. For historical reasons, it is also common to refer to the
ground state |0⟩ of a quantum harmonic oscillator to be referred to as the vacuum state of the
system (the terminology comes from the electromagnetic “vacuum” of space). Due to this,
it will also be common to refer to zero-point fluctuations as vacuum fluctuations. Vacuum
fluctuations play a very important role in quantum physics, and are central to explaining
different kinds of interactions between different quantum systems. For instance, vacuum
fluctuations are the main way to explain how spontaneous emission of photons occurs from
atoms according to the theory of quantum electrodynamics, as well as more exotic kinds
of quantum forces like the Casimir effect (which leads to an attractive or repulsive force
between neutrally-charged objects when placed at very small distances from one another).

7.3 Capacitively-Coupled LC Oscillators

Now that we have some experience working with a single quantum LC oscillator, it is time
to consider a more complicated circuit. In particular, we will consider the case of two LC
oscillators coupled to each other through a capacitor, as shown in Fig. 7.2. We will illustrate
two different approaches for solving this problem that constitute some of the main ways that
more complicated practical problems are also tackled with.

The starting point for both approaches is to first determine the Lagrangian of our classical
circuit. Once this is determined, we can follow through with quantizing the circuit in various
ways. For the circuit shown in Fig. 7.2, we have already identified our generalized position
variables as the nodal fluxes at the nodes of the two LC oscillators. In terms of these
quantities, the Lagrangian is relatively simple to write down by simply subtracting the total
inductive energy from the total capacitive energy. This gives us

L =
1

2
C1ϕ̇

2
1 +

1

2
C2ϕ̇

2
2 +

1

2
Cc

(
ϕ̇1 − ϕ̇2

)2

− 1

2L1

ϕ2
1 −

1

2L2

ϕ2
2. (7.59)

At this point, we will now approach the remainder of the quantization process following two
different routes.
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7.3.1 Find the Hamiltonian and then Perform Canonical Quanti-
zation

In our first approach, we will find our classical Hamiltonian in terms of canonical conjugate
variables and then follow a canonical quantization process to introduce quantum operators
and commutation relations. Considering this, our first step will be to convert our Lagrangian
description of (7.59) into the equivalent Hamiltonian format. This begins by determining
the conjugate momenta variables for our canonical position variables ϕ1 and ϕ2. Recall that
the conjugate momenta Qi is defined by

Qi =
∂L
∂ϕ̇i

. (7.60)

Evaluating the necessary derivatives, we find that

Q1 = C1ϕ̇1 + Cc(ϕ̇1 − ϕ̇2), (7.61)

Q2 = C2ϕ̇2 − Cc(ϕ̇1 − ϕ̇2). (7.62)

Note that the generalized velocities ϕ̇i get mixed in the definitions of the conjugate momenta.
This is characteristic of coupling between systems, where the conjugate momenta have to
be adjusted within the Hamiltonian formalism to arrive at the correct Hamiltonian and
equations of motion in the end.

We now need to determine the Hamiltonian in terms of ϕi and Qi. By definition, we find
the Hamiltonian as

H =
∑
i

Qiϕ̇i − L. (7.63)

To evaluate this expression, we first need to write the ϕ̇i in terms of the Qi. We can do
this by inverting the relationships shown in (7.61) and (7.62). In this case, the process is
relatively easy because we can consider (7.61) and (7.62) to define a 2x2 matrix equation
that is straightforward to invert. Considering this, we will adopt a matrix notation for (7.61)
and (7.62) as

{Q} = [C]{ϕ̇}, (7.64)

where

[C] =

[
C1 + Cc −Cc
−Cc C2 + Cc

]
. (7.65)

We then have that

{ϕ̇} = [C]−1{Q}, (7.66)

with

[C]−1 =
1

C1C2 + CcC1 + CcC2

[
C2 + Cc Cc
Cc C1 + Cc

]
. (7.67)
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If we now define an inverse inductance matrix as

[L]−1 =

[
L−1
1 0
0 L−1

2

]
, (7.68)

we can write the original Lagrangian in matrix form as

L =
1

2
{ϕ̇}T [C]{ϕ̇} − 1

2
{ϕ}T [L]−1{ϕ}. (7.69)

In terms of our conjugate momenta this becomes

L =
1

2
{Q}T [C]−1{Q} − 1

2
{ϕ}T [L]−1{ϕ}. (7.70)

The Hamiltonian can then be evaluated as

H = {Q}T{ϕ̇} − L =
1

2
{Q}T [C]−1{Q}+ 1

2
{ϕ}T [L]−1{ϕ}. (7.71)

At this point, it can be useful to “unpack” our matrix notation. If we expand everything
out, we find that our Hamiltonian can be expressed as

H =

(
1

2
[C]−1

11 Q
2
1 +

1

2L1

ϕ2
1

)
+

(
1

2
[C]−1

22 Q
2
2 +

1

2L2

ϕ2
2

)
+

1

2

(
[C]−1

12 + [C]−1
21

)
Q1Q2. (7.72)

The first expressions in large parentheses look like the Hamiltonian we had for an LC oscil-
lator, but now with frequency

ω2
i =

1

Li
[C]−1

ii (7.73)

instead of the frequencies of the bare LC oscillators (i.e., uncoupled oscillators with frequency
ω2
i = 1/LiCi). We can find our equations of motion for the different conjugate variables by

taking the Poisson bracket with the Hamiltonian. For ϕ1 and Q1, we find that

d

dt
ϕ1 = [C]−1

11 Q1 +
1

2

(
[C]−1

12 + [C]−1
21

)
Q2, (7.74)

d

dt
Q1 = − 1

L1

ϕ1, (7.75)

which can be combined to give

d2

dt2
ϕ1 + ω2

1ϕ1 =
1

2

(
[C]−1

12 + [C]−1
21

)
Q2. (7.76)

We see that this looks like the normal equation of motion for an LC oscillator, but there is
now an additional driving term due to the capacitive coupling with the other oscillator. As
mentioned previously, this coupling has shifted the resonant frequency of the oscillator, and
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we now see that it also allows for the oscillators to “drive” one another’s motion. A similar
equation can be derived for the other variables, with the same conclusions drawn.

We are also now in a position where we can follow the standard canonical quantiza-
tion procedure that we established previously. First, we elevate our canonically conjugate
variables to be quantum operators with canonical commutation relations of

[Q̂m, ϕ̂n] = −iℏδmn. (7.77)

We can then write our Hamiltonian operator in terms of these operators. Alternatively, we
can introduce creation and annihilation operators like before, where we will now have

âm =
1√

2Lmℏωm
ϕ̂m + i

√
[C]−1

mm

2ℏωm
Q̂m (7.78)

â†m =
1√

2Lmℏωm
ϕ̂m − i

√
[C]−1

mm

2ℏωm
Q̂m, (7.79)

with commutation relations of

[âm, â
†
n] = δmn. (7.80)

In terms of these ladder operators, our Hamiltonian now becomes

Ĥ = ℏω1

(
â†1â1 +

1

2

)
+ ℏω2

(
â†2â2 +

1

2

)
− 1

2
ℏ
√
ω1ω2β(â1 − â†1)(â2 − â†2), (7.81)

where

β =
Cc√

(C1 + Cc)(C2 + Cc)
. (7.82)

In certain situations, it is useful to analyze (7.81) directly. However, it is also very common
to instead define a new basis that diagonalizes the Hamiltonian. The goal is to find a new
basis such that our system behaves like two uncoupled quantum LC oscillators with overall
Hamiltonian

Ĥ =
2∑

m=1

ℏΩm

(
b̂†mb̂m +

1

2

)
. (7.83)

Note that we have specifically written the oscillator frequencies and creation and annihilation
operators with different symbols than those used in (7.81). This is because the new basis
that allows us to treat the system as uncoupled LC oscillators will have different frequencies
and operators than those in the coupled perspective of (7.81).

At this point it is instructive to think about how to express the quantum state of our
coupled LC oscillators. We have already written our Hamiltonian in terms of ladder oper-
ators, which suggests that our Fock-state representation is likely to still be useful. This is

126



CHAPTER 7. QUANTUM MECHANICS OF SIMPLE CIRCUITS

the case, but we do have to consider a slight generalization of our description to properly
describe the system with two coupled oscillators. The mathematical “tool” that is used to
achieve this is known as a tensor product. Tensors are a generalization of matrices to be able
to extend to higher dimensional sets of data. We can think of a tensor as having a number of
indices that can run over the entire range of the Hilbert space that makes up each dimension
of the tensor. For this particular situation, we would have the Hilbert spaces of oscillator 1
and 2, which we denote as H1 and H2, respectively. The total Hilbert space that our system
is analyzed in then becomes the tensor product of these two spaces, denoted as

H = H1 ⊗H2. (7.84)

A state within the overall Hilbert space then becomes the tensor product of states from
the individual Hilbert spaces. As an example, if we have two quanta in oscillator 1 and 4
quanta in oscillator 2, we could write the state as |2⟩1 ⊗ |4⟩2. This notation becomes rather
cumbersome, especially if we have many coupled oscillators, and so simpler notations are
often adopted. For instance, we could write this same state equivalently as

|2⟩1 ⊗ |4⟩2 = |2⟩1|4⟩2 = |2⟩|4⟩ = |2, 4⟩. (7.85)

All of these notations are entirely equivalent, it is just a matter of preference for picking
between one or another. Another point to note is that because each set of Fock states
represents an orthonormal basis for that particular oscillator, our tensor product of these
different states can be used as an orthonormal basis in the larger Hilbert space H. One
important consequence of this is that all of the states are mutually orthonormal, i.e.,

⟨m′, n′|m,n⟩ = δmm′δnn′ . (7.86)

It should also be emphasized, that each state can exist in a quantum superposition with
the same rules as before applied in regards to normalization of coefficients and statistical
interpretation. For example, we could have the state

|ψ⟩ = 1√
2
|1, 5⟩ − 1√

2
|3, 2⟩ (7.87)

as a valid quantum state. More generally, we can have

|ψ⟩ =
∑
m,n

cmn|m,n⟩,
∑
m,n

|cmn|2 = 1. (7.88)

Since we only have two oscillators, we can see that our tensor here can be easily represented
using a matrix of the coefficients cmn. However, if we had three oscillators coupled together,
we would then need an additional index to traverse over in describing the state, and so a
matrix no longer becomes a convenient way of imagining organizing the values in. This is
where the more general concept of a tensor can become useful.

Now that we have a grasp on how we will express our states, we need to think about
how our operators are defined within the combined Hilbert space H = H1 ⊗ H2. It turns
out that this is relatively straightforward, and just involves us taking our operators from the
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individual Hilbert spaces and taking the tensor product of them with the identity operator
from the other Hilbert spaces. As an example, when we write â1 in (7.81), we actually mean

â1 = â1 ⊗ Î2, (7.89)

where Î2 is the identity operator in H2. To keep the notation simple, we almost never write
our operators in this fully expanded tensor product notation. Instead, we just write â1
and understand what we actually mean by this in the larger Hilbert space. Before moving
on, it is useful to point out that because our operators from the individual Hilbert spaces
always have a tensor product with the identity operator in the other Hilbert spaces, we find
that operators from different Hilbert spaces commute. As an example, there is no difference
between â1â

†
2 and â†2â1. However, there is a difference between â1â

†
1 and â†1â1, as evidenced

by the standard bosonic commutation relation.

7.3.2 Diagonalize Lagrangian Before Finding Hamiltonian

The other very common way to quantize a system like our coupled LC oscillators in Fig. 7.2
is to start by diagonalizing the Lagrangian. This results in a Lagrangian that looks like two
uncoupled LC oscillators, for which the quantization process is extremely straightforward.
More explicitly, we will find that the Hamiltonian will simply look like the summation of two
uncoupled LC oscillators which can then be quantized immediately using the expressions for
individual LC oscillators.

To see how this process works, we return to our matrix notation of the Lagrangian in
(7.59), which was

L =
1

2
{ϕ̇}T [C]{ϕ̇} − 1

2
{ϕ}T [L]−1{ϕ}. (7.90)

We cannot directly diagonalize this Lagrangian as it is currently written because the matrices
[C] and [L]−1 do not commute, and so are not simultaneously diagonalizable. However, the
extremely simple form of [L]−1 does allow us to rescale our generalized position coordinates
so that [L]−1 → [I]. In particular, we define new coordinates

Φi =
1√
Li
ϕi (7.91)

so that the Lagrangian becomes

L =
1

2
{Φ̇}T [C ′]{Φ̇} − 1

2
{Φ}T [I]{Φ}, (7.92)

where

[C ′] =

[
L1(C1 + Cc) −

√
L1L2Cc

−
√
L1L2Cc L2(C2 + Cc)

]
. (7.93)

We can now simultaneously diagonalize our system because [C ′] commutes with the
identity matrix [I]. This can be accomplished via an orthogonal transformation, defined by
a matrix [R] such that [R]T = [R]−1 and

[Ω] =

[
Ω−2

1 0
0 Ω−2

2

]
= [R][C ′][R]T . (7.94)
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Finding the explicit expressions for the Ωi’s and [R] is rather tedious by hand, but is possible.
It turns out that there are some useful tricks for solving this that we will not review at this
time, but we will simply note that if we define α−2

i = Li(Ci + Cc) then we can write down
the diagonal matrix elements as

1

Ω2
1

=
1

2

(
1

α2
1

+
1

α2
2

)
−

√[
1

2

(
1

α2
1

− 1

α2
2

)]2
+

(
β

α1α2

)2

(7.95)

1

Ω2
2

=
1

2

(
1

α2
1

+
1

α2
2

)
+

√[
1

2

(
1

α2
1

− 1

α2
2

)]2
+

(
β

α1α2

)2

, (7.96)

where β is the same as that given in (7.82). It does not take much imagination to guess
that the explicit expressions for the matrix elements of [R] can get rather nasty. Considering
this, we will skip writing them down explicitly. Although this may seem somewhat lazy, it
turns out that to analyze most quantum interactions it will be very important to know the
frequencies given above, while having the explicit expressions for the transformation of our
generalized coordinates into the diagonalized basis is less essential. Before moving on, it is
important to note one of the characteristics of the expressions given above for the frequencies,
as this general format is ubiquitous in the analysis of coupled systems. In particular, we see
that the inverses of the two new frequencies get displaced above and below the average of
the inverses of our “starting frequencies” α1 and α2.

Moving on, we can introduce the [R] matrices into (7.92) in the following manner:

L =
1

2
{Φ̇}T [I][C ′][I]{Φ̇} − 1

2
{Φ}T [I][I][I]{Φ}

=
1

2
{Φ̇}T [R]T [R][C ′][R]T [R]{Φ̇} − 1

2
{Φ}T [R]T [R][I][R]T [R]{Φ}.

(7.97)

Defining new coordinates as

{Φ′} = [R]{Φ}, (7.98)

we can simplify our above Lagrangian to be

L =
1

2
{Φ̇′}T [Ω]{Φ̇′} − 1

2
{Φ′}T{Φ′}. (7.99)

At this point, the matrix notation is no longer really needed, and we can expand the
Lagrangian as

L =
2∑

m=1

[
1

2Ω2
m

(
Φ̇′
m

)2 − 1

2

(
Φ′
m

)2]
. (7.100)

The Hamiltonian is found easily to be

H =
2∑

m=1

[
1

2
Ω2
m

(
Q′
m)

2 +
1

2

(
Φ′
m

)2]
, (7.101)
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where the conjugate momenta of each coordinate is

Q′
m =

1

Ω2
m

Φ̇′
m. (7.102)

Note that because we diagonalized the Lagrangian first, we no longer have any direct mixing
of variables from different degrees of freedom in the expressions for the conjugate momenta.
However, the frequencies Ωm still certainly have terms that are influenced by the coupling
between the oscillators.

As promised this system now looks like two uncoupled LC oscillators. We can quantize
the system by enforcing the canonical commutation relations as

[Q̂′
m, Φ̂

′
n] = −iℏδmn. (7.103)

The Hamiltonian operator then becomes

Ĥ =
2∑

m=1

[
1

2
Ω2
m

(
Q̂′
m)

2 +
1

2

(
Φ̂′
m

)2]
. (7.104)

We can now introduce creation and annihilation operators as

b̂m =
1√

2ℏΩm

Φ̂′
m + i

√
Ωm

2ℏ
Q̂′
m (7.105)

b̂†m =
1√

2ℏΩm

Φ̂′
m − i

√
Ωm

2ℏ
Q̂′
m (7.106)

to transform our Hamiltonian into the standard form as

Ĥ =
2∑

m=1

ℏΩm

(
b̂†mb̂m +

1

2

)
. (7.107)

Although these results look rather different from those in Section 7.3.1, it is important to
emphasize that they are completely equivalent. They simply amount to a different way of
describing the physical processes involved in the capacitively-coupled LC oscillators, but
they will be able to produce the same physical predictions. Whether one approach is more
useful than the other depends on the context and goals of a particular analysis. However,
in many cases, a description following the approach in this section is followed because the
diagonalized Hamiltonian is easier to work with. Despite this, there are still situations where
two rather different systems are coupled together (as we will discuss later in this course) and
it is no longer as straightforward to arrive at a diagonalized description of the system like
that shown in (7.107). Then, a Hamiltonian like that developed in Section 7.3.1 often will
need to be used.
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7.4 Schrödinger and Heisenberg Pictures

Up to this point, we have been considering quantum mechanics in what is often referred to as
the Schrödinger picture for quantum dynamics. In this picture, we have the time-dependent
Schrödinger equation

Ĥ|ψ(t)⟩ = iℏ
∂

∂t
|ψ(t)⟩ (7.108)

that we can solve to determine how |ψ(t)⟩ evolves in time. Previously, we noted how we could
develop a somewhat formal result for how |ψ⟩ advances in time through the construction of
the time evolution operator defined by

Û(tf , ti) = e−iĤ(tf − ti)/ℏ. (7.109)

In terms of this operator, we could then write that

Û(tf , ti)|ψ(ti)⟩ = |ψ(tf )⟩. (7.110)

The Schrödinger picture is very useful, especially when working with systems where we
have a convenient explicit form for the wavefunction, like in solving problems involving an
electron moving through a potential energy landscape. However, when we have more abstract
operators, like the creation and annihilation operators of a quantum harmonic oscillator, it
can often be convenient to describe the dynamics of the quantum system in an equivalent,
but different manner.

One popular alternative is the Heisenberg picture, where instead of having wavefunctions
change in time we have our operators evolve in time. We can use the time evolution operator
to express how the Heisenberg picture operator X̂H changes in time as

X̂H(t) = Û †(t, 0)X̂Û(t, 0), (7.111)

where X̂ is the Schrödinger picture form of the operator (i.e., the one that does not change in
time). From (7.111), we see that the initial conditions for our Heisenberg picture operators
are that they equal the Schrödinger picture version of the operators. This is necessary to
ensure that the two pictures give equivalent results.

For instance, we can evaluate the expectation value of a particular operator in the Heisen-
berg picture in the following manner. If we have our system initially prepared in state
|ψH⟩ = |ψ(0)⟩, then the expectation value with operator X̂H at time t is given in the Heisen-
berg picture as

⟨ψH |X̂H(t)|ψH⟩. (7.112)

For this picture to be consistent with the Schrödinger picture, we need to have

⟨ψH |X̂H(t)|ψH⟩ = ⟨ψ(t)|X̂|ψ(t)⟩, (7.113)

where the right-hand side of this equation is written in the Schrödinger picture. We can
see that this is the case by expanding our Heisenberg picture operator in terms of the time
evolution operators like in (7.111) to get

⟨ψH |X̂H(t)|ψH⟩ = ⟨ψH |Û †(t, 0)X̂Û(t, 0)|ψH⟩. (7.114)
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We can now regroup our operators as

⟨ψH |X̂H(t)|ψH⟩ =
(
⟨ψH |Û †(t, 0)

)
X̂

(
Û(t, 0)|ψH⟩

)
. (7.115)

Recognizing that |ψH⟩ = |ψ(0)⟩, we have that

Û(t, 0)|ψH⟩ = Û(t, 0)|ψ(0)⟩ = |ψ(t)⟩ (7.116)

and

⟨ψH |Û †(t, 0) =

(
Û(t, 0)|ψH⟩

)†

=

(
|ψ(t)⟩

)†

= ⟨ψ(t)|. (7.117)

Using these results in (7.115), we arrive at the desired result that

⟨ψH |X̂H(t)|ψH⟩ = ⟨ψ(t)|X̂|ψ(t)⟩, (7.118)

showing that the Heisenberg and Schrödinger pictures can be used to make equivalent phys-
ical predictions.

One useful aspect of the Heisenberg picture is that it helps highlight the connection
between classical and quantum mechanics in another way. In particular, this correspondence
arises if we look at what the equation of motion will be for one of our quantum operators.
We can determine the equation of motion by taking the time derivative of (7.111). We can
evaluate this as

d

dt
X̂H(t) =

d

dt

(
Û †(t, 0)X̂Û(t, 0)

)
=

(
d

dt
Û †(t, 0)

)
X̂Û(t, 0) + Û †(t, 0)X̂

(
d

dt
Û(t, 0)

)
.

(7.119)

Considering the explicit form of the time evolution operator, we have that

d

dt
Û(t, 0) =

d

dt
e−iĤt/ℏ =

1

iℏ
ĤÛ(t, 0) =

1

iℏ
Û(t, 0)Ĥ. (7.120)

The final equality comes from the fact that [Ĥ, Û(t, 0)] = 0 for this case because Û is only
a function of the operator Ĥ. We can also find for the adjoint operator Û † that

d

dt
Û †(t, 0) = − 1

iℏ
ĤÛ †(t, 0). (7.121)

Plugging these results into (7.119), we find that

d

dt
X̂H(t) = − 1

iℏ

(
ĤÛ †(t, 0)X̂Û(t, 0)− Û †(t, 0)X̂Û(t, 0)Ĥ

)
= − 1

iℏ

(
ĤX̂H(t)− X̂H(t)Ĥ

)
=

1

iℏ
[X̂H(t), Ĥ].

(7.122)
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Recalling Dirac’s rule for canonical quantization, we can recognize that the Heisenberg
equation of motion given as

d

dt
X̂H(t) =

1

iℏ
[X̂H(t), Ĥ] (7.123)

will essentially match the equation of motion that we find for our classical variable through
the Poisson bracket as

d

dt
X = {X,H}. (7.124)

Hence, in many cases we find that our quantum operators will have equations of motion
that match our classical equations of motion. Although this correspondence can at first
glance seem deceptively simple, it is important to use the actual Heisenberg picture formula
to determine equations of motion for our operators to make sure that we do not make a
simplification with functions that would not be acceptable with non-commuting quantum
operators. However, this result is still very satisfying, and highlights that our classical
intuition can still be useful for understanding how certain aspects of quantum problems will
evolve in time.

7.5 Driven Quantum LC Oscillator and Coherent States

Now that we have some familiarity with the Heisenberg picture, it is interesting to look at
the situation of a driven quantum LC oscillator. In particular, we will consider the case of a
current source driving a parallel LC circuit, as shown in Fig. 7.3. Later, we will consider what
happens when we drive our quantum LC oscillator with a classical current. This situation is
particularly relevant to determining whether we can use classical control signals (e.g., a large
current source in the lab) to control individual states of our quantum LC oscillator, which is
a necessary requirement for building many quantum technologies of interest (e.g., quantum
computers). As we will see, this classical drive leads to the quantum LC oscillator evolving
in time according to a coherent state, which is a special superposition of all Fock states that
behaves much like what we expect from a classical LC oscillator. As a result, we will need
to utilize some other kind of quantum system than a quantum LC oscillator if we wish to
control individual states in the way needed for many quantum technologies. Despite this
difficulty, we will find that quantum LC oscillators (and other analogous physical systems)
still form a very important piece of many quantum technologies.

7.5.1 Classical Case

Earlier in the course, we briefly discussed how a driving force could be included in the
Lagrangian description of a mechanical oscillator by incorporating the additional potential
energy due to the driving force. In that case, we had as a Lagrangian

L =
1

2
mq̇2 − 1

2
kq2 + qF (t), (7.125)
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Figure 7.3: LC oscillator driven by a current source.

where F (t) is the driving force term. In the case of our current-driven parallel LC circuit,
the current source acts like the driving force acting on our “position variable” ϕ (i.e., the
nodal flux). As a result, our Lagrangian becomes

L =
1

2
Cϕ̇2 − 1

2L
ϕ2 + ϕIb(t). (7.126)

We can follow our standard process to determine our Hamiltonian, which is

H =
1

2C
Q2 +

1

2L
ϕ2 − ϕIb(t). (7.127)

From here, we can readily derive equations of motion for ϕ and Q.
However, for our current purposes, it will be more advantageous to increase the cor-

respondence between the classical and quantum equations of motion that we will look at.
Along these lines, we can introduce the complex number

a =
1√
2Lω0

ϕ+ i
1√
2Cω0

Q, (7.128)

where ω0 = 1/
√
LC. This complex number will behave much like the annihilation operator

â from the quantum mechanical analysis that we will look at soon. Now, in terms of (7.128),
our Hamiltonian can be rewritten as

H = ω0a
∗a−

√
Lω0

2
(a+ a∗)Ib(t), (7.129)

where a∗ is simply the complex conjugate of a. We see that this looks similar to the Hamil-
tonian we would expect for a quantum harmonic oscillator if we make the substitution
a → â, a∗ → â†; however, it does not match exactly. This situation can happen frequently
when we try and derive a classical equation to “look” like a quantum one. The issue is that
in the classical situation the terms a∗a and aa∗ are the same, since complex numbers can
commute. However, in the quantum case, we know that â†â ̸= ââ†. To help avoid these
kinds of issues, it is common to “symmetrize” the classical equation by writing (7.129) in
the equivalent form

H =
1

2
ω0

(
a∗a+ aa∗

)
−
√
Lω0

2
(a+ a∗)Ib(t). (7.130)

134



CHAPTER 7. QUANTUM MECHANICS OF SIMPLE CIRCUITS

If we now make the substitution a → â, a∗ → â† we will end up with the correct quantum
Hamiltonian (up to some factors of ℏ that are easy to insert where needed).

At this point, we can use a Poisson bracket to derive the equation of motion for a to find
that (as you will show in a homework assignment)

d

dt
a = −iω0a+ i

√
Lω0

2
Ib(t). (7.131)

Solving this equation for an arbitrary Ib(t) will typically require a numerical technique, but
if we assume a simple form for Ib of

Ib(t) = cos(ωdt), (7.132)

then the solution becomes possible in closed form [24]. In particular, if we have as initial
condition that a(0) = α, where α is an arbitrary complex number, we find that the solution
to (7.131) is

a(t) = αe−iω0t + ap(t), (7.133)

where ap(t) is the particular solution that takes a relatively complicated form that we will
not need to reproduce here [24].

7.5.2 Coherent States

We have already discussed coherent states briefly earlier in the course. The particularly in-
teresting property that we saw was that as the coherent state evolved in time the wavepacket
formed by all the Fock states that make it up did not change its shape, but that the mean
position of the wavepacket oscillated back and forth along the classical trajectory of the
particle. We will now look at a few of these properties in a little more detail.

Mathematically, coherent states can be found to be eigenfunctions of the annihilation
operator. That is, for the coherent state |α⟩ we have that

â|α⟩ = α|α⟩, (7.134)

where α is an arbitrary complex number. Although, |α⟩ is not an eigenfunction of â†, we do
still have the adjoint expression to (7.134) that

⟨α|â† = α∗⟨α|. (7.135)

From this, we can readily determine that the expectation value of the number operator for
a coherent state is

⟨α|â†â|α⟩ = |α|2⟨α|α⟩ = |α|2. (7.136)

Considering this, we see that the parameter |α| is related to the mean number of quanta in
the quantum harmonic oscillator.
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We can also look at the expected value of the quantum LC oscillator ϕ̂ and Q̂ by recalling
that these operators can be expanded in terms of â and â† as

ϕ̂ = ϕZPF

(
â+ â†

)
, Q̂ = −iQZPF

(
â− â†

)
, (7.137)

where ϕZPF andQZPF are constants that characterize the magnitude of zero-point fluctuations
in ϕ and Q. We can then quickly find that

⟨α|ϕ̂|α⟩ = 2ϕZPF Re{α}, ⟨α|Q̂|α⟩ = 2QZPF Im{α}. (7.138)

The variances of these operators can also be found, with the result being independent of
α. One can also find that these variances “saturate” the uncertainty principle for these
operators, meaning that the product of the variances equals the minimal value possible
according to quantum mechanics. As a result, it is common to refer to a coherent state as
a minimum-uncertainty wavepacket. One important aspect of these results is that as |α|2
becomes very large the resulting quantum fluctuations in ϕ and Q become extremely small
relative to their mean values. This is one of the properties needed for the coherent state to
behave like a classical state.

The other property needed of the coherent state to behave like a classical state is that
we expect it to somehow follow the trajectory of a classical LC oscillator (i.e., like a simple
harmonic oscillator). To show this, it is helpful to expand the coherent state in terms of
Fock states as

|α⟩ = e−(1/2)|α|2
∞∑
n=0

αn√
n!
|n⟩. (7.139)

This result can be established in a number of ways, but one simple way is by using the
eigenvalue equation (7.134) and making use of the known properties of â acting on Fock
states. We now wish to compute the time evolution of |α⟩ by applying the time evolution
operator to it. For the free quantum harmonic oscillator, we need to compute the result of

e−iĤt/ℏ|α⟩ = e−iω0(â
†â+ 1/2)t|α⟩. (7.140)

By expanding |α⟩ according to (7.139), we find that

e−iĤt/ℏ|α⟩ = e−iω0t/2e−(1/2)|α|2
∞∑
n=0

αn√
n!
e−iω0t â†â|n⟩

= e−iω0t/2e−(1/2)|α|2
∞∑
n=0

αn√
n!
e−iω0nt|n⟩

= e−iω0t/2e−(1/2)|α|2
∞∑
n=0

(αe−iω0t)n√
n!

|n⟩

= e−iω0t/2|e−iω0tα⟩.

(7.141)

That is, up to a global phase of exp[−iω0t/2], we see that the coherent state simply evolves
into a new coherent state oscillating at the frequency of the free quantum harmonic oscillator.

136



CHAPTER 7. QUANTUM MECHANICS OF SIMPLE CIRCUITS

If we consider (7.133) without the driving term that leads to ap(t), then we find that the
complex number α(t) that characterizes our coherent state matches the classical trajectory
given by

a(t) = αe−iω0t. (7.142)

We can further find that

⟨e−iω0tα|ϕ̂|e−iω0tα⟩ = 2ϕZPF Re{αe−iω0t}, ⟨e−iω0tα|Q̂|e−iω0tα⟩ = 2QZPF Im{αe−iω0t},
(7.143)

which shows that the expected values of ϕ and Q match the classical oscillation cycle of the
LC oscillator.

Before moving on, one more useful property of coherent states is the result of their inner
product. In particular, for coherent states |α⟩ and |β⟩, we have that

⟨β|α⟩ = e−(1/2)|β−α|2eiIm{β∗α}. (7.144)

Hence, we see that coherent states are not orthogonal, however, if α and β are significantly
different from each other we see that the first term on the right-hand side will significantly
suppress the inner product. As a result, two coherent states with |β − α|2 being large will
be nearly orthogonal.

7.5.3 Quantum Case

We will now quickly investigate how the quantum LC oscillator behaves when driven by a
classical current source. To do this, we will look at the Heisenberg equation of motion for â.
We can derive this by noting that our quantum Hamiltonian will be

Ĥ = ℏω0

(
â†â+

1

2

)
− ϕZPF

(
â+ â†

)
cos(ωdt), (7.145)

where we have explicitly replaced the classical Ib(t) by the assumed simple form discussed
earlier in Section 7.5.1. The desired Heisenberg equation of motion is found from

d

dt
âH =

1

iℏ
[âH , Ĥ], (7.146)

which can be evaluated to give (as you will show in your homework)

d

dt
âH = −iω0âH + i

ϕZPF

ℏ
cos(ωdt). (7.147)

How do we solve an operator equation like this? In general, this can be a tricky process,
but the typical strategy is to represent our operator in matrix form and then solve the
corresponding ordinary differential equation defined by the matrix system. Here, we just
want to look at the special case of what happens if our initial condition is that the system
starts in a particular coherent state |α⟩. We can then look at how the expected value of our
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system changes by evaluating ⟨α|âH(t)|α⟩ = ⟨aH(t)⟩α to gain our desired insight into this
system.

To determine ⟨aH(t)⟩α, we simply take the expectation value of (7.147) with |α⟩ to find
that

d

dt
⟨aH(t)⟩α = −iω0⟨aH(t)⟩α + i

ϕZPF

ℏ
cos(ωdt). (7.148)

As initial condition, we must have that ⟨aH(0)⟩α = ⟨a⟩α, that is, that it matches the
Schrödinger picture expectation value initially. From the properties of coherent states, we
can readily find that

⟨aH(0)⟩α = ⟨a⟩α = α (7.149)

because |α⟩ is an eigenstate of â. With this initial condition, we can now solve (7.148) using
standard methods to find that

⟨aH(t)⟩α = αe−iω0t + ap(t), (7.150)

where ap(t) is the same particular solution that we had in the classical case of (7.133) (up
to a multiplicative factor in the scaling of the current source by 1/ℏ). Hence, we see that so
long as our classically-driven quantum LC oscillator starts in a coherent state, it will remain
in a coherent state and evolve in time exactly following the classical trajectory of a driven
LC oscillator [24]. Noting that the ground state |0⟩ is itself a coherent state, we see that
if we simply subject a quantum LC oscillator to a classical drive we will essentially only
observe very “classical” behavior. Considering this, if we wish to design a technology that
truly harnesses quantum behavior we will need to look for a different approach than using
classical drives on quantum LC oscillators (or their other physical analogues). We will begin
to study physical systems that satisfy this goal in the coming weeks.

7.6 Practice Problems

1. In this problem, you will prove the commutation relation

[â, â†] = 1 (7.151)

for the creation and annihilation operators using two different methods.

(a) Use the definitions that

â† =
1√
2

(
− d

dξ
+ ξ

)
, â =

1√
2

(
d

dξ
+ ξ

)
, (7.152)

to prove (7.151).

Note: To help with getting the calculus correct, it is useful to think of applying the
commutation relation to a function f(ξ). You should then show that [â, â†]f = f .
Since f is arbitrary we can conclude that [â, â†] = 1, as desired.
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Figure 7.4: Circuit schematic of a parallel LC oscillator.

(b) Use the operator form of the creation and annihilation operators as

â† =
1√
2

(
−iπ̂ + ξ̂

)
, â =

1√
2

(
iπ̂ + ξ̂

)
(7.153)

to prove (7.151).

Note: You will also want to use the canonical commutation relation [π̂, ξ̂] = −i
in your proof.

2. Using the commutation relation from (7.151), show that the Hamiltonian

Ĥ =
ℏω
2

(
â†â+ ââ†

)
(7.154)

is equivalent to the Hamiltonian

Ĥ = ℏω
(
â†â+

1

2

)
(7.155)

that we had in the notes for a quantum harmonic oscillator.

3. For this problem, you will be working with a parallel LC oscillator, as shown in Fig.
7.4.

(a) Find the variance of the charge Q for the oscillator in its ground state |0⟩.
(b) Using the result of (a) and the result for the variance of the nodal flux ϕ given in

class, show that the state |0⟩ is a minimum uncertainty state. This means that it
has an uncertainty principle relationship between Q and ϕ that is the minimum
possible according to quantum mechanics, i.e.,

σϕσQ =
ℏ
2
, (7.156)

where σX is the standard deviation of observable X.

4. For this problem, you will be working with a parallel LC oscillator, as shown in Fig.
7.4.
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Figure 7.5: Circuit schematic of two capacitively-coupled LC oscillators.

(a) Given that for this circuit V = Q/C and I = ϕ/L, use the rules of canonical
quantization to determine that the commutator between the voltage operator V̂
and current operator Î is

[V̂ , Î] = −iℏω2
0, (7.157)

where ω0 is the resonant frequency of the LC oscillator.

(b) Using the expressions for ϕ̂ and Q̂ given in class, determine expressions for V̂ and
Î in terms of the ladder operators for this circuit.

(c) Using your result from (b) and the bosonic commutation relation given in (7.151),
show that

[V̂ , Î] = −iℏω2
0. (7.158)

5. For this problem, assume that you are working with a set of capacitively coupled LC
oscillators. The system has been quantized as discussed in the notes, and the resulting
Hamiltonian is

Ĥ = ℏω1

(
â†1â1 +

1

2

)
+ ℏω2

(
â†2â2 +

1

2

)
− 1

2
ℏ
√
ω1ω2β(â1 − â†1)(â2 − â†2). (7.159)

If we represent Fock states of this coupled system with a ket as |m,n⟩ and a bra as
⟨m,n|, where m corresponds to the number of quanta in oscillator 1 and n corresponds
to the number of quanta in oscillator 2, evaluate the following expressions:

(a) â†1â
†
2|3, 5⟩ ,

(b) ⟨1, 2|â1â†2|2, 1⟩ ,
(c) ⟨1, 2|â†1â2|2, 1⟩,
(d) ⟨0, 1|â1â†2|0, 0⟩.

6. This problem considers two coupled quantum LC oscillators defined in the Hilbert
space H = H1 ⊗ H2, where Hj is the original Hilbert space associated with the jth

oscillator. Creation and annihilation operators from Hj are denoted in H as â†j and
âj respectively. The state |m,n⟩ in H corresponds to a Fock state with m quanta in
oscillator 1 and n quanta in oscillator 2.
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Figure 7.6: LC oscillator driven by a current source.

(a) Evaluate ⟨m,n|
(
â†1â

†
2â1â2 + â†1â1â

†
2â2

)
|m,n⟩.

(b) Evaluate ⟨10, 3|
(
â†1â2 + â1â

†
2

)
|9, 4⟩.

(c) Evaluate [â1, [â1, â
†
2]] + [â1, [â1, â

†
1]] + [â†1[â2, â

†
2], [â

†
2, â2]â1]

7. In this problem, you will work with a parallel LC oscillator that is driven by a current
source, as shown in Fig. 7.6.

(a) In class, we said that the classical Hamiltonian for this circuit was equal to

H =
1

2C
Q2 +

1

2L
ϕ2 − ϕIb(t). (7.160)

By defining the complex number

a =
1√
2Lω0

ϕ+ i
1√
2Cω0

Q, (7.161)

show that the classical Hamiltonian can be written as

H =
1

2
ω0

(
a∗a+ aa∗

)
−

√
Lω0

2

(
a+ a∗

)
Ib(t). (7.162)

Hint: Express ϕ and Q in terms of a and a∗. Then, plug these expressions for ϕ
and Q into (7.160) and simplify.

(b) Use a Poisson bracket to show that the equation of motion for a is

d

dt
a = −iω0a+ i

√
Lω0

2
Ib(t) (7.163)

Hint: You may want to revisit a property you proved about Poisson brackets
applied to products of functions in Chapter 2 Practice Problems to simplify the
process of evaluating the Poisson brackets for this problem.

(c) We will now move to the quantum case of Fig. 7.6, but the drive Ib(t) will still be
classical. In this case, we had that the quantum Hamiltonian of the circuit was

Ĥ =
ℏω0

2

(
â†â+ ââ†

)
− ϕZPF

(
â+ â†

)
Ib(t). (7.164)
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Figure 7.7: Circuit schematic of a voltage-driven series LC resonator.

Show that the Heisenberg equation of motion for âH is

d

dt
âH = −iω0âH + i

√
Lω0

2ℏ
Ib(t). (7.165)

Note that besides the factor of ℏ, this equation has the same form as the classical
equation given in (7.163).

8. In this problem, you will analyze the circuit shown in Fig. 7.7. You may assume that
the voltage Vb(t) is a known quantity corresponding to a classical drive for this circuit.
You may also use previous results from a classical analysis of this circuit without fully
re-deriving them, but be clear when defining them in this exam to ensure your work
and notation can be followed easily.

(a) Following a canonical quantization procedure, find the quantum Hamiltonian for
this circuit written in terms of the node flux operator ϕ̂, its canonical conjugate
operator Q̂, and the classical drive Vb.

(b) Determine appropriate expressions for the ladder operators â and â† for this cir-
cuit in terms of ϕ̂ and Q̂. Show that your ladder operators satisfy the correct
commutation relation of [â, â†] = 1.

(c) Using the ladder operators determined in (b), show that the Hamiltonian you
found in (a) can be written as

Ĥ = ℏω0

(
â†â+

1

2

)
− i

√
Cℏω0

2

(
â− â†

)
Vb(t),

where ω0 is the resonant frequency of the circuit.

(d) Find the Heisenberg equation of motion for the operator âH(t) and simplify it
down as much as possible.

9. Show that the variance of an arbitrary quantum operator X̂H(t) computed in the
Heisenberg picture will match the result for the corresponding Schrödinger picture
operator X̂. Note that the variance in either picture can be computed as

var(X(t)) = ⟨X2(t)⟩ − ⟨X(t)⟩2, (7.166)
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where

⟨X(t)⟩ = ⟨ψH |X̂H(t)|ψH⟩ (7.167)

in the Heisenberg picture and

⟨X(t)⟩ = ⟨ψ(t)|X̂|ψ(t)⟩ (7.168)

in the Schrödinger picture.

10. You are given an arbitrary Heisenberg picture operator X̂H(t) that commutes with the
Hamiltonian. Show that the expectation value of this operator for an arbitrary state
|ψ⟩ does not depend on time.

11. In this problem, you will work with the coherent state |α⟩ of a parallel LC oscillator.

(a) Show that

⟨α|ϕ̂|α⟩ = 2ϕZPFRe{α}. (7.169)

(b) Show that

⟨α|Q̂|α⟩ = 2QZPFIm{α}. (7.170)

12. Show that a coherent state |β⟩ of a quantum parallel LC oscillator is a minimum
uncertainty state. This means it has an uncertainty principle relationship between Q
and ϕ that is the minimum possible according to quantum mechanics, i.e.,

σϕσQ =
ℏ
2
, (7.171)

where σX is the standard deviation of observable X.
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Chapter 8

Perturbation Theory

Previously, we saw that driving a quantum LC oscillator with a “classical” source led to the
quantum LC oscillator being placed into a highly classical state, namely, a coherent state.
Considering this, we noted that if we wish to control quantum systems in such a way that
they exhibit highly non-classical behavior that may be advantageous for designing new tech-
nologies we would need to search for a physical system other than a quantum LC oscillator
(or similar physical analogues). Before discussing details about the other kinds of physical
systems we will often need to utilize in designing revolutionary quantum technologies, it will
be helpful to gain a better understanding of how quantum systems “transition” between
different energy eigenstates. To establish an intuitive view of this process, it is common to
utilize what is often referred to in quantum mechanics as time-dependent perturbation the-
ory. However, before discussing this, we will discuss time-independent perturbation theory to
understand some foundational concepts of perturbation theory. This section can be omitted
if desired, as Section 8.2 is independent of Section 8.1.

8.1 Time-Independent Perturbation Theory

Time-independent perturbation theory is a useful technique for successively generating re-
fined approximations to the solution of the time-independent Schrödinger equation when the
Hamiltonian slightly differs from one that we have already solved. As a simple example, we
can imagine needing to solve the time-independent Schrödinger equation for an infinitely-
deep potential well that has a small “bump” in the potential energy within the potential well
rather than just having a flat well, as shown in Fig. 8.1. The basic idea of time-independent
perturbation theory is to try and develop an algorithmic process for using solutions we have
already developed for an “unperturbed problem” to try and solve this new problem.

To begin illustrating the process, let’s assume that we have already solved the time-
independent Schrödinger equation

Ĥ(0)|ψ(0)
n ⟩ = E(0)

n |ψ(0)
n ⟩, (8.1)

where the superscript (0) is used to help denote that this is the unperturbed problem. We
now wish to seek the solution of the new problem

Ĥ|ψn⟩ = En|ψn⟩, (8.2)

145



CHAPTER 8. PERTURBATION THEORY

Figure 8.1: Infinitely-deep potential well with a small perturbation in the potential energy
of the well.

where we can write the new Hamiltonian as

Ĥ = Ĥ(0) + λĤ ′. (8.3)

We will often refer to Ĥ ′ as the perturbing Hamiltonian. The parameter λ is simply a number
that we will use to help with bookkeeping in developing our perturbation theory solution. In
reality, we will eventually set λ = 1 to arrive at our actual solution, but in the meantime it
is helpful to include it. The reason for this is that we are going to use as an ansatz solution
to the perturbed problem a power series in λ as

|ψn⟩ = |ψ(0)
n ⟩+ λ|ψ(1)

n ⟩+ λ2|ψ(2)
n ⟩+ . . . , (8.4)

En = E(0)
n + λE(1)

n + λ2E(2)
n + . . . . (8.5)

Within this power series, we would refer to E
(1)
n as the first-order correction to the energy

and E
(2)
n as the second-order correction to the energy. A similar terminology applies to the

eigenfunctions |ψ(1)
n ⟩ and |ψ(2)

n ⟩ as well.
We now go about solving for our different corrections by substituting our power series

expansions of (8.4) and (8.5) into (8.2). Our result can be originally written as(
Ĥ(0) + λĤ ′

)[
|ψ(0)
n ⟩+ λ|ψ(1)

n ⟩+ λ2|ψ(2)
n ⟩+ . . .

]
=

(
E(0)
n + λE(1)

n + λ2E(2)
n + . . .

)[
|ψ(0)
n ⟩+ λ|ψ(1)

n ⟩+ λ2|ψ(2)
n ⟩+ . . .

]
. (8.6)

This is a bit messy at this point, but our strategy now is to group our terms according to
the power of the bookkeeping parameter λ that terms are multiplied by. This gives us

Ĥ(0)|ψ(0)
n ⟩+ λ

(
Ĥ(0)|ψ(1)

n ⟩+ Ĥ ′|ψ(0)
n ⟩

)
+ λ2

(
Ĥ(0)|ψ(2)

n ⟩+ Ĥ ′|ψ(1)
n

)
+ . . . = E(0)

n |ψ(0)
n ⟩

+ λ

(
E(0)
n |ψ(1)

n ⟩+ E(1)
n |ψ(0)

n ⟩
)
+ λ2

(
E(0)
n |ψ(2)

n ⟩+ E(1)
n |ψ(1)

n ⟩+ E(2)
n |ψ(0)

n ⟩
)
+ . . . . (8.7)
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The reason for arranging terms in this way is that we now see that on each side of our
equation we have a power series in terms of λ. It is a general mathematical fact that power
series expansions are unique, which in this case means that because our two power series
equal each other we actually have the stronger property that each coefficient of each order
of the power series equal one another.

We can now go order-by-order in λ and see what our new equations tell us. If we start
at the zeroth-order, we find that

Ĥ(0)|ψ(0)
n ⟩ = E(0)

n |ψ(0)
n ⟩, (8.8)

which is just our unperturbed equation, and so does not provide us with any new information.
Our first-order equation is new, and takes the form

Ĥ(0)|ψ(1)
n ⟩+ Ĥ ′|ψ(0)

n ⟩ = E(0)
n |ψ(1)

n ⟩+ E(1)
n |ψ(0)

n ⟩. (8.9)

We can now be clever to isolate our first-order correction to the energy by taking the inner
product of this equation with |ψ(0)

n ⟩. This gives us

⟨ψ(0)
n |Ĥ(0)|ψ(1)

n ⟩+ ⟨ψ(0)
n |Ĥ ′|ψ(0)

n ⟩ = E(0)
n ⟨ψ(0)

n |ψ(1)
n ⟩+ E(1)

n ⟨ψ(0)
n |ψ(0)

n ⟩. (8.10)

We can simplify this by noting that because Ĥ(0) is Hermitian, we can actually apply it
to the “left” in the first term in (8.10). The result is ⟨ψ(0)

n |Ĥ(0) = E
(0)
n ⟨ψ(0)

n |, so that our
equation becomes

E(0)
n ⟨ψ(0)

n |ψ(1)
n ⟩+ ⟨ψ(0)

n |Ĥ ′|ψ(0)
n ⟩ = E(0)

n ⟨ψ(0)
n |ψ(1)

n ⟩+ E(1)
n . (8.11)

Canceling identical terms, we find that our first-order correction to the energy is

E(1)
n = ⟨ψ(0)

n |Ĥ ′|ψ(0)
n ⟩. (8.12)

Finding the first-order correction to the wavefunction |ψ(1)
n ⟩ is a little more involved. To

begin, we rewrite our first-order equation as(
Ĥ(0) − E(0)

n

)
|ψ(1)
n ⟩ = −

(
Ĥ ′ − E(1)

n

)
|ψ(0)
n ⟩. (8.13)

Since we have just found out how to calculate E
(1)
n , we can assume that this is now a known

parameter so that we can consider the entire right-hand side of this equation to simply be
some known function. As a result, we see that this becomes an inhomogeneous differential
equation for our first-order correction |ψ(1)

n ⟩. We can go about solving for |ψ(1)
n ⟩ by first

expanding it in terms of our complete set of functions from the unperturbed problem, i.e.,
the |ψ(0)

n ⟩. This gives us

|ψ(1)
n ⟩ =

∑
m

c(1)n,m|ψ(0)
m ⟩, (8.14)
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where c
(1)
n,m is themth expansion coefficient for our first-order correction to the nth eigenstate.

We have now reduced the solution of the inhomogeneous differential equation into solving
for the expansion coefficients c

(1)
n,m. We can now substitute this expansion into (8.13) to get∑

m

(
Ĥ(0) − E(0)

n

)
c(1)n,m|ψ(0)

m ⟩ = −
(
Ĥ ′ − E(1)

n

)
|ψ(0)
n ⟩. (8.15)

Recognizing that the |ψ(0)
m ⟩ can have the unperturbed Hamiltonian easily applied to them,

we find that ∑
m

(
E(0)
m − E(0)

n

)
c(1)n,m|ψ(0)

m ⟩ = −
(
Ĥ ′ − E(1)

n

)
|ψ(0)
n ⟩. (8.16)

We now take the inner product with |ψ(0)
l ⟩ to get∑

m

(
E(0)
m − E(0)

n

)
c(1)n,m⟨ψ

(0)
l |ψ(0)

m ⟩ = −⟨ψ(0)
l |Ĥ ′|ψ(0)

n ⟩+ E(1)
n ⟨ψ(0)

l |ψ(0)
n ⟩. (8.17)

There are now a few special cases that we need to consider more carefully. The first is
what happens when l = n. In this case, the left-hand side of (8.17) becomes 0 and we learn
no information for solving for one of our expansion coefficients. The other special case is if
m = n. This likewise gives the left-hand side of (8.17) to be 0, so we have no constraint

to apply to finding the expansion coefficient c
(1)
n,n. It turns out that this allows us to freely

choose c
(1)
n,n to be whatever we believe will help simplify our analysis. In most cases, it is best

to simply choose c
(1)
n,n = 0 to keep the algebra easier, which also has the effect of making the

first-order correction |ψ(1)
n ⟩ to be orthogonal to the unperturbed nth eigenstate |ψ(0)

n ⟩.
Now, considering these simplifications we can restrict our expansion to only cover values

of m ̸= n. We can return to (8.17) and see that we can simplify it to be(
E

(0)
l − E(0)

n

)
c
(1)
n,l = −⟨ψ(0)

l |Ĥ ′|ψ(0)
n ⟩. (8.18)

We can now isolate c
(1)
n,l to find that

c
(1)
n,l =

⟨ψ(0)
l |Ĥ ′|ψ(0)

n ⟩
E

(0)
n − E

(0)
l

. (8.19)

Returning to our original expansion of |ψ(1)
n ⟩ in (8.14), we see that

|ψ(1)
n ⟩ =

∑
m ̸=n

⟨ψ(0)
m |Ĥ ′|ψ(0)

n ⟩
E

(0)
n − E

(0)
m

|ψ(0)
m ⟩. (8.20)

It is important to note that we have implicitly assumed in writing (8.20) that we never have

a situation where E
(0)
n = E

(0)
m for m ̸= n. Unfortunately, in practical problems it is often

the case that the eigenvalues of a system have some degeneracy so that it is possible for
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E
(0)
n = E

(0)
m for m ̸= n. In these situations one must use a different form of time-independent

perturbation theory. To help differentiate between approaches, what we have discussed here
is typically referred to as nondegenerate time-independent perturbation theory, while the
approach that can handle degeneracy is referred to as degenerate perturbation theory.

Before moving on, we will briefly consider the result for the second-order correction to
the energy E

(2)
n . Using similar methods to what we have illustrated here, it is possible to

take the second-order equation from (8.7) and isolate E
(2)
n . We begin by taking the inner

product with |ψ(0)
n ⟩ to get

⟨ψ(0)
n |Ĥ(0)|ψ(2)

n ⟩+ ⟨ψ(0)
n |Ĥ ′|ψ(1)

n ⟩ = E(0)
n ⟨ψ(0)

n |ψ(2)
n ⟩+ E(1)

n ⟨ψ(0)
n |ψ(1)

n ⟩+ E(2)
n ⟨ψ(0)

n |ψ(0)
n ⟩. (8.21)

We can find that the first term on the left-hand side cancels the first term on the right-hand
side, so after simplifying we find that

E(2)
n = ⟨ψ(0)

n |Ĥ ′|ψ(1)
n ⟩ − E(1)

n ⟨ψ(0)
n |ψ(1)

n ⟩. (8.22)

We can further simplify this by recognizing that by design we made |ψ(1)
n ⟩ orthogonal to

the unperturbed nth eigenstate |ψ(0)
n ⟩, so that the second term on the right-hand side is 0.

Expanding out our solution for |ψ(1)
n ⟩ from (8.20), we see that

E(2)
n = ⟨ψ(0)

n |Ĥ ′
(∑
m̸=n

⟨ψ(0)
m |Ĥ ′|ψ(0)

n ⟩
E

(0)
n − E

(0)
m

|ψ(0)
m ⟩

)
, (8.23)

which we can rewrite more compactly as

E(2)
n =

∑
m ̸=n

|⟨ψ(0)
m |Ĥ ′|ψ(0)

n ⟩|2

E
(0)
n − E

(0)
m

. (8.24)

A few final remarks are in order for nondegenerate time-independent perturbation theory.
First, it should hopefully now be more clear how this approach is a method of successive
approximations. We started by solving for our first-order corrections in terms of the zeroth-
order ones. We then proceeded by finding the second-order corrections using our first-order
corrections. This pattern continues up to however high of an order is desired. In many cases,
it is not useful to apply this kind of perturbation theory to high orders since the results do not
converge very quickly. Instead, this approach is mostly useful for gaining some quick insight
into how a small perturbation will approximately modify the energies and wavefunctions of
a system. For instance, from formulas like (8.24), we see that energy levels that are far apart
from one another will not contribute much to corrections between each other. Likewise, if
we have two states that do not have a significant interaction through matrix elements like
⟨ψ(0)

m |Ĥ ′|ψ(0)
n ⟩ we see that they will not cause much change to each other.

8.2 Time-Dependent Perturbation Theory

Previously, we saw that driving a quantum LC oscillator with a “classical” source led to
the quantum LC oscillator being placed into a highly classical state, namely, a coherent
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state. Considering this, we noted that if we wish to control quantum systems in such a
way that they exhibit highly non-classical behavior that may be advantageous for designing
new technologies we would need to search for a physical system other than a quantum
LC oscillator (or similar physical analogues). Before discussing details about the other
kinds of physical systems we will often need to utilize in designing revolutionary quantum
technologies, it will be helpful to gain a better understanding of how quantum systems
“transition” between different energy eigenstates. To establish an intuitive view of this
process, it is common to utilize what is often referred to in quantum mechanics as time-
dependent perturbation theory.

To begin our discussion on time-dependent perturbation theory, recall that for the time-
dependent Schrödinger equation we have that

Ĥo|Ψ⟩ = iℏ
∂

∂t
|Ψ⟩, (8.25)

and that we can solve this via separation of variables using eigenstates of Ĥo from the
time-independent Schrödinger equation as

|Ψ⟩ =
∑
n

cne
−iEnt/ℏ|ψn⟩. (8.26)

Although we can find some interesting time-dependent behavior from (8.26), we note that
our probability density ⟨Ψ|Ψ⟩ does not really exhibit time dependence because all the expo-
nential factors in (8.26) cancel when we evaluate ⟨Ψ|Ψ⟩. Hence, if we wish to see transitions
between eigenstates of our system (i.e., cause the cn’s to change as a function of time) we
will need to introduce some additional time-dependent influence that makes Ĥo no longer
fully characterize the system. If this “additional influence” is small, we can pursue a time-
dependent perturbation theory solution to the problem to gain intuition into the physical
processes involved.

More explicitly, we will consider a system where the total Hamiltonian can be written as

Ĥ = Ĥo + Ĥp(t), (8.27)

where Ĥp(t) is the time-dependent perturbation. Our time-dependent Schrödinger equation
becomes

Ĥ|Ψ⟩ = iℏ
∂

∂t
|Ψ⟩, (8.28)

where we can now think of expanding |Ψ⟩ in terms of the eigenstates of Ĥo as

|Ψ⟩ =
∑
n

cn(t)e
−iEnt/ℏ|ψn⟩. (8.29)

Note that the only real change that has occurred in our expansion is that we now must write
our expansion coefficients as being time dependent. Considering this, we could lump our
exp[−iEnt/ℏ] factor into the definition of cn(t). However, in many cases it is much better
to keep this explicit time dependence separate from cn(t) because it will generally be found
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that exp[−iEnt/ℏ] describes much of the time dependence for this particular state. In these
situations, we will find that exp[−iEnt/ℏ] oscillates very quickly in comparison to cn(t), so
by explicitly accounting for this variation in our expressions we can simplify what goes “into”
the solution of cn(t) and also gain more insight into our system.

We can now take our expansion in (8.29) and substitute this into the time-dependent
Schrödinger equation. To simplify some of our notation, we will use a common shorthand
for time derivatives that

ċn =
∂cn
∂t

, (8.30)

so that (8.28) becomes (after evaluating the time derivative)∑
n

cn

(
Ĥo + Ĥp(t)

)
e−iEnt/ℏ|ψn⟩ =

∑
n

(
iℏċn + cnEn

)
e−iEnt/ℏ|ψn⟩. (8.31)

We can simplify this further by recognizing that on the left-hand side that

Ĥo|ψn⟩ = En|ψn⟩, (8.32)

which then cancels the second term on the right-hand side of (8.31). Considering this, we
have after some slight rearranging that∑

n

iℏċne−iEnt/ℏ|ψn⟩ =
∑
n

cne
−iEnt/ℏĤp(t)|ψn⟩. (8.33)

We can find an ordinary differential equation for a particular ċq by taking the inner product
of (8.33) with |ψq⟩ to get

iℏċqe−iEqt/ℏ =
∑
n

cne
−iEnt/ℏ⟨ψq|Ĥp(t)|ψn⟩. (8.34)

To simplify our notation, we introduce the frequency

ωqn = (Eq − En)/ℏ (8.35)

so that (8.34) can be rewritten as

iℏċq(t) =
∑
n

cn(t)e
iωqnt⟨ψq|Ĥp(t)|ψn⟩ (8.36)

after moving exp[−iEqt/ℏ] to the right-hand side.
Up to this point, we have made no approximations whatsoever. However, if the pertur-

bation Ĥp(t) is “small”, we can write the full Hamiltonian as Ĥ = Ĥo + λĤp(t) where the
parameter λ is going to be a bookkeeping tool that we can envision setting to 1 at the end of
a calculation. In terms of λ, we can now propose as an ansatz that each expansion coefficient
can be represented by a power series of the form

cn = c(0)n + λc(1)n + λ2c(2)n + . . . . (8.37)
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Substituting this into (8.36) and recalling that we must now write Ĥp(t) → λĤp(t), we get(
ċ(0)q + λċ(1)q + λ2ċ(2)q + . . .

)
=

1

iℏ
∑
n

(
c(0)n + λc(1)n + λ2c(2)n + . . .

)
eiωqnt⟨ψq|λĤp(t)|ψn⟩. (8.38)

It is a general mathematical fact that power series expansions are unique, which in this case
means that because our two power series equal each other we actually have the stronger
property that each coefficient of each order of the power series equal one another. Due to
this, we can equate the coefficients of terms of different orders in λ within the power series
on either side of our equation.

If we look at our zeroth-order equation, we find that

ċ(0)q (t) = 0, (8.39)

which simply tells us that the coefficient does not change in time, and so contains no new
information. However, if we proceed to finding our first-order equation we see that it is

ċ(1)q (t) =
1

iℏ
∑
n

c(0)n eiωqnt⟨ψq|Ĥp(t)|ψn⟩. (8.40)

It should be noted that from (8.39) we have found that all the c
(0)
n are independent of time,

so it is only the exponential and the perturbing Hamiltonian that actually vary as a function
of time on the right-hand side of our equation. Since these are all known quantities, we
can solve this equation using standard techniques for integrating an ordinary differential
equation. If we stop with our perturbation approach here, we find that

cq(t) ≈ c(0)q + c(1)q (t). (8.41)

We can use this to approximately determine the state of our system at time t and to then
evaluate different quantities of interest. More generally, we can find that

ċ(d+1)
q (t) =

1

iℏ
∑
n

c(d)n (t)eiωqnt⟨ψq|Ĥp(t)|ψn⟩ (8.42)

to calculate our perturbative solution to higher orders. We see from this result that time-
dependent perturbation theory is an approach of successive approximations, with the result
from the previous order being used in calculating the result at the next higher order in the
expansion.

It should be noted that it is typically only the first one or two orders of time-dependent
perturbation theory that are useful in many situations (after that point, it is usually better
to invest time in forming a more accurate solution than continuing the perturbation theory).
Despite the seeming simplicity of these results, it turns out that even first-order perturbation
theory can be used to derive extremely useful results that are applicable in many situations.
We will now consider the development of one such result to see how it helps us better
understand the probability of transitions occurring between different states in a system.
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8.2.1 Oscillating Perturbations

We will now consider one of the most important results of first-order time-dependent pertur-
bation by considering a harmonically oscillating perturbation. As a simple example of a case
where this would be relevant, we can consider again the Hamiltonian of a driven quantum
LC oscillator, which was

Ĥ =
1

2C
Q̂2 +

1

2L
ϕ̂2 − ϕ̂Ib(t), (8.43)

where Ib(t) was a classical current source. We can then envision partitioning our Hamiltonian
into the unperturbed part

Ĥo =
1

2C
Q̂2 +

1

2L
ϕ̂2 (8.44)

and the time-dependent perturbation

Ĥp(t) = −ϕ̂Ib(t). (8.45)

We will specifically consider sinusoidal perturbations, so it will be convenient to write Ib(t)
as

Ib(t) = 2I0 cos(ωt) = I0
(
e−iωt + eiωt

)
, (8.46)

where we have used Euler’s identity to rewrite the cosine function into complex exponentials,
as this will help simplify later manipulations significantly.

Although we could proceed directly with this example, we will instead want to con-
sider this problem in a more general form. Considering this, we will not utilize any special
properties from a specific form of Ĥo like in (8.44). Likewise, we will write our perturbing
Hamiltonian in a more generic form as

Ĥp(t) =

{
Ĥpo

(
e−iωt + eiωt

)
, 0 < t < t0

0, elsewhere,
(8.47)

where we have assumed the perturbation is turned on for only a finite time t0 and where
Ĥpo is the time-independent part of the perturbing Hamiltonian. In the example above, we

would take Ĥpo = −ϕ̂I0.
Now, we wish to establish a useful result that tells us the probability that a transition has

occurred between two states after the perturbation has been turned off. To do this, we will
assume that for t < 0 our system has been prepared in a specific energy eigenstate |ψm⟩. As
a result, all of our zeroth-order expansion coefficients for our time-dependent perturbation
theory will be 0 except for c

(0)
m = 1. With these assumptions, we can simplify (8.40) to be

ċ(1)q (t) =
1

iℏ
c(0)m eiωqmt⟨ψq|Ĥp(t)|ψm⟩. (8.48)

If we now wish to determine c
(1)
q for times after the perturbation has been turned off, we can

integrate (8.48) to get

c(1)q (t > t0) =
1

iℏ

ˆ t0

0

eiωqmτ ⟨ψq|Ĥp(τ)|ψm⟩dτ. (8.49)
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Evaluating this integral in general situations would likely require a numerical method, but
for our simple oscillating perturbation we can handle this analytically.

To begin, we can substitute in the specific form of our perturbation from (8.47) to get

c(1)q (t > t0) =
1

iℏ
⟨ψq|Ĥpo|ψm⟩

ˆ t0

0

(
ei(ωqm−ω)τ + ei(ωqm+ω)τ

)
dτ. (8.50)

Evaluating the integral then gives

c(1)q (t > t0) = −1

ℏ
⟨ψq|Ĥpo|ψm⟩

[
ei(ωqm−ω)t0 − 1

ωqm − ω
+
ei(ωqm+ω)t0 − 1

ωqm + ω

]
, (8.51)

which is the correct answer, but is a bit “messy”. We can tidy this expression up by
factoring out part of the exponential factors in each term inside the square brackets so that
the remaining part can be rewritten as a sine function using Euler’s function. This kind of
simplification happens quite frequently in electrical engineering, and is a good strategy to
take note of for other situations. Here, it allows us to simplify our result to be

c(1)q (t > t0) =
t0
iℏ
⟨ψq|Ĥpo|ψm⟩×[
ei(ωqm−ω)t0/2 sin[(ωqm − ω)t0/2]

(ωqm − ω)t0/2
+ ei(ωqm+ω)t0/2

sin[(ωqm + ω)t0/2]

(ωqm + ω)t0/2

]
, (8.52)

where we have also factored a t0 out of the expression so that the terms involving the sine
functions take a special form. In particular, although the argument is somewhat complex,
we see that these take the form of a sinc function, which is defined by

sinc(x) =
sinx

x
. (8.53)

Considering this, we write our final expression for c
(1)
q (t > t0) as

c(1)q (t > t0) =
t0
iℏ
⟨ψq|Ĥpo|ψm⟩×(
ei(ωqm−ω)t0/2 sinc[(ωqm − ω)t0/2] + ei(ωqm+ω)t0/2 sinc[(ωqm + ω)t0/2]

)
. (8.54)

To unpack this expression a bit, it is helpful to recall the basic shape of a sinc function.
One can take the limit as x → 0 to find that sinc functions peak to a value of 1 at their
origin. The result then falls off quickly as a function of x due to the denominator, however,
the sine function does lead to oscillatory behavior as this happens. This is illustrated in
Fig. 8.2, where see that after only a few periods the sinc function has reduced to a rather
small value in comparison to its peak. We will go into more detail about this shortly, but if
we take a quick look at (8.54) we see that a particular expansion coefficient will be heavily
suppressed if t0 is “long enough” relative to ωqm ± ω. This can be counteracted if our drive
frequency ω is close to ωqm, which suggests that to have an appreciable interaction between
two energy eigenstates we need to make our drive frequency resonant with the frequency
defined by the transition between the relevant energy eigenstates.
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Figure 8.2: Absolute value of a sinc function over ±6 periods of oscillations. We see that
the value drops off rapidly as x increases.

To see this idea in more detail, it is helpful to compute the probabilities of transitions
between different energy eigenstates. To do this, we will first note that for t > t0 we can
write our complete quantum state to first order as

|Ψ⟩ ≈ e−iEmt/ℏ|ψm⟩+
∑
q

c(1)q (t > t0)e
−iEqt/ℏ|ψq⟩. (8.55)

Recalling our earlier discussion of time-dependent perturbation theory, we recognize the first
term in our superposition is the result if there were no perturbation and the remaining terms
correspond to the effect of the perturbation to first order. Looking at this expression, we
also can readily see a small “issue” with our state – it is no longer normalized! This is
a common issue with perturbation theory, however, the system is still close to normalized
because the perturbation is assumed to be small. The practical consequence of this is that
when we evaluate “probabilities” with our state given in (8.55) they are no longer quite true
probabilities because they will not all sum to 1. However, because the error is relatively
small, we will still proceed with interpreting our results as probabilities. Along these lines,
we can now see that the probability (to first order) that the system has transitioned from
the initial state |ψm⟩ to some other state |ψq⟩ will be

P (q) ≈ |c(1)q (t > t0)|2. (8.56)

We can expand this using our expression for c
(1)
q (t > t0) given in (8.54) to find that

P (q) ≈ t20
ℏ2

|⟨ψq|Ĥpo|ψm⟩|2
(
sinc2[(ωqm − ω)t0/2] + sinc2[(ωqm + ω)t0/2]

+ 2 cos(ωt0)sinc[(ωqm − ω)t0/2] sinc[(ωqm + ω)t0/2]

)
. (8.57)

We can simplify this expression a bit more by making a useful approximation. Namely,
we recognize that if we have ω be “near” the transition frequency |ωqm| and let t0 be large
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enough the final term in (8.57) will have a minor impact on the overall probability, and can
then be safely ignored. The reason for this is that if ω ≈ |ωqm| then the two sinc functions
will be spaced far apart from one another so that in the multiplication one of the sinc
functions will always be very small (the large t0 also has the effect of further “sharpening”
the sinc functions as a function of frequency, which also supports minimizing the overlap of
the functions). With this simplification, we have the probability of transition being

P (q) ≈ t20
ℏ2

|⟨ψq|Ĥpo|ψm⟩|2
(
sinc2[(ωqm − ω)t0/2] + sinc2[(ωqm + ω)t0/2]

)
. (8.58)

We can now look at the different terms and see what kind of physics they describe. The
first term to consider is |⟨ψq|Ĥpo|ψm⟩|2, which we see is related to the matrix element of
the “static” part of the perturbation. If we recall our example of a current driving an LC
oscillator, we see that this term will be proportional to I20 . Recalling basic circuit theory,
we see that this is itself proportional to the power being supplied by the source. Hence, we
get the intuitive behavior that if we drive our system with a higher intensity, transitions
between a given set of energy eigenstates will be more likely to occur.

Although this is intuitive, the more important behavior is captured in our two sinc
functions. In particular, we see that the first sinc function will be dominant if we set our
drive frequency ω to be close to ωqm. More explicitly, we have this term being dominant if
ω ≈ (Eq − Em)/ℏ. Since by convention we only consider driving frequencies like ω to be
able to be positive numbers, we see that we can only have the condition ω ≈ (Eq − Em)/ℏ
if Eq > Em. Considering this, we see that the first sinc function in (8.58) is describing an
absorption process that leads to the system transitioning to a higher energy state. This
process is much more likely to occur if we match our drive frequency ω to the frequency
defined by the transition ωqm, which is a very important consideration that must be taken
into account when attempting to control quantum systems, as we will discuss later in this
course.

If the first sinc function describes absorption, what does the second one represent? We
see that this term will only be large if ωqm ≈ −ω. Recalling that ω must be positive, we
see that this condition can only occur if Eq < Em. That is, this kind of transition involves
moving from a higher energy state to a lower one. Although this is not explicitly shown in
this analysis, this transition to a lower energy level must be accompanied by another physical
process to allow the energy to “leave” the particular quantum system we are studying. In
this case, we can recognize this as an emission process that leads to our system emitting a
quanta of energy, with energy equal to |ℏωqm|. In the case of a quantized circuit, we would
often refer to the emitted quanta of energy as a photon due to its similar characteristics to
photons from the broader theory of quantum electrodynamics. This emission result is also
extremely important, since it tells us that we can increase the occurrence of emission by
driving our quantum system at the correct frequency. This physical process is often referred
to as stimulated emission, which is a key component of why lasers work (in case you are not
aware, the term laser is actually an acronym for “light amplification by stimulated emission
of radiation”).

We are now in a position that we can briefly reflect again on the failure of using a
quantum LC oscillator with a classical drive to achieve highly quantum mechanical effects.
As we will discuss later, it is often desirable to control quantum systems by selectively driving
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transitions between two specific energy levels of the system. We see that this is not possible
with a quantum LC oscillator (and its physical analogues) because all of the energy levels are
evenly spaced. As a result, once the system has been driven between two particular levels
there is nothing “stopping it” from continuing to transition to higher and higher levels in
the presence of a drive. To avoid this issue occurring, we will need to search for systems
that have energy levels that are not evenly spaced. We will begin to discuss some general
properties of these systems and look at an important specific example next week.

8.2.2 Fermi’s Golden Rule

Although the analysis leading to (8.58) was very useful for gaining physical insight into im-
portant absorption and emission processes, it does have some drawbacks from a practical use
standpoint due to the various “hand-waving” explanations we have relied on. For instance,
our analysis required leaving t0 on for long enough to sharpen the sinc functions appropri-
ately, but also breaks down if we leave t0 on for “too” long. It is possible to alleviate some of
these caveats in specific cases, which turn out to happen quite frequently in practical situa-
tions. The end result of resolving some of these issues is what is often referred to as Fermi’s
golden rule, which is a very useful tool for estimating transition rates in quantum systems.
Although Fermi’s golden rule is still an approximate result, it is found to apply to many
practical systems due to other effects not accounted for in our analysis. These other effects
help to continually “reset” parameters around the approximations made in our analysis, so
that the approximations that are made rarely become inaccurate.

The particular situation that can resolve some of these issues is if instead of only having a
single transition with energy difference ℏωqm to interact with there actually exist a dense set
of such transitions all near the same frequency. This happens frequently in optical absorption
problems, but can also occur for specific types of circuits as well. In particular, this type of
dense level structure would be applicable to transmission lines that are designed to guide
electromagnetic waves through systems. In this situation, we could imagine a quantum LC
oscillator (or some other kind of quantum circuit) being coupled to the transmission line. The
number of states that a photon in the LC oscillator could be emitted into the transmission
line are so dense that they effectively form a continuum of states, rather than a discrete set
like we have been considering up to this point.

For this situation, we can now think of adding up the probabilities of all transitions in a
“neighborhood” of a particular frequency to determine the total transition probability. That
is, if we only focus on the absorption process from the perspective of the dense set of states,
we have the total probability being

Ptot ≈
∑

q s.t. ωqm≈ω

|c(1)q |2. (8.59)

In problems dealing with a nearly continuous set of states, it is a common strategy in quantum
mechanics to approximate a summation over the dense set as an integration over a continuous
set of states because integrations are generally much easier to deal with mathematically than
abstract summations. To perform this conversion, we must introduce what is often referred
to as a density of states. In essence, the density of states helps us convert from a summation
index that always increments by a value of 1 to an integral measure that captures the
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actual change in a quantity of interest as you increment between “distinct states”. This is a
somewhat nuanced subject that we will not need to explore in complete depth for this course,
but if you find yourself needing to understand it more fully in the future it is a subject that
is often covered in quantum mechanics textbooks, such as [8,9,25]. For now, we will simply
say that we can transition from the summation in (8.59) to the integral

Ptot ≈
t20
ℏ2

|⟨ψq|Ĥpo|ψm⟩|2
ˆ

sinc2[(ωqm − ω)t0/2]g(ℏωqm)d(ℏωqm), (8.60)

where g(ℏωqm) is the density of states and we have focused specifically on the absorption
process by only including the single sinc function.

To evaluate this integral in closed form, it is assumed that because the sinc function is
quite narrow and the density of states is assumed to vary slowly, we can approximately pull
it out of our integral as a constant evaluated at the center of the sinc function. This gives
us

Ptot ≈
t20
ℏ2

|⟨ψq|Ĥpo|ψm⟩|2g(ℏω)
ˆ

sinc2[(ωqm − ω)t0/2]d(ℏωqm). (8.61)

This integral of the sinc function can be now be completed in closed form asˆ
sinc2(x)dx = π. (8.62)

Using this result, we find that

Ptot ≈
2πt0
ℏ

|⟨ψq|Ĥpo|ψm⟩|2 g(ℏω). (8.63)

We can now define a transition rate by dividing by our somewhat arbitrary interaction time
t0 to get

W =
2π

ℏ
|⟨ψq|Ĥpo|ψm⟩|2 g(ℏω), (8.64)

which is known as Fermi’s golden rule. This is an important result that is often used in
engineering quantum systems, where the goal is typically to enhance or suppress transitions
at specific frequencies. This can often be accomplished by engineering the environment
around the quantum system being studied, such as placing a nanoantenna near an atom to
enhance emission in a desired direction. The importance of Fermi’s golden rule is it helps
guide us as to what aspects of the environment will be able to impact the transition rate by
inspecting the static perturbing Hamiltonian Ĥpo for the specific situation being considered.

It is common to also see Fermi’s golden rule written in terms of Dirac delta functions. In
particular, the transition rate between specific states |ψm⟩ and |ψq⟩ is expressed as

wqm =
2π

ℏ
|⟨ψq|Ĥpo|ψm⟩|2δ(Eqm − ℏω). (8.65)

The total transition rate in the “neighborhood” of a particular transition is then found as

W =

ˆ
wqmg(ℏωqm)d(ℏωqm). (8.66)
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8.3 Practice Problems

1. Problem 6.3.2 from D. A. B. Miller. You may use a calculator rather than explicitly
evaluating the necessary integrals.

(a) Solve the problem as written in D. A. B. Miller using first-order perturbation
theory. For a potential well of width 10 nm and u = 10−5, compare the transition
energy for the unperturbed and perturbed systems.

(b) Use a finite difference computer program to solve the problem explicitly and
compare the solution to the one found in (a) for a 10 nm width when u = 10−5

and when u = 10−4.

2. Problem 7.2.1(i) from D. A. B. Miller.

3. You are given an infinitely-deep potential well prepared in its ground state. You wish to
transition this system into its third stationary state by using a classical control mech-
anism with amplitude A(t) that you can design arbitrarily. Assuming the Hamiltonian
for this system is given by

Ĥ = − ℏ2

2m

d2

dx2
+ V (x) + A(t)p̂

and the amplitude of A(t) is sufficiently small, describe a possible procedure to achieve
the desired transition. You should justify your explanation with relevant results from
time-dependent perturbation theory.
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Chapter 9

Artificial Atoms

9.1 Introduction to Artificial Atoms

Previously, we mentioned that it is common in many quantum technologies to want to be
able to selectively drive transitions between two specific energy levels in a system. The
reason for this is that these two energy levels can then potentially be used as a quantum bit
(qubit). A qubit can be viewed as a fundamental “building block” of quantum information,
much like a classical bit is a fundamental piece of classical information in digital computers.
Qubits must obey the laws of quantum mechanics, which allows them to be manipulated
in interesting ways that is not possible with our classical versions of bits. It is these new
and exciting properties of qubits that are fundamental to many emerging technologies, like
quantum communication systems, quantum computers, and quantum sensors. We will learn
more about these technologies later in the course. Before this, we will need to learn more
about what kinds of quantum systems can potentially act as qubits and how we can control
them.

When we discussed time-dependent perturbation theory, we saw that when a classical
system is “driving” a quantum one the probability of a transition happening between two
energy levels was heavily-dependent on the applied classical drive being resonant with the
frequency defined by the transition. More explicitly, we saw that we needed the classical
angular frequency ω ≈ (Em−En)/ℏ to drive transitions between states |ψm⟩ and |ψn⟩. At the
time, we noted that this meant that a quantum LC oscillator (and other physical analogues)
would not allow us to selectively drive transitions between different energy levels because
all of the energy levels are evenly spaced. Hence, we will now need to turn our attention to
considering quantum systems that have unevenly-spaced energy levels.

We have actually already encountered an example of this behavior toward the beginning
of the course. In particular, when we analyzed an infinitely-deep square potential well we
found that the eigenvalues of the system were

En =
ℏ2

2m

(
nπ

L

)2

, n ∈ Z, (9.1)

which are clearly not evenly spaced. This particular problem was somewhat artificial (i.e., it
was one-dimensional and had an infinite potential well), but it does give us useful intuition
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that if we can confine an electron (or electrons) within a small space we may find the
behavior we are looking for from a qubit. One approach in this direction that is of current
technological interest are quantum dots, which are nanoscale semiconductor structures that
tightly confine electron wavefunctions in three dimensions. The resulting systems have energy
level spacings that correspond to optical wavelengths, which is a favorable quality since there
already exist many optical technologies that can then be repurposed for use in interacting
with quantum dots. Quantum dots have also found broader application due to their light
emission properties, and have already been commercialized into televisions (namely, QLED
TVs). These systems have been found to be so important that some of the pioneers received
the 2023 Nobel Prize in Chemistry for their work.

Although quantum dots have some very interesting properties, they are rather complex
solid state systems made from many constituent “parts”. Can we have simpler systems that
still provide us with the desired behavior of unevenly-spaced energy levels? The answer is a
definitive “yes”, with an excellent example being one of the simplest quantum systems that
you can likely think of – a hydrogen atom. Hydrogen atoms only contain a single electron, and
as a result can be analyzed quite readily using the time-independent Schrödinger equation we
have used throughout this course, albeit this does require some mathematical “maneuvering”
to account for the fact that the proton in the nucleus is also “there”. More details on these
manipulations can be found in introductory quantum mechanics books like [8,9]. Once these
manipulations are done, we can eventually write the Schrödinger equation as(

− ℏ2

2µ
∇2 − q2

4πϵ0r

)
ψ(r, θ, ϕ) = Eψ(r, θ, ϕ), (9.2)

where µ is the reduced mass (which is an effective mass partially accounting for the presence
of the proton), q is the charge of an electron, ϵ0 is the vacuum permittivity, and we have
written everything in spherical coordinates due to the spherical symmetry of the Coulomb
potential that binds the electron to stay part of the atom. This eigenvalue problem can
be solved analytically, although it requires learning more about solving partial differential
equations than will be useful for us to consider within this course. The main takeaway is
that the energy levels are unevenly-spaced, as is the case in any atom, and so atoms form an
obvious and natural candidate to potentially act as qubits in modern quantum technologies.
Due to this, atoms (as well as ions) will sometimes be referred to as nature’s qubit. Along
these lines, a system that has been designed/manufactured to provide properties “like” an
atom will often be referred to as an artificial atom. A quantum dot is an excellent example
of an artificial atom, and we will take a detailed look at more examples shortly.

Considering these points, it should hopefully not surprise you at this point to learn that
there are an extremely wide range of physical systems that will lead to unevenly-spaced
energy levels. However, not all of these systems will have the properties we desire of a
“good” artificial atom or qubit. Hence, we will need to take a deeper look at what properties
are desirable for a physical system to potentially fulfill this role for us in designing new
quantum technologies. Due to the diverse range of technologies being developed, there is
no single list of all criteria needed for a qubit or artificial atom to be “good”. However,
within the context of processing quantum information (i.e., information stored in qubits),
DiVincenzo’s criteria represent an agreed upon set of conditions that must be “checked” for
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a physical system to be considered a viable candidate as a qubit. The DiVincenzo’s criteria
are [14]:

1. A scalable physical system with well-characterized qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state.

3. Long relevant decoherence times.

4. A “universal” set of quantum gates.

5. A qubit-specific measurement capability.

We will not be able to investigate all of these properties in significant detail in this course.
However, we will now consider the process of making sure we have a “well-characterized”
physical system through a specific example of superconducting circuit artificial atoms. It
is important to emphasize that these same kinds of considerations must be taken for any
physical system when considering whether it can form the basis of a qubit in a broader
quantum technology context.

9.2 Josephson Junctions

Superconducting circuit quantum devices are currently one of the most popular and mature
approaches being pursued to develop a wide array of quantum technologies. As suggested by
the name, these systems are built from superconducting materials that are arranged in differ-
ent electrical circuit topologies to achieve desirable effects. Fortunately, a detailed knowledge
of superconductivity is not required to understand many of the engineering considerations
involved in designing these devices. However, for brevity, we will not be covering any of the
superconducting physics in any detail in this course. We will simply introduce certain simple
equations as “facts” when needed and move on with our discussion. Those interested in a
more detailed presentation of some of these concepts can consult [5, 23, 26] and the refer-
ences contained within. Currently, the most essential superconducting circuit component in
building superconducting circuit artificial atoms is a Josephson junction, which we will now
begin learning about.

9.2.1 Basic Properties

Josephson junctions are widely studied systems in their own right, but for our purposes we
will only consider a relatively simple version that is formed via a superconductor-insulator-
superconductor “sandwich”. By keeping the insulator very thin (usually around 1 nm thick),
a nonlinear I-V relationship is achieved when considering the junction as a circuit element.
A basic illustration of a Josephson junction is shown in Fig. 9.1.

The nonlinear I-V relationship arises because the insulative gap in the junction acts as
a barrier to the flow of charge carriers in the superconductor, which are known as Cooper
pairs. These can roughly be thought of as 2 electrons that have “joined” together to form an
effective quasiparticle that can move around the superconductor. By keeping the insulating
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Figure 9.1: Illustration of a Josephson junction and the dynamical variables involved in
expressing the Hamiltonian of the junction (image modified from [23]).

gap “thin”, a narrow potential barrier is produced that charge carriers can tunnel between
in a manner similar in principle to the tunneling that occurs in a diode or transistor. This
tunneling behavior is encoded at a macroscopic level in the Josephson relations, which can
be used to derive the I-V relationship of the junction.

As with earlier circuit components we have considered, voltage and current are not suit-
able conjugate variables to describe the physics of a Josephson junction within a Hamiltonian
mechanics framework. Instead, it is typical to use a dimensionless set of conjugate variables
n and φ. Here, n is the Cooper pair density difference across the junction (effectively, the
number of pairs that have tunneled through the junction) and φ is the Josephson phase (a
parameter related to the phase difference in the wavefunctions in the two superconductors).
Using these variables, the two Josephson relations are

I = Ic sinφ, (9.3)

∂φ

∂t
=

2q

ℏ
V, (9.4)

where Ic is known as the critical current that describes the maximum tunneling current
possible (before certain assumptions break down) and q is the electron charge. Taking a
closer look at (9.4), we see that the Josephson phase variable is closely related to the node
flux we have been using in describing linear circuits. Considering this, we will think of φ as
acting like a generalized position variable for the Josephson junction.

We can now find the I-V relationship of the Josephson junction by taking the time
derivative of (9.3) and plugging in from (9.4) to get

∂I

∂t
=
∂I

∂φ

∂φ

∂t
= Ic

2q

ℏ
cos(φ)V. (9.5)

Considering that φ is a function of V , we see that this I-V relationship is that of a nonlinear
inductor. From the perspective of a Hamiltonian description, the inductive energy of this
system is characterized as

HL = −EJ cosφ, (9.6)
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Figure 9.2: Illustration of a simple mechanical pendulum that exhibits the same dynamical
behavior as a Josephson junction (image modified from [23]).

where EJ = ℏIc/2q is the Josephson energy of the junction (which measures the energy of a
Cooper pair tunneling through the junction).

Although the inductive energy is the “main” feature of the Josephson junction, it is not
a complete description. In particular, due to the arrangement of two conductors near each
other in forming the junction, there is also a capacitive energy in the system similar to
a “parallel plate” capacitor. We can determine the capacitive energy for a total junction
capacitance of C by noting that the total charge Q “stored” in the capacitance can be
given by 2qn, where the 2q is the charge of a single Cooper pair being “counted” by the
dimensionless n. The charging energy of a single electron is EC = q2/2C, so the total
capacitive energy Q2/2C can be included in the Hamiltonian as

HC = 4ECn
2. (9.7)

Combining this with the earlier inductive energy given in (9.6), the full Hamiltonian of the
Josephson junction can be given as

H = HC +HL = 4ECn
2 − EJ cosφ. (9.8)

From a circuit theory perspective, this Hamiltonian corresponds to a linear capacitor in
parallel with a nonlinear inductor. It is the nonlinearity of this inductance which is the key
to making the corresponding quantized version of this system have unevenly-spaced energy
levels, as desired for acting as a building block of an artificial atom.

This circuit theory perspective is useful, but you are likely not used to working with
nonlinear inductors from your introductory circuits classes. Considering this, it can be
useful to see if there is another system that behaves like our Josephson junction that is more
physically intuitive. It turns out that such an analogy exists, and it is a simple mechanical
pendulum with a fixed rotor of length R, as depicted in Fig. 9.2. We see that our Josephson
phase variable φ naturally maps to the angular position ϕ of the rotor, and that the charge
difference n corresponds to the angular momentum L of the rotor. When trying to understand
the physics of the Josephson junction it can be useful to reflect back on this physical analogy,
as we will consider later.

Before continuing, it is useful to discuss the relative scales of the energies in the Josephson
junction given by EC and EJ . For building next-generation quantum technologies, the
Josephson junctions must often be kept physically small. As a result, the effective capacitance
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Figure 9.3: Physical layout of a (left) SQUID and (right) one of the Josephson junctions
making up the SQUID (image modified from [23]).

of the junction is quite small, usually in the femtofarad to low picofarad range. Likewise, the
tunneling energy that represents the effective inductance of the junction is also rather small,
usually in the nanohenry to microhenry range. Importantly, because we are designing the
Josephson junction we can tune these parameters so that the characteristic ratio EJ/EC can
be controlled to desirable operating regimes. Further, we can embed Josephson junctions
into different circuit topologies to have even larger control over EJ/EC . Overall, artificial
atoms built with Josephson junctions have been realized with EJ/EC ranging from much
less than 0.1 to over 106.

This flexibility in design is one of the many factors that makes working with artificial
atoms very attractive. If we use natural atoms/ions as qubits we do not have design control
over their characteristics, we simply must work with whatever nature gave us. However, the
tradeoffs between natural vs. artificial atoms are not this simple, and there are plenty of
features of natural atoms that are superior to the artificial atoms that have been developed
to date. As a result, work continues to be pursued on developing quantum technologies with
both natural and artificial atoms.

9.2.2 Magnetic Flux-Tunable Josephson Junction

One additional advantage of artificial atoms is that their properties can often be tuned in
situ. In the case of artificial atoms built with Josephson junctions, this is often accomplished
by placing two Josephson junctions in parallel with each other. In this case, the two junc-
tions form a superconducting loop, which is often referred to as a superconducting quantum
interference device (SQUID). A physical implementation of a SQUID within a supercon-
ducting artificial atom is shown in Fig. 9.3. The SQUID is useful because it makes the
effective Josephson energy of the overall circuit tunable by applying an external magnetic
flux through the loop formed by the SQUID. As we will see later, the Josephson energy helps
establish the spacing between energy levels in the artificial atom so that tuning the effective
EJ will allow the operating frequency of the artificial atom to be tuned.

To see why EJ becomes tunable, we must revisit the effective inductance Hamiltonian HL
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of the Josephson junction. With the second junction, this part of the Hamiltonian becomes

HL = −EJ cosφ1 − EJ cosφ2, (9.9)

where φi is the Josephson phase of the ith junction and we have assumed that the Josephson
energy for both junctions are identical. In reality, the Josephson energies will be asymmetric
either on purpose or due to manufacturing variability. However, junction asymmetries do
not change the overall conceptual result, so we ignore them here for simplicity.

To proceed, we need another property of superconductors. Namely, that

φ1 − φ2 = 2πℓ+ 2πΦ/Φ0, (9.10)

where ℓ is an integer, Φ is the total magnetic flux intersecting the loop formed by the SQUID,
and Φ0 = h/2q is the superconducting flux quantum. This equation tells us that the phase
difference around the SQUID loop must be an integer multiple of 2π, which is necessary
so that the wavefunctions in the superconductors remain single-valued. The final term in
(9.10) reflects the fact that the applied magnetic flux will impact the phase differences in
the superconductors. This is similar in concept to Faraday’s law of induction, where a
time-varying magnetic flux intersecting a loop can induce a voltage in the circuit.

Now, we can utilize standard trigonometric identities to rewrite (9.9) as

HL = −2EJ cos

(
φ1 − φ2

2

)
cos

(
φ1 + φ2

2

)
. (9.11)

Defining a new effective Josephson phase variable as φ = (φ1 + φ2)/2 and using (9.10), we
can simplify the above to be

HL = −EJΦ cosφ, (9.12)

where EJΦ = 2EJ cos(πΦ/Φ0). From this, we see that the effective inductance of the SQUID
has the same form as that of a single Josephson junction. The main change is that the
effective Josephson energy EJΦ is now tunable due to an applied magnetic flux.

Before continuing, it should also be mentioned that SQUIDs are a widely used technology
in their own right. They have a long history of use in many areas of engineering. For instance,
they can be used as precision magnetometers for many scientific and biomedical applications.
They have also found use in metrology and standards applications, as well as in other sensors
and electronic components.

9.3 Superconducting Circuit Artificial Atoms

To date, there have been a large number of artificial atoms designed using Josephson junc-
tions embedded into superconducting circuits. Each artificial atom has its own set of char-
acteristics that must be carefully analyzed to understand the advantages and disadvantages
of a particular topology. Here, we will only focus on a particular subset of artificial atoms
that are often referred to as charge qubits. We will consider a classic example in this area,
known as a Cooper pair box (CPB) as a first example. Following this, we will discuss the
transmon, which can be viewed as a kind of optimized CPB.
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(a) (b) (c)

Figure 9.4: Circuit schematics for the (a) CPB and (b) split CPB. A pure Josephson junction
tunneling element is represented schematically as an “X”. Often, to simplify the schematics
the small junction capacitance CJ is absorbed into the Josephson tunneling element symbol
and is represented as a box with an “X” through it, as seen in (b). (c) Illustration of how
conductors can be arranged to physically form a split CPB. (Images in (a) and (b) are
modified from [23]).

9.3.1 Introduction to the Cooper Pair Box

The traditional CPB is formed by a Josephson junction that connects a superconducting
“island” and “reservoir” [27]. For the CPB, the island is not directly connected to other
circuitry, while the reservoir can be in contact with external circuit components (if desired).
To control the operating point of the CPB system, a voltage source is capacitively coupled
to the superconducting island. A circuit schematic of this setup is shown in Fig. 9.4(a).
Although we will not focus on this in depth, a SQUID loop can be introduced into the CPB
to make incorporate an additional degree of tunability, as shown in Fig. 9.4(b). This setup
is sometimes referred to as a split CPB. An exaggerated illustration of how conductors can
be arranged to physically form a split CPB is shown in Fig. 9.4(c).

We now need to determine how to incorporate the voltage source into our Hamiltonian
description of the system. Although the circuit is changed somewhat compared to a simple
Josephson junction, the resulting Hamiltonian will still have a very similar form to (9.8).
Carrying out the algebraic manipulations to demonstrate this is tedious, so we will postpone
this until a later time when we consider a more detailed analysis of quantizing this kind of
system. For now, we simply state that the adjusted Hamiltonian can be written as

H = 4ECΣ
(n− ng)

2 − EJ cosφ, (9.13)

where ECΣ
is the single electron charging energy for the total capacitance from the island to

ground, which for this circuit is CΣ = CJ + Cg. Further, we have that ng is a dimensionless
quantity typically called the gate charge or offset charge [5]. The gate charge incorporates
the effect of the bias voltage Vg in adjusting the effective “operating point” of the voltage
on the island. Explicitly, we have that ng = −CgVg/2q. To gain a little more intuition into
this Hamiltonian, we can expand the quadratic and keep only the quantities that have n in
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them. We only need keep these quantities since any other values that are constant in n will
not contribute to the equations of motion derived via Hamilton’s equations. Performing this
and rewriting terms into the forms with units that we have been considering elsewhere in
our Hamiltonian treatments of circuits, we have that

4EC(n− ng)
2 → 1

2CΣ

Q2 + βQVg, (9.14)

where β = Cg/CΣ is a voltage divider that expresses how much of Vg is actually applied to
the Josephson junction capacitance. Hence, we see that this potential energy has a form
close to what we would expect for a voltage source biasing a circuit in terms of its effect on
the charge in the system.

At this point, it is useful to quantize the system. As alluded to earlier, n and φ are
canonically conjugate variables, although with a slight catch. In particular, these variables
have been made dimensionless so that the canonical commutation relation is not directly
applicable to them. Instead, we have for the quantum operators that

[n̂, φ̂] = −i. (9.15)

In terms of these operators, the Hamiltonian operator becomes

Ĥ = 4ECΣ
(n̂− ng)

2 − EJ cos φ̂, (9.16)

where it is important to note that ng is still a real-valued classical variable.
For a typical CPB, EJ/ECΣ

≪ 1, so we can see that the dominant term in (9.16) is
the capacitive energy terms. Considering this, it can often be useful to expand the CPB
Hamiltonian in terms of eigenstates of the charge operator. These eigenstates are often
denoted as |N⟩ and are somewhat similar to the Fock states we have encountered previously.
In particular, |N⟩ has eigenvalue N , which counts the number of Cooper pairs that have
tunneled onto or off of the island in the CPB. It is part of the quantization of this system
that when measuring this value, the result will always be an integer number of Cooper pairs.
Now, in terms of charge states, we can write the capacitive part of the Hamiltonian as

ĤC = 4ECΣ
(n̂− ng)

2 = 4ECΣ

∑
N

(N − ng)
2|N⟩⟨N |, (9.17)

which can be derived by inserting resolutions of the identity operator in terms of charge states
and utilizing their orthonormality properties. Although it requires more work to show, it is
also possible to expand the inductive part of the Hamiltonian in terms of charge states. This
gives

ĤL = −EJ cos φ̂ =
EJ
2

∑
N

(
|N⟩⟨N + 1|+ |N + 1⟩⟨N |

)
, (9.18)

which clearly illuminates the role of this term in describing the tunneling of Cooper pairs
onto or off of the island.

Within this basis, one may construct a matrix representation of the Hamiltonian and see
that due to EJ/ECΣ

≪ 1 the matrix is diagonally dominant. One important effect of this
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Figure 9.5: First three energy levels of the Hamiltonian given in (9.16) for EJ/EC = 1.
The energy levels are all normalized by the transition energy between the first two states
evaluated at half-integer values of ng (image from [23]).

is that if one wishes to find the eigenvalues and eigenvectors of the entire Hamiltonian then
the results will be seen to be relatively minor perturbations to the existing charge states we
were working with. Although it is instructive to go through this example, we will instead
plot the first few energy levels as a function of ng to further our discussion related to how
the CPB could be used as a qubit. Considering this, we include the desired energy spectra
in Fig. 9.5 for the case of EJ/ECΣ

= 1. We consider a larger than normal EJ/ECΣ
for a

CPB in anticipation of discussing the transmon later and to make the plot visually easier to
interpret.

The first observation to have about Fig. 9.5 is that the energy level spacing of the CPB
is significantly dependent on the tunable control parameter ng. For use as a qubit, the two
main operating points we are interested in are when ng is set to either integer or half-integer
values.

Beginning with ng having an integer value, it is seen that there is a large separation
between the ground (i.e., the lowest energy eigenstate) and excited states. This is useful for
initializing the system into a “simple fiducial state” (DiVincenzo’s second criteria); namely,
ensuring that the system is in the ground state prior to attempting any further operations.
This operating point is useful for this purpose because quantum systems in higher energy
states tend to “want” to decay back to their lower energy states, often by spontaneously
emitting energy into another coupled system (e.g., emitting a photon into a circuit). If we
wait long enough, we can be almost certain that our system will have emitted any energy
keeping it in its higher excited state. However, just as our system can spontaneously emit
energy, it can also spontaneously absorb energy from the environment (e.g., from thermal
fluctuations in a material). The larger the energy spacing is between two levels are, the lower
the probability is that our system will be able to absorb enough energy from the environment
to spontaneously rise to a higher state. Hence, the large level separation at integer values
of ng provides us significant protection from this spontaneous absorption process, and as a
result is a good operating point to allow our system to relax back into its ground state.
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Although this operating point can establish a good ground state, it is not useful for
qubit operations because the first two excited states have similar energies. Since this energy
difference is relatively small, it becomes much easier for the system to spontaneously absorb
enough energy from the environment to transition into the second excited state. Likewise, it
is easy to emit this energy back into the environment to transition back and forth between
the first two excited states. This causes a number of issues, but fundamentally we see that
our system is no longer reliably in the ground or first excited state, so trying to think of it
as a “qubit” that only has two important energy levels would not be appropriate.

Considering the energy level diagram of Fig. 9.5 again, it is seen that half-integer values
of ng are ideal for performing qubit operations. At these values, there is large separation
between the energy levels of the first two excited states. Further, it is seen that the energy
levels exhibit a high degree of anharmonicity here. That is, the energy levels are not evenly
spaced like a harmonic oscillator or linear resonator. As a result of these two properties,
the transition between the ground and first excited state can be selectively driven with
fast classical drives (on the order one to tens of nanoseconds) without requiring significant
filtering of the drive pulse. This allows for qubit operations to be performed very quickly,
which is attractive for building many quantum technologies.

Another point to note about Fig. 9.5 is that at the half-integer values of ng the energy
spacing between the ground and first excited state is approximately equal to EJ . Considering
this, if we use a SQUID in the CPB as opposed to a single junction we see that we will have
direct control over the transition frequency of the qubit. This is a very advantageous property
for many quantum technologies.

The final important point to note about Fig. 9.5 is that the two lowest energy levels are
locally flat at half-integer values of ng. This is important because it means that the operating
frequency of the CPB will be less sensitive to noise in the ng variable (often referred to as
charge noise). For many quantum technologies, it is extremely important that the operating
frequency of the qubit remains stable over time. If the operating frequency changes too
much, it leads to various forms of decoherence in the qubit, which essentially makes the
“phase” characterizing the state of our qubit become lost to the point that attempting to
perform any more “operations” with the qubit will be effectively meaningless. The improved
coherence of the CPB at half-integer values of ng has lead to this operating point being
known as the “sweet spot”. Operating at this point resulted in CPBs with coherence times
on the nanosecond to low microsecond scale [28]. Unfortunately, these systems were still
far too sensitive to charge noise to work as desired for many quantum technologies. The
transmon was introduced as a kind of “optimized CPB” to attempt to address this issue.

9.3.2 Introduction to the Transmon

The transmon qubit is best viewed as a CPB shunted by a capacitor that is large relative to
the stray capacitance of the Josephson junction. Recalling that ECΣ

is inversely proportional
to capacitance, this results in the characteristic ratio EJ/ECΣ

transitioning from EJ/ECΣ
≪

1 for a traditional CPB to EJ/ECΣ
≫ 1 for a transmon. Originally, the large shunting

capacitance was made using interdigital capacitors like that shown in Fig. 9.6. Now, the
shunting capacitance is more commonly implemented as a large “plus” shape (or similar
variants), as shown in Fig. 9.7, and is sometimes also referred to as an “Xmon qubit”. This
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Figure 9.6: Example of a transmon qubit where the large capacitance is formed using an
interdigital capacitor.

Figure 9.7: Image of a frequency-tunable transmon qubit: (a) the entire transmon consisting
of a large capacitance (the “+” shape) in parallel with a SQUID to the ground, (b) a zoom-in
of the SQUID, and (c) a single Josephson junction (images from [23]).

newer shape is typically favored as it provides better interconnectivity between different
parts of a design. Although the physical implementation of the transmon qubit is different
from more traditional CPB qubits, a Hamiltonian with the same form as (9.16) can still
be used to describe its behavior. Similarly, a SQUID can be used to connect the different
superconductors that make up the transmon (see Fig. 9.7), allowing the operating frequency
of the transmon to be tuned via an applied magnetic flux.

It is instructive to see how the first few energy levels of (9.16) change as a function
of EJ/ECΣ

to understand the impact of adding the large shunting capacitance around the
Josephson junction. This is shown for four different values of EJ/ECΣ

in Fig. 9.8. These
demonstrate the transition from a (close to) traditional CPB in Fig. 9.8(a) to a transmon in
Fig. 9.8(d). From Fig. 9.8, it is seen that as EJ/ECΣ

is increased, the energy levels flatten out
as a function of ng while simultaneously becoming more harmonic (closer to equally spaced
like a quantum harmonic oscillator). Importantly, the sensitivity to charge noise reduces
exponentially while the anharmonicity reduces by a weak power law. This leads to a qubit
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(a) (b)

(c) (d)

Figure 9.8: First three energy levels of the qubit Hamiltonian given in (9.16) for values of
EJ/EC ranging from the CPB regime in (a) to the transmon regime in (d). Energy levels
are normalized by the transition energy between the first two states evaluated at half-integer
values of ng (images from [23]).

that is insensitive to charge noise for practical purposes, but is still able to provide sufficient
anharmonicity to effectively act as a qubit. For reference, the main operating frequencies of
transmons range from a few GHz to 10 GHz, with anharmonicities of approximately 100 to
300 MHz. As a result, these qubits are controlled using microwave frequency transmission
lines and related techniques, which represent a mature area of electrical engineering that has
found use in many technologies over the years (e.g., communication systems, radars, etc.,
and of course... microwave ovens).

From the view of a mechanical equivalent, the transmon case is analogous to the rigid
pendulum with an very long radius. This leads to the system having significant inertia,
so that “noise” in the angular momentum won’t be able to modify the position of the
pendulum as much. For the transmon, this corresponds to insensitivity to charge noise in
the ng variable, making this only able to have a small role on the overall dynamics of the
transmon. Due to this, an applied voltage source is no longer a useful control mechanism
for a transmon, and so is omitted for practical designs.

Another effect that can be understood from the mechanical equivalent is that the pen-
dulum stays close to its equilibrium point aligned with the gravitational field (i.e., ϕ is close
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Figure 9.9: Examples of some of the main superconducting circuit artificial atoms that have
been developed to date (image from [27]).

to 0). For this operating point, the dynamics correspond to a weakly anharmonic oscillator,
which can usually be adequately described using a Taylor series including only a few terms
for the cosine potential. Recalling that this Taylor series is

cosx = 1− 1

2!
x2 +

1

4!
x4 + . . . , (9.19)

it is common to see the cosine potential replaced with the x2 and x4 terms only to gain
intuition for how the transmon will operate in certain complex scenarios (recall that the
constant term is meaningless since it will not impact the dynamics of the system).

As a result of the transmon’s resilience to charge noise (and other manufacturing and
experimental advances), the coherence times of modern transmons are able to achieve values
in the hundreds of microseconds range, representing an orders of magnitude improvement
over the best CPB qubits. However, other sources of decoherence still persist, making the
identification and reduction of decoherence still an important topic of research for this kind of
artificial atom (broadly speaking, identifying and reducing decoherence is still an important
topic of research for all artificial atoms). Despite these challenges, great accomplishments
have been achieved with transmon qubits. For instance, these qubits have been central to
many of the most successful quantum computing platforms built to date [16,29].
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9.3.3 Other Superconducting Circuit Artificial Atoms

Although transmons are one of the most popular artificial atoms currently being used, many
other superconducting circuit artificial atoms have been developed. Each has their own
unique advantages and disadvantages that must be taken into account when considering
using them in a quantum technology. We will not be able to discuss all of these different
artificial atoms, but to convey an idea of the variety we include a summary of some of the
most significant ones in Fig. 9.9.

9.4 Two-Level Systems

Previously, we discussed two different superconducting circuit artificial atoms. We saw that
they had very different properties and that their operating characteristics could often be
further modified by changing design parameters or applying different kinds of biases. These
particular artificial atoms were related to each other, so a relatively common language could
be used to discuss their commonalities and differences. However, there are many other kinds
of artificial or natural atoms that require substantially different physical equations to describe
their properties. This variety provides us with a very rich “toolbox” for choosing/designing
an (artificial) atom for a particular application, but it also becomes cumbersome when we
wish to discuss certain general or “universal” characteristics of a particular kind of technology
(e.g., general concepts of quantum computation irrespective of the exact hardware platform
being used). The standard way to handle this difficulty in physics and engineering is to
develop a kind of “abstraction” that we can use a unified language to discuss. It is then a
matter of determining how a particular physical system maps into this generalized/abstracted
framework to relate our “universal” considerations to a particular physical implementation.
Whether it is better to use the abstract or actual physical description of a system depends
on the context of what is being discussed or studied.

For atom-like systems, the most common abstract description used for them is that of a
two-level system. A two-level system is the archetypal model of a “perfect” qubit – i.e., it
contains exactly two levels that transitions can occur through via interactions with another
external system. In reality, there are extremely few physical systems that actually only
contain two levels. However, we typically consider a two-level description of an atom-like
system to be reasonable if we can find two particular levels in the overall energy spectrum
that are “well-separated” from other levels such that we can interact with them in a well-
defined manner without worrying about the broader complexity of the system. Considering
this, we will now discuss the common framework used for discussing two-level systems (and
qubits, more generally).

Unfortunately, there are actually two more-or-less identical descriptions commonly used
for two-level systems that still exist to this day. So, we will need to discuss both of these to be
able to successfully interpret many expressions. Now, the first one we will discuss is the “spin
representation” of a two-level system. We briefly discussed spin earlier in this course. As a
reminder, spin is an intrinsic property of elementary particles that has many very important
consequences on how said particles interact with one another and other systems. In the case
of electrons, the value of spin can be either +1/2 or −1/2, and so these are referred to as
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“spin 1/2” particles.
Now, spin is best thought of as providing a kind of intrinsic “internal” angular momentum

to the particle. This angular momentum can be oriented in a particular direction, and so it
becomes necessary to think of spin as also having a geometric vector associated with it in 3D
space. This angular momentum acts like a small magnetic dipole moment, and is the origin
of many magnetic effects of materials. To actually describe the spin state of an electron, it is
conventional to reference it to the z-axis of the coordinate system. We then write a general
spin state |s⟩ as

|s⟩ = c1/2|1/2⟩+ c−1/2| −1/2⟩ = c1/2|↑⟩+ c−1/2|↓⟩ =
[
c1/2
c−1/2

]
, (9.20)

where we have introduced a few commonly used notations. Most often, the | ↑⟩ or | ↓⟩
notation is used, where the arrows are meant to point “up” or “down” to correspond to the
direction the spin angular momentum vector is oriented with respect to the z-axis. It is also
very common to use a matrix notation when working with spin state vectors, where we see
in the final equality of (9.20) that the “spin-up” state coefficient is the first coefficient in the
vector.

From this description, we see that we have implied that we can express a general spin
state that could be oriented in any direction in 3D space using only vectors “pointing” in the
“up” or “down” directions. This may seem counter-intuitive at first, but it is important to
remember that these are well-defined quantum states, and so our coefficients are complex-
valued numbers subject to the normalization condition

⟨s|s⟩ = |c1/2|2 + |c−1/2|2 = 1. (9.21)

It is these properties that help these two states describe any possible spin orientation. Actu-
ally determining what combinations of coefficients will cause the spin vector to be oriented
in a particular direction is a little bit trickier to deduce. We will build up to this by first in-
troducing the operators that help “measure” the spin angular momentum along a particular
direction.

This is actually a somewhat nuanced issue to work through because spin angular mo-
mentum does not lend itself to a particular representation where it is easy to deduce the
desired operator form. However, they can be determined through an analogy to “traditional”
angular momentum operators in terms of the commutation relations that we require of the
different operators. In terms of the more common “dimensionless” form, the commutation
relations are

[σ̂x, σ̂y] = 2iσ̂z, (9.22)

[σ̂y, σ̂z] = 2iσ̂x, (9.23)

[σ̂z, σ̂x] = 2iσ̂y, (9.24)

where the operator σ̂x measures the spin along the x-axis, and similar for the other two
operators.
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There are many possible matrix representations of these operators that will be able to
satisfy these commutation relations. However, the typical representation (which we are
following) that uses the basis vectors

|↑⟩ =
[
1
0

]
, |↓⟩ =

[
0
1

]
(9.25)

corresponds to the following matrix representation:

σ̂x =

[
0 1
1 0

]
, (9.26)

σ̂y =

[
0 −i
i 0

]
, (9.27)

σ̂z =

[
1 0
0 −1

]
. (9.28)

These matrices are often referred to as Pauli spin matrices. We can write these compactly
as a vector that will be useful for “measuring” the spin angular momentum. In particular,
we have

σ̂ = x̃σ̂x + ỹσ̂y + z̃σ̂z, (9.29)

where the x̃ notation is meant to denote a unit vector along the x-axis, with similar definitions
for ỹ and z̃. We use this unconventional tilde notation to not confuse a unit vector with an
operator.

Now, we can do some basic determination of coefficients to achieve a spin state oriented
along a particular direction by looking at the eigenvectors and eigenvalues of the Pauli spin
matrices. For instance, it is easy to see that the eigenvectors of σ̂z are

|↑⟩ =
[
1
0

]
, |↓⟩ =

[
0
1

]
, (9.30)

with eigenvalues +1 and −1, respectively. Similarly, after a little matrix algebra, we can
find that the eigenvectors of σ̂x are

|±⟩ = 1√
2

(
|↑⟩ ± |↓⟩

)
(9.31)

and the eigenvalues are ±1, respectively. From this, we see that the state

|+⟩ = 1√
2

(
|↑⟩+ |↓⟩

)
(9.32)

will correspond to a spin angular momentum vector pointing in the +x-direction, and similar
for |−⟩ pointing in the −x-direction. We can also look at the eigenvectors of σ̂y, which are

| ± i⟩ = 1√
2

(
|↑⟩ ± i|↓⟩

)
. (9.33)
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Figure 9.10: Illustration of the Bloch sphere that is commonly used to visualize a general
linear combination of states in a two-level system (image modified from Wikipedia [30]).

These also have eigenvalues of ±1 and can be used to determine the combinations of |↑⟩ and
|↓⟩ to have a spin angular momentum vector pointing along the ±y-direction.

All of these different eigenvectors are useful in their own right, and play a special role in
many quantum technologies (a point we will touch on more toward the end of the course).
However, they only give us the answer to what combinations of | ↑⟩ and | ↓⟩ we need for a
spin angular momentum vector to be pointing along one of our three coordinate axes. How
do we represent a completely arbitrary direction? The most useful way to conceptualize this
geometry is through the Bloch sphere, which is shown in Fig. 9.10. The Bloch sphere is a
geometric representation of all of the valid linear combinations of | ↑⟩ and | ↓⟩. Because any
state must be normalized, we know that all the linear combinations of |↑⟩ and |↓⟩ will have
coefficients with the same “radius”, equal to 1, as highlighted in (9.21). The shape that
naturally describes this is a sphere, which we can then parameterize most easily in terms of
spherical coordinates.

Since the radius is fixed to 1, the only parameters we need to consider are the angles
θ and ϕ. Although it takes a little work to show it, we can choose a linear combination
of | ↑⟩ and | ↓⟩ in terms of these two angles such that the angles point in the direction of
spin angular momentum and also match the eigenvector definitions we had earlier in (9.30),
(9.31), and (9.33). The combination that does this is

|s⟩ = cos(θ/2)|↑⟩+ sin(θ/2)eiϕ|↓⟩. (9.34)

We can check to see if this definition matches what we were looking for in a few ways. One is
to simply do “spot” checks along the different coordinate axes to make sure they match our
eigenvectors given earlier. Another more general approach is to take the expectation value
of σ̂ with the state |s⟩. Performing the necessary algebra, we find that

⟨s|σ̂|s⟩ = x̃⟨s|σ̂x|s⟩+ ỹ⟨s|σ̂y|s⟩+ z̃⟨s|σ̂z|s⟩
= x̃ sin θ cosϕ+ ỹ sin θ sinϕ+ z̃ cos θ,

(9.35)
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which does match our usual expressions for converting from a spherical coordinate repre-
sentation of a point to a Cartesian representation. Hence, the angles θ and ϕ on the Bloch
sphere map correctly to the angle the spin angular momentum is oriented toward.

Now, returning to our original task, when we use a “spin representation” for a two-level
system we simply mean that we identify one of the two levels in the system with |↑⟩ and the
other level with | ↓⟩. This is done regardless of whether the states in our two-level system
have anything to do with spin, and is simply done in this way due to historical reasons.
Likewise, the Pauli spin matrices will still be used to compose different “operations” on the
two-level system. For instance, any change to the state of the two-level system can be viewed
as rotating our state vector on the Bloch sphere. These rotations can be described in terms
of the action of the Pauli spin matrices on a state.

Our other representation for a two-level system can be thought of as a “qubit represen-
tation”. In this case, we denote one level as the “0-state” and another as the “1-state”. In
Dirac notation, we express these as |0⟩ and |1⟩, respectively. These states are still typically
mapped onto the Bloch sphere, and utilize the same linear combination as in (9.34) to in-
terpret the location on the sphere. The particular correspondence is that | ↑⟩ → |0⟩ and
| ↓⟩ → |1⟩. Unfortunately, this convention is not followed universally, and so some works
will follow a notation of | ↑⟩ → |1⟩ and | ↓⟩ → |0⟩. As a result, one must be very careful in
interpreting or combining expressions from various sources to ensure that a consistent choice
has been made with notation.

Since it is common for a qubit to be formed by two different energy levels in an atom-like
system, it is also common to refer to the |0⟩ state as the “ground state” and the |1⟩ state as
the “excited state”. This terminology also reflects that the |0⟩ state is typically some kind
of “stable” lower energy state of the system that would be occupied in situations where the
atom-like system has not absorbed any additional energy from an external system.

In the “qubit representation”, it can also sometimes be common to use a slightly different
notation for the Pauli spin matrices. In particular, one may denote σ̂x as X̂, and likewise
interpretations for Ŷ and Ẑ. Regardless of the symbol used, the underlying matrices still
match those defined in (9.26) to (9.28). This notation is very common in quantum computing,
where one will talk about applying an “X gate” or a “Y gate”, for instance.

9.5 Practice Problems

1. Using two “resolution of the identity operator” in terms of charge states, show how
the capacitive energy part of the Cooper pair box Hamiltonian becomes

4ECΣ

(
n̂− ng

)2 → 4ECΣ

∑
N

(
N − ng

)2|N⟩⟨N |. (9.36)

Hint: To show this, you will need to put one identity operator before
(
n̂−ng

)2
and one

identity operator after this. Don’t forget that when you introduce these resolution of
the identity operators that the dummy indices for the summations *must* be different!

2. The Hamiltonian of a Cooper pair box or a transmon can be expressed in the charge
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basis as

Ĥ = 4ECΣ

∑
N

(
N − ng

)2|N⟩⟨N | − EJ
2

∑
N

(
|N⟩⟨N + 1|+ |N + 1⟩⟨N |

)
. (9.37)

Using a basis of N ∈ [−10, 10], write a computer program to form a matrix represen-
tation of this Hamiltonian operator.

(a) For EJ/ECΣ
= 0.1 (Cooper pair box regime), compute the eigenvalues and eigen-

vectors of this Hamiltonian for ng = 0 and ng = 3. Plot the probability distribu-
tion of finding that N Cooper pairs have tunneled onto/off of the superconducting
island for the first four eigenstates. That is, if the eigenstates are denoted by |ψn⟩
you should plot |⟨N |ψn⟩|2 as a function of the discrete variable N . Comment on
the effect of ng on the eigenstates.

Note: Because N is a discrete variable, these plots typically look better when
plotted as bar graphs.

(b) Repeat this analysis for a transmon with EJ/ECΣ
= 50. Comment on how the

eigenstates have changed in comparison to (a).

3. Implement a finite difference program to compute the eigenvalues and eigenvectors of
the Cooper pair box/transmon Hamiltonian in the “phase basis”. In this basis, the
phase operator φ̂ becomes a regular position variable φ and the charge operator n̂
becomes similar to the momentum operator as n̂→ −i d

dφ
. The Hamiltonian is then

Ĥ = −4ECΣ

d2

dφ2
− EJ cosφ, (9.38)

where we have set ng = 0 for simplicity. The boundary condition applicable to wave-
functions for this system is ψ(φ) = ψ(φ+2π), which is also called a periodic boundary
condition. To discretize this problem, consider the phase range φ ∈ [−π, π] and use
201 discrete points over this interval. Plot the probability distribution of the first 3
eigenfunctions of this system in the phase basis for the following cases.

(a) For EJ/ECΣ
= 0.1, the Cooper pair box regime.

(b) For EJ/ECΣ
= 50, the transmon regime.

(c) Discuss why the wavefunctions in (a) are not localized with respect to φ, but they
are for (b).

Note: Don’t forget to normalize your wavefunctions!

4. This problem considers aspects of energy level diagrams for transmon qubits that
have different kinds of SQUIDs. The case of a symmetric SQUID (both Josephson
junctions have the same Josephson energy) is illustrated in Fig. 9.11(a), while the case
of an asymmetric SQUID (the Josephson junctions have different Josephson energies)
is shown in Fig. 9.11(b).
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(a) (b)

Figure 9.11

(a) It is clear that the transition frequency tunability of a symmetric SQUID is, in
principle, far superior to that of an asymmetric SQUID. Provide at least two
reasons why this larger tuning range is not able to be realistically used when
attempting to operate the transmon with a symmetric SQUID as a qubit.

(b) What magnetic flux bias points would lead to the best qubit performance for a
transmon with an asymmetric SQUID? Which bias points would lead to the worst
qubit performance?

5. This problem considers the possibility of transitioning an artificial atom described by
the following Hamiltonian

Ĥ0 = 4EC
(
n̂− 0.5

)2 − EJ cos φ̂ (9.39)

into various energy eigenstates via an interaction with an external voltage source. The
energy eigenstates are denoted by |m⟩, wherem is an integer counting from 0 to positive
numbers that denotes the ordering of the energy eigenstates. The total Hamiltonian
for this system is

Ĥ = Ĥ0 + 2qVb(t)n̂, (9.40)

where Vb(t) is a bias voltage source. Relevant matrix elements of n̂ are given in Fig.
9.12 as a function of the characteristic ratio EJ/EC .

(a) Assume the artificial atom is operated roughly in the Cooper pair box regime
where EJ/EC ≈ 1 and that the system starts in the ground state |0⟩. Discuss
the relative difficulty of using the voltage source Vb(t) to transition the system
into the |2⟩ or |3⟩ states, where it is acceptable to get to these final eigenstates
through any number of intermediary states (i.e., a direct transition from |0⟩ to
|2⟩ or |3⟩ is not required).

181



CHAPTER 9. ARTIFICIAL ATOMS

Figure 9.12

(b) The artificial atom is now operated as a transmon where EJ/EC ≫ 1 and the
system begins in the ground state |0⟩. Describe two procedures to transition the
system into the |3⟩ state. When describing your procedures, provide qualitative
information about the pulses that will need to be applied (e.g., their sequence,
the center frequency of the pulse, the relative amplitudes of the pulses).

6. For the superposition state of a two-level system in the spin representation given by

|s⟩ = cos(θ/2)|↑⟩+ sin(θ/2)eiϕ|↓⟩, (9.41)

show that the expectation value of the spin angular momentum satisfies

⟨s|σ̂|s⟩ = x̃ sin θ cosϕ+ ỹ sin θ sinϕ+ z̃ cos θ, (9.42)

where x̃ denotes a unit vector along the x-direction of a usual 3D Cartesian coordinate
system (and similar for ỹ and z̃).
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Chapter 10

Circuit and Artificial Atom
Interactions

10.1 Introduction to Formulating the Classical Hamil-

tonian

Now that we have an understanding of the generic description of a two-level system, let’s
look at an example of how we can “map” an actual physical system into this unified picture.
Specifically, we will consider a superconducting circuit “charge qubit” (e.g., either a Cooper
pair box or a transmon) driven by a voltage source capacitively coupled to our artificial atom.
We already introduced the Hamiltonian for this situation previously, but simply stated it
as a “fact”. Later, we will want to consider how to formulate the quantized interactions
between an LC oscillator and this type of artificial atom. Considering this, we will take a
more careful look at how to formulate the Hamiltonian for our current case as a stepping
stone toward our later goals.

Towards this end, we will consider a slightly more “phenomenological” model for our
voltage source. In particular, instead of assuming it to be a perfectly ideal source from the
beginning, we will assume that it is simply a very large capacitor. Our circuit schematic for
this situation is shown in Fig. 10.1.

We can now go about formulating the Lagrangian and then the resulting Hamiltonian for
this circuit. This follows closely to the example we considered previously of two capacitively-
coupled LC oscillators. For our current situation, we can quickly determine that the La-
grangian should be

L =
1

2
C1ϕ̇

2
1 +

1

2
C2ϕ̇

2
2 +

1

2
Cc

(
ϕ̇1 − ϕ̇2

)2

+ EJ cos

(
2q

ℏ
ϕ1

)
, (10.1)

where (2q/ℏ)ϕ1 will be equal to the Josephson phase variable we previously considered for
charge qubits. We will eventually write our Hamiltonian using that kind of dimensionless
quantities, but for now we will keep everything in terms of ϕ1 and ϕ2. Also, note here that the
capacitive part of this Lagrangian exactly matches what we had for the capacitively-coupled
LC oscillators case considered previously. Considering this, we can follow a similar process
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Figure 10.1: Circuit schematic for a large capacitance (C2) capacitively-coupled to a charge
qubit.

to find our Hamiltonian, which will require us to determine the inverse of the capacitance
matrix encoded into (10.1). From our prior analysis, we can find that this will be

[C]−1 =
1

C1C2 + CcC1 + CcC2

[
C2 + Cc Cc
Cc C1 + Cc

]
. (10.2)

This inverse capacitance matrix is a bit of a “mess”, but we can simplify it by defining
a few new capacitances. In particular, we can find that the diagonal elements of the inverse
capacitance matrix are equivalent to the inverse of the total capacitance to ground seen by
our nodes that ϕ1 and ϕ2 are defined at. Explicitly, we have that the total capacitance at
nodes 1 and 2 are

CΣ1 = C1 +
CcC2

Cc + C2

(10.3)

CΣ2 = C2 +
CcC1

Cc + C1

, (10.4)

respectively. We can also define a voltage divider between the coupling capacitance Cc and
the artificial atom capacitance C1 as

β =
Cc

Cc + C1

. (10.5)

In terms of these new symbols, (10.2) becomes

[C]−1 =

[
1/CΣ1 β/CΣ2

β/CΣ2 1/CΣ2

]
. (10.6)

Defining our conjugate momenta Qj in the usual manner, we can find that our Hamilto-
nian becomes

H =
1

2CΣ1

Q2
1 − EJ cos

(
2q

ℏ
ϕ1

)
+

1

2CΣ2

Q2
2 +

β

CΣ2

Q1Q2. (10.7)
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Our manipulations up to this point have been exact. However, to simplify our expression we
will now make use of the assumption that C2 is very large compared to the other capacitances.
In this situation, we can assume that the bias voltage provided from node 2 is

Vb =
1

CΣ2

Q2. (10.8)

In terms of this, our Hamiltonian becomes

H =
1

2CΣ1

Q2
1 − EJ cos

(
2q

ℏ
ϕ1

)
+

1

2
CΣ2V

2
b + βVbQ1. (10.9)

To be more consistent with the standard description of charge qubits, we will now rewrite
Q1 and ϕ1 into their dimensionless forms as Q1 = 2qn and φ = (2q/ℏ)ϕ1. Our Hamiltonian
is now

H = 4ECn
2 − EJ cosφ+

1

2
CΣ2V

2
b + 2qβVbn, (10.10)

where EC = q2/2CΣ1 .
Next, we will consider a semiclassical treatment of this system to continue our investi-

gation. In this semiclassical picture, we will treat the Josephson junction part of the system
quantum mechanically, but assume that our bias voltage Vb is classical.

10.2 Semiclassical Treatment

Previously, we derived a classical Hamiltonian describing the circuit in Fig. 10.1 to be
(10.10). We will now consider a semiclassical treatment of this system to continue our
investigation. In this semiclassical picture, we will treat the Josephson junction part of the
system quantum mechanically, but assume that our bias voltage Vb is classical.

Our Hamiltonian in (10.10) has been written in terms of (dimensionless) conjugate vari-
ables, so we can readily quantize it as we did when originally discussing this kind of artificial
atom. We will, however, leave our Vb as a classical variable. In this case, we have the
commutation relation

[n̂, φ̂] = −i (10.11)

and our Hamiltonian operator becomes

Ĥ = 4EC n̂
2 − EJ cos φ̂+ 2qβVbn̂, (10.12)

where we have dropped the V 2
b term since this is a constant in terms of our dynamical

variables, and so, will not affect the dynamics of the system.
To describe this system in our unified spin or qubit representation, we need to determine

which quantum states will compose our two-level system. For this kind of artificial atom,
we will utilize the two lowest energy eigenstates of the Hamiltonian

Ĥ0 = 4EC n̂
2 − EJ cos φ̂ (10.13)
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to act as the levels in our two-level system. Denoting our eigenstates as |m⟩, we would find
that they must satisfy the time-independent Schrödinger equation

Ĥ0|m⟩ = ℏωm|m⟩, (10.14)

where we have elected to write the eigenvalue ωm in units of frequency. This is commonly
done when considering interactions between two different quantum systems, since as we have
seen previously, many interactions will be suppressed unless the frequencies of the systems
are nearly resonant.

If we now make the assumption that our two lowest energy levels of Ĥ0 are isolated
enough from any other energy levels of Ĥ0, then we can make our two-level approximation.
In particular, we will assume that the only states in the system that matter are the |0⟩ and
|1⟩ states of Ĥ0. We can then project the full Hamiltonian of (10.12) onto these two states.
We will denote this projected Hamiltonian as ĤTLS, which we can compute as

ĤTLS =

( 1∑
m=0

|m⟩⟨m|
)
Ĥ

( 1∑
ℓ=0

|ℓ⟩⟨ℓ|
)
. (10.15)

We can expand our terms out to facilitate evaluating ĤTLS, which gives us

ĤTLS =

(
|0⟩⟨0|+ |1⟩⟨1|

)(
Ĥ0 + 2qβVbn̂

)(
|0⟩⟨0|+ |1⟩⟨1|

)
= |0⟩⟨0|Ĥ0|0⟩⟨0|+ |1⟩⟨1|Ĥ0|1⟩⟨1|+ |0⟩⟨0|Ĥ0|1⟩⟨1|+ |1⟩⟨1|Ĥ0|0⟩⟨0|

+ 2qβVb

(
|0⟩⟨0|n̂|0⟩⟨0|+ |1⟩⟨1|n̂|1⟩⟨1|+ |0⟩⟨0|n̂|1⟩⟨1|+ |1⟩⟨1|n̂|0⟩⟨0|

)
.

(10.16)

We can simplify the terms involving Ĥ0 using properties of the eigenstates to get

ĤTLS = ℏω0|0⟩⟨0|+ ℏω1|1⟩⟨1|+ ℏVb
(
g00|0⟩⟨0|+ g11|1⟩⟨1|+ g01|0⟩⟨1|+ g10|1⟩⟨0|

)
, (10.17)

where we have also introduced the coupling factor

gmℓ = (2qβ/ℏ)⟨m|n̂|ℓ⟩. (10.18)

Although we have simplified our Hamiltonian to a large extent, (10.17) can be simplified
further by making a few assumptions about gmℓ. In particular, for many artificial atoms
(including our charge qubits), one can find that the diagonal elements like g00 and g11 will
vanish. This often happens due to underlying symmetries in the Hamiltonian Ĥ0 that cause
terms like ⟨m|n̂|m⟩ to equal 0. One further simplification is that we can also see that, in
general, gmℓ = g∗ℓm. Since there is always an arbitrary phase shift that we can apply to our
eigenstates, we can choose to make this such that g01 is real. In this case, we can simplify
our expressions by recognizing that g01 = g10 ≡ g. Applying these two simplifications to
(10.17), we get that

ĤTLS = ℏω0|0⟩⟨0|+ ℏω1|1⟩⟨1|+ ℏgVb
(
|0⟩⟨1|+ |1⟩⟨0|

)
. (10.19)
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We can write this into a matrix notation in terms of the Pauli spin matrices by shifting the
energy spectrum by a constant value of −ℏω10/2, where ω10 = ω1 − ω0, to get

ĤTLS = −1

2
ℏω10σ̂z + ℏgVb(σ̂+ + σ̂−), (10.20)

where

σ̂+ =

[
0 0
1 0

]
, σ̂− =

[
0 1
0 0

]
. (10.21)

Note that we could have written σ̂++ σ̂− = σ̂x, but we have left our Hamiltonian in terms of
σ̂+ and σ̂− for now in anticipation of some upcoming simplifications we will consider. Before
continuing, it should be mentioned that the Hamiltonian in (10.20) is more often written
with the convention that | ↑⟩ → |1⟩ and | ↓⟩ → |0⟩ so that the sign in front of σ̂z will be
positive. We have not followed that convention here to keep everything consistent with the
Bloch sphere that we are using in this course.

To gain some insight into this system, it is instructive to look at the Heisenberg equations
of motion for our various operators. Recall that these equations of motion can be computed
as

d

dt
X̂(t) =

1

iℏ
[X̂(t), ĤTLS]. (10.22)

Considering this, we will need to know the commutators between σ̂z, σ̂+, and σ̂−. These can
be found very easily using the definitions of the various matrix representations, which we
summarize as

[σ̂z, σ̂±] = ∓2σ̂±, [σ̂−, σ̂+] = σ̂z. (10.23)

Using these commutators, we find that

d

dt
σ̂z(t) = i2gVb

(
σ̂+(t)− σ̂−(t)

)
, (10.24)

d

dt
σ̂+(t) = iω10σ̂+(t) + igVbσ̂z(t), (10.25)

d

dt
σ̂−(t) = −iω10σ̂−(t)− igVbσ̂z(t). (10.26)

If we temporarily ignore the presence of the bias voltage Vb, we can see that the underlying
free oscillations of σ̂±(t) will follow σ̂±(0) exp[±iω10t] time dependence. We can utilize this
result and some judicious approximations to now rewrite (10.20) into a particularly useful
form for understanding how a classical drive can control the state of our two-level system.

To do this, we will first assume that we can control Vb as a function of time. We will
further parameterize our bias voltage as

Vb(t) =

{
Vx(t) cos(ωdt) + Vy(t) sin(ωdt), 0 < t < tg

0, otherwise,
(10.27)
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where ωd is the drive frequency and Vx(t) and Vy(t) are envelope functions that are slowly-
varying in comparison to ωd. This kind of parametrization is very commonly used, and is
known as IQ modulation. The “I” stands for “in phase” and the “Q” stands for “quadrature
phase”. These names are in reference to the two channels of our signal being multiplied
by a cosine (in-phase component) and sine (quadrature-phase component). As we will see
shortly, these two channels will act as independent control sources for our two-level system.

We can now substitute (10.27) into (10.20) to find that (assuming 0 < t < tg)

ĤTLS = −1

2
ℏω10σ̂z(t) + ℏg

(
Vx(t) cos(ωdt) + Vy(t) sin(ωdt)

)(
σ̂+(t) + σ̂−(t)

)
. (10.28)

It is now instructive to “factor out” the underlying known time variation of σ̂+(t) and σ̂−(t)
to get

ĤTLS = −1

2
ℏω10σ̂z(t) + ℏg

(
Vx(t) cos(ωdt) + Vy(t) sin(ωdt)

)(
σ̂+(t)e

iω10t + σ̂−(t)e
−iω10t

)
.

(10.29)

We can now expand cos(ωdt) and sin(ωdt) in terms of exponential functions and regroup
terms to get

ĤTLS = −1

2
ℏω10σ̂z(t) +

1

2
ℏgVx(t)

[
σ+(t)e

i(ω10−ωd)t + σ−(t)e
−i(ω10−ωd)t

]
+
i

2
ℏgVy(t)

[
σ+(t)e

i(ω10−ωd)t − σ−(t)e
−i(ω10−ωd)t

]
+

1

2
ℏgVx(t)

[
σ+(t)e

i(ω10+ωd)t + σ−(t)e
−i(ω10+ωd)t

]
− i

2
ℏgVy(t)

[
σ+(t)e

i(ω10+ωd)t − σ−(t)e
−i(ω10+ωd)t

]
. (10.30)

Although this expression is somewhat messy, the purpose of expanding terms in this way was
to help us recognize that if we make ωd ≈ ω10 then we can see that terms that are multiplied
by exp[±i(ω10−ωd)t] will be very slowly-varying, while terms multiplied by exp[±i(ω10+ωd)t]
will be oscillating extremely quickly in comparison.

We can now make a very common approximation, known as the rotating wave approxi-
mation (RWA), and say that terms multiplied by exp[±i(ω10+ωd)t] oscillate so quickly that
over any “appreciable” time scale that we observe the system over these terms will have
oscillated so many times that their contribution effectively averages to 0. Due to this, we
can choose to simply neglect these terms entirely and write our Hamiltonian as

ĤTLS,RWA = −1

2
ℏω10σ̂z(t) +

1

2
ℏgVx(t)

[
σ+(t)e

i(ω10−ωd)t + σ−(t)e
−i(ω10−ωd)t

]
+
i

2
ℏgVy(t)

[
σ+(t)e

i(ω10−ωd)t − σ−(t)e
−i(ω10−ωd)t

]
. (10.31)

(If you are uncomfortable with this approximation, jump ahead to Fig. 10.2 to see the impact
of these quickly-varying terms on the dynamics of the system for a practical scenario.) We
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can further move to a “rotating frame” to view the dynamics relative to our drive frequency.
We will omit the details here for brevity, but this leads to the Hamiltonian

ĤTLS,RWA = −1

2
ℏδσ̂z(t) +

1

2
ℏgVx(t)

[
σ+(t) + σ−(t)

]
+
i

2
ℏgVy(t)

[
σ+(t)− σ−(t)

]
, (10.32)

where δ = ω10 − ωd and we have embedded the underlying free oscillating time dependence
back into σ±(t). We can further write this Hamiltonian purely in terms of our original Pauli
spin matrices to see that

ĤTLS,RWA = −1

2
ℏδσ̂z(t) +

1

2
ℏgVx(t)σ̂x(t) +

1

2
ℏgVy(t)σ̂y(t). (10.33)

As alluded to previously, we can now see that our Vx and Vy can be used to independently
control the σ̂x and σ̂y terms in the Hamiltonian.

10.2.1 Driven Rabi Oscillations

We now wish to see what applying a drive on one of our channels will do to the state of
the two-level system. We can determine this by solving the time-dependent Schrödinger
equation for the Hamiltonian (10.33) written back in the Schrödinger picture. To simplify
the analysis, we will assume that our drive is perfectly resonant with the transition frequency
ω10 of the two-level system (i.e. δ = 0) and that we only have a drive on the Vx channel.
Our Hamiltonian then becomes

Ĥ =
1

2
ℏgVx(t)σ̂x. (10.34)

We can now expand the time-dependent Schrödinger equation in terms of the states of the
two-level system. We will find in a matrix notation that the time-dependent Schrödinger
equation becomes

iℏ
d

dt

{
c0(t)
c1(t)

}
= Ĥ

{
c0(t)
c1(t)

}
. (10.35)

From this, we see that our system corresponds to two ordinary differential equations for our
two expansion coefficients as

ċ0(t) = − i

2
gVx(t)c1(t) (10.36)

ċ1(t) = − i

2
gVx(t)c0(t). (10.37)

Note that these equations take this simple form because of the off-diagonal nature of σ̂x.
To gain more insight into the basic behavior of these equations, it is instructive to assume

that we leave our envelope function Vx(t) to be equal to some constant for an “extended”
period of time. If we assume this constant is Vx,0 then our equations simplify to

ċ0(t) = − i

2
gVx,0c1(t), (10.38)
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ċ1(t) = − i

2
gVx,0c0(t). (10.39)

We can solve these equations by differentiating (10.38) and substituting in from (10.39) to
get

c̈0(t) +

(
gVx,0
2

)2

c0(t) = 0. (10.40)

This equation describes simple sinusoidal oscillations with frequency gVx,0/2. If we set as
initial condition that c0(0) = 1 and c1(0) = 0, then we can determine that the solution is

c0(t) = cos

(
gVx,0
2

t

)
, (10.41)

c1(t) = −i sin
(
gVx,0
2

t

)
. (10.42)

There are a few points of interest that we can note from (10.41) and (10.42). First, if we
look at the probability of the states being occupied we find that

|c0(t)|2 = cos2
(
gVx,0
2

t

)
, (10.43)

|c1(t)|2 = sin2

(
gVx,0
2

t

)
. (10.44)

We see that our system smoothly oscillates back and forth between being in the ground
and excited states, with a frequency set by the coupling between our source and the two-
level system and the amplitude of our drive. These oscillations are known as driven Rabi
oscillations, and the parameter gVx,0 is typically referred to as the Rabi frequency and is
often denoted as ΩR.

Another interesting point to note is the trajectory of these oscillations on the Bloch
sphere. We can see that if we let t = (1/ΩR) π/2 then our system will be in the state
|− i⟩ = 1

√
2(|0⟩− i|1⟩). If we allow the oscillation to continue to t = (1/ΩR) π we find we are

in state |1⟩ (up to an unimportant phase factor). We see that these oscillations appear to
be causing a counterclockwise rotation around the +x-axis of our state vector on the Bloch
sphere, which can be confirmed from a more detailed analysis. Hence, we see that driving
our channel “connected” to σ̂x leads to rotations around the +x-axis. A similar analysis can
be performed to see that driving the channel “connected” to σ̂y will drive counterclockwise
rotations around the +y-axis.

For practical purposes, it is undesirable to try and control a two-level system by simply
leaving a purely sinusoidal drive on for some amount of time to achieve the desired rotation
on the Bloch sphere. If we allow the pulse envelope function to take on more arbitrary
shapes, it becomes convenient to define the pulse area of the envelope as

Θ(t) = gV0

ˆ t

0

s(t′)dt′, (10.45)
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where V0 is our amplitude and s(t) defines the pulse shape. If we design our parameters
such that the total area of the pulse gives us Θ = π, then this pulse will drive a rotation
on the Bloch sphere of π degrees around the axis the pulse was “connected” to (e.g., x- or
y-axes). This is often referred to as a π-pulse, and can be used to take a starting state of
|0⟩ and transition it to |1⟩ (or vice-versa). Similarly, a π/2-pulse is also commonly used,
which would rotate the state |0⟩ into one of the states |±⟩ or |± i⟩, depending on the specific
settings of the pulse. These are equal superposition states that exist on the “equator” of the
Bloch sphere, and play very important roles in many quantum computing algorithms.

10.2.2 A Brief Note on the Rotating Wave Approximation

Before concluding our discussion on this semiclassical treatment, it is worth revisiting the
rotating wave approximation (RWA) briefly. The first time this is seen it often comes across
in a somewhat mysterious way that can raise questions on the validity of it. In a general
scenario, it can sometimes be difficult to determine whether the RWA is valid or not. Further,
when we look at the fully-quantized description of a circuit interaction with a two-level
system, we will see that the terms that would be discarded if we make the RWA describe
somewhat unintuitive physical processes. To partially put minds at ease, we include here
the full solution of a semiclassical model that does not make the RWA for an approximately
resonant π-pulse drive of a two-level system. The results are shown in Fig. 10.2. We see
that if we zoom in very close to a particular trace (this is shown in the inset of the figure)
that there are actually some small amplitude oscillations superimposed on the slowly-varying
trace. These quicker oscillations have a frequency of 2ω10, and constitute the contribution
of the counter-rotating wave terms. Clearly, for this situation these effects are very small,
and so are unnecessary to be considered to grasp the core physics of this system. However,
if we need to be extremely precise in our calculations (which can certainly be necessary
for emerging quantum technologies), then we may certainly need to consider the full model
rather than only considering a system that has used the RWA.

10.3 Introduction to Fully-Quantized Circuit and Ar-

tificial Atom Interactions

Previously, we looked at how we could map an actual physical system of a charge qubit
being driven by a classical voltage source onto a semiclassical model of a two-level system.
We will now build on this example by considering a fully-quantized model of a charge qubit
interacting with a quantum LC oscillator. The circuit schematic of the system we will
consider is shown in Fig. 10.3. As with previous examples, we will begin with a classical
description of this system and then quantize it through a canonical quantization procedure.

Considering this, our first step is to write down the classical Lagrangian for the circuit
shown in Fig. 10.3. This can be done easily building on our prior semiclassical analysis, and
gives us

L =
1

2
C1ϕ̇

2
1 + EJ cos

(
2q

ℏ
ϕ1

)
+

1

2
C2ϕ̇

2
2 −

1

2L2

ϕ2
2 +

1

2
Cc

(
ϕ̇1 − ϕ̇2

)2

. (10.46)
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Figure 10.2: Results of an approximately resonant π-pulse for a semiclassical model of a
two-level system that does not make the RWA. The impact of the counter-rotating terms
are shown in the inset, where it is seen that they make only a very small contribution to the
overall result.

Figure 10.3: Circuit schematic for a LC tank circuit capacitively-coupled to a charge qubit.

The capacitance matrix for this system is identical to the cases we have considered previously,
so we sill have that the inverse capacitance matrix that helps us convert between generalized
“velocities” ϕ̇j to conjugate momenta Qj will be

[C]−1 =

[
1/CΣ1 β/CΣ2

β/CΣ2 1/CΣ2

]
. (10.47)

Recall that our CΣj
’s were the total capacitance to ground at nodes 1 and 2, which are

CΣ1 = C1 +
CcC2

Cc + C2

, (10.48)
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CΣ2 = C2 +
CcC1

Cc + C1

, (10.49)

respectively, and that β was a voltage divider between the coupling capacitance Cc and the
artificial atom capacitance C1, given as

β =
Cc

Cc + C1

. (10.50)

Using these relationships, we can find our total Hamiltonian for this system. In our
current case, this is

H =
1

2CΣ1

Q2
1 − EJ cos

(
2q

ℏ
ϕ1

)
+

1

2CΣ2

Q2
2 +

1

2L2

ϕ2
2 +

β

CΣ2

Q1Q2. (10.51)

We can introduce the usual dimensionless parameters for the quantities related to the charge
qubit to rewrite this as

H = 4ECn
2 − EJ cosφ+

1

2CΣ2

Q2
2 +

1

2L2

ϕ2
2 +

2qβ

CΣ2

nQ2. (10.52)

We will now consider the full quantization of this Hamiltonian.

10.3.1 Quantum Treatment

We can now perform a canonical quantization on our system easily since we have written the
Hamiltonian in appropriate conjugate functions. Hence, we promote n and φ to be quantum
operators with commutation relation

[n̂, φ̂] = −i (10.53)

and promote ϕ2 and Q2 to be quantum operators with commutation relation

[Q̂2, ϕ̂2] = −iℏ. (10.54)

Our Hamiltonian operator then becomes

Ĥ = 4EC n̂
2 − EJ cos φ̂+

1

2CΣ2

Q̂2
2 +

1

2L2

ϕ̂2
2 +

2qβ

CΣ2

n̂Q̂2. (10.55)

In many cases, attempting to work directly with (10.55) is not particularly advantageous.
To gain more insight into some of the fundamental physical processes that can occur in this
quantized system, it is useful to recast our Hamiltonian in terms of different operators. To
begin, we will follow the example of our semiclassical analysis and rewrite the charge qubit
part of our Hamiltonian in terms of it’s energy eigenstates so that we can utilize a generic
two-level system representation for it. Making the same assumptions as in our previous
analysis, we can modify (10.55) to become

Ĥ = −1

2
ℏω10σ̂z +

1

2CΣ2

Q̂2
2 +

1

2L2

ϕ̂2
2 +

2qβ

CΣ2

⟨0|n̂|1⟩Q̂2

(
σ̂+ + σ̂−

)
. (10.56)

193



CHAPTER 10. CIRCUIT AND ARTIFICIAL ATOM INTERACTIONS

Recall that ω10 is the frequency associated with the transition between the ground and first
excited state of the charge qubit and that we have assumed our charge operator n̂ does not
have diagonal matrix elements (i.e., ⟨m|n̂|m⟩ = 0, ∀m) and that we have selected phase
shifts in our definitions of the eigenstates such that ⟨0|n̂|1⟩ = ⟨1|n̂|0⟩.

Likewise, we can rewrite the operators of the LC tank circuit in terms of the bosonic
ladder operators for this quantum LC oscillator. For this circuit, we will write these in the
slightly different form as

â =
1√

2CΣ2ℏωr
Q̂2 + i

1√
2Lℏωr

ϕ̂2, (10.57)

â† =
1√

2CΣ2ℏωr
Q̂2 − i

1√
2Lℏωr

ϕ̂2, (10.58)

where ωr = 1/
√
LCΣ2 . The reason for this shift in definition is mostly “cosmetic”, it will

causes the signs of later expressions to more closely match those of an extremely widely-
used Hamiltonian. Regardless, these operators still obey the usual commutation relation
[â, â†] = 1. In terms of these operators, we can also express the LC charge operator as

Q̂2 = QZPF(â+ â†) (10.59)

where

QZPF =

√
CΣ2ℏωr

2
. (10.60)

Using these various results, we can now write (10.56) as

Ĥ = −1

2
ℏω10σ̂z + ℏωrâ†â+

2qβ

CΣ2

QZPF⟨0|n̂|1⟩
(
â+ â†

)(
σ̂+ + σ̂−

)
, (10.61)

where we have dropped the zero point energy of the LC oscillator because it does not change
the dynamics of the physical system that we are interested in. It is customary to consolidate
the constant factors that define the strength of the overall interaction between the two-level
system and the LC oscillator into a single parameter, typically denoted as g. In our current
case, we would have that

g =
2qβVZPF

ℏ
⟨0|n̂|1⟩, (10.62)

where we have also redefined the zero-point fluctuations in terms of the voltage in the LC
oscillator as

VZPF =

√
ℏωr
2CΣ2

. (10.63)

Hence, we can rewrite our Hamiltonian of (10.61) as

Ĥ = −1

2
ℏω10σ̂z + ℏωrâ†â+ ℏg

(
â+ â†

)(
σ̂+ + σ̂−

)
. (10.64)
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This Hamiltonian is often used in what is referred to as the quantum Rabi model.
Before moving on, it is useful to recall a few details about working with a Hamiltonian

like this one that is “composed” of Hamiltonians from different subsystems. We already
discussed these points with respect to the quantum analysis of two capacitively-coupled LC
oscillators, but it will be useful to revisit them in the context of the current system. First,
we need to consider again how we will express the quantum state of the system. From the
form of the operators we have written (10.64) in terms of, it seems clear that we will express
the state of the charge qubit in terms of a ground and excited state of the two-level system
and the state of the LC oscillator in terms of number or Fock states. Considering this, we
write the complete state of the system in terms of the tensor product of the states of the
individual systems. In abstract notation, we would write this as

H = HTLS ⊗HLC, (10.65)

where HTLS is the Hilbert space of the two-level system and HLC is the Hilbert space of the
LC oscillator. To help with differentiating the notation of the different subsystems, we will
choose to write the states of the two-level system as

HTLS = {|g⟩, |e⟩}, (10.66)

where |g⟩ is the ground and |e⟩ is the excited state of the two-level system. We can then
use our traditional number or Fock state notation to denote the states of the LC oscillator
without any ambiguity. As an example, the state |g, 3⟩ of the composite system would denote
that the two-level system is in its ground state and that there are three photons in the LC
oscillator. Finally, it is useful to recall that the operators from the different Hilbert spaces
HTLS and HLC still only operate on the portion of the quantum state that is defined within
that respective Hilbert space.

Now, we can return to the quantum Rabi model of (10.64) and expand the various terms
in the interaction part of the Hamiltonian to consider them further. In particular, we get
that

Ĥ = −1

2
ℏω10σ̂z + ℏωrâ†â+ ℏg

[
âσ̂+ + â†σ̂− + â†σ̂+ + âσ̂−

]
. (10.67)

To gain more insight into the relative importance of the various interaction terms, it is in-
structive to temporarily “factor out” the underlying time variation of the different operators.
Recall that for the two-level system operators, we had that the free oscillations of σ̂± will
follow exp[±iω10t]. We have also previously done this kind of analysis for â and â†, with the
results being their respective free oscillations follow exp[−iωrt] and exp[iωrt]. With this in
mind, we write these dependencies into our Hamiltonian to get

Ĥ = −1

2
ℏω10σ̂z + ℏωrâ†â+ ℏg

[
âσ̂+e

i(ω10−ωr)t + â†σ̂−e
−i(ω10−ωr)t

+ â†σ̂+e
i(ω10+ωr)t + âσ̂−e

−i(ω10+ωr)t

]
. (10.68)

Just like with the semiclassical analysis, we see that if we have a near resonance situation
(i.e., ωr ≈ ω10) then terms with exp[±i(ω10 − ωr)t] dependence will oscillate very slowly in
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comparison to terms with exp[±i(ω10 + ωr)t] dependence. These quickly oscillating terms
are usually highly suppressed in this situation, allowing us to neglect them in our analysis.
We still refer to this as the rotating wave approximation (RWA) in this context. Making the
RWA and embedding the time dependence back into the operators finally gives us

Ĥ = −1

2
ℏω10σ̂z + ℏωrâ†â+ ℏg

(
âσ̂+ + â†σ̂−

)
. (10.69)

This Hamiltonian is one of the most widely-studied Hamiltonians in the design of quantum
technology, and is referred to as the Jaynes-Cummings model.

10.3.2 Vacuum Rabi Oscillations

The Jaynes-Cummings model is so widely studied because it is very useful in describing many
practical effects in the field of cavity quantum electrodynamics (QED). In cavity QED, one
is typically interested in analyzing the quantum interactions between an (artificial) atom
and an electromagnetic cavity. An electromagnetic cavity can take many different forms,
but fundamentally it is a kind of resonator, just like our LC resonator. These systems
have been investigated so thoroughly because they provide us with a well-controlled setting
to investigate and harness fundamental properties of these quantum interactions. These
properties form the foundation of many emerging quantum technologies because they can
be used to generate and process quantum information. We will return to considering what
one can do with quantum information later in the course. For now, we will look at one
particularly important and simple effects described by the Jaynes-Cummings model – vacuum
Rabi oscillations.

This is an analogue to the driven Rabi oscillations we considered earlier for a semiclassical
system. There we saw that we could apply a classical driving field to the two-level system to
cause the state of the two-level system to oscillate between being in the ground and excited
state. Vacuum Rabi oscillations are similar, but now can occur with no classical drive. In
particular, if we have the two-level system start in its excited state we will find that that the
excitation in the system coherently oscillates back and forth between being in the two-level
system and being in the LC oscillator. To describe this effect mathematically, we will follow
a somewhat different approach to what we did when discussing driven Rabi oscillations.

In particular, we will begin by simplifying our analysis to assume that there is only a single
quanta in our system and that our two subsystems are resonant such that ω10 = ωr = ω0.
Since there is only one quanta in our system, the only two states that we need to consider
are |g, 1⟩ and |e, 0⟩. We can now find the matrix representation of the Jaynes-Cummings
Hamiltonian given in (10.69) in terms of these two states, which is

[H] =

[
1
2
ℏω0 ℏg
ℏg 1

2
ℏω0

]
, (10.70)

where we have considered our first state to be |g, 1⟩ and our second state to be |e, 0⟩. We
can now look for the eigenvectors and eigenvalues of this matrix, which we can then consider
to be the energy eigenstates of our composite system. These can be found quite easily, and
are

|ψ±⟩ =
1√
2
(|e, 0⟩ ± |g, 1⟩), (10.71)
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E± = ℏ
(
1

2
ω0 ± g

)
. (10.72)

We see that in our original basis of |g, 1⟩ and |e, 0⟩ we had two degenerate states as evidenced
by the identical diagonal elements in (10.70), but that due to the presence of the interaction
(off-diagonal elements in the Hamiltonian) our new energy eigenstates are no long degenerate.
This is usually referred to as having the interaction lift the degeneracy in the original basis,
with a level splitting given by 2g.

Now that we have the energy eigenstates of our composite system, we can use them to see
the vacuum Rabi oscillation effect. From our earlier discussion, we wish to have our system
begin in the excited state of the two-level system. We can describe this starting state as a
superposition of our two energy eigenstates |ψ±⟩ as

|ψ(0)⟩ = 1√
2

(
|ψ+⟩+ |ψ−⟩

)
= |e, 0⟩. (10.73)

Recalling our knowledge of how superpositions of energy eigenstates evolve in time through
the time-dependent Schrödinger equation, we find that our time dependent state will be

|ψ(t)⟩ = 1√
2

(
|ψ+⟩e−i(E+/ℏ)t + |ψ−⟩e−i(E−/ℏ)t

)
. (10.74)

To see what the time dependence looks like in terms of our original states |g, 1⟩ and |e, 0⟩ of
the composite system, we can expand the energy eigenstates in (10.74) as

|ψ(t)⟩ = 1

2

(
|e, 0⟩

{
e−i(E+/ℏ)t + e−i(E−/ℏ)t

}
+ |g, 1⟩

{
e−i(E+/ℏ)t − e−i(E−/ℏ)t

})
. (10.75)

We can simplify this expression further by substituting in explicitly for the energy eigenvalues
E±. This allows us to get

|ψ(t)⟩ = 1

2
e−i(ω0/2)t

(
|e, 0⟩

{
e−igt + eigt

}
+ |g, 1⟩

{
e−igt − eigt

})
= e−i(ω0/2)t

(
cos(gt)|e, 0⟩ − i sin(gt)|g, 1⟩

)
.

(10.76)

We can finally look at the probabilities of finding the quanta of the system in |g, 1⟩ or |e, 0⟩
as

Pe(t) = |⟨e, 0|ψ(t)⟩|2 = cos2(gt), (10.77)

Pg(t) = |⟨g, 1|ψ(t)⟩|2 = sin2(gt). (10.78)

As promised, the system oscillates back and forth between the quanta being in the two-level
system or in the LC oscillator with a frequency given by the coupling strength g. Hence,
stronger coupling between the subsystems allows for the swapping of excitations to occur
more rapidly.
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Although we restricted our analysis to only a single quanta in the composite system, a
similar effect will be seen for larger numbers of quanta. In particular, because the two-level
system can only absorb one quanta at a time the Jaynes-Cummings model can only describe
transitions between “nearest-neighbor” excitation numbers in the LC oscillator. As a result,
it is possible to repeat our prior analysis for various subspaces of possible quantum states
that are able to interact with each other through the Jaynes-Cummings Hamiltonian. What
one sees is that the degenerate states continue to be split, but that due to larger photon
occupation numbers the splitting grows as the number of photons grows. This is illustrated
in Fig. 10.4, which is often referred to as the Jaynes-Cummings ladder in analogy to the
“ladder” of energy states described by a quantum harmonic oscillator. Regardless, the energy
eigenstates still consist of symmetric and antisymmetric combinations of the original states
of the composite system, like those described in (10.71). These states are often referred to as
dressed states, with the original states of the uncoupled system referred to as bare states. We
see that the dressed states, which are the true “excitations” of the coupled system, are no
longer a photon or a two-level system, but instead are compositions of these notions. Hence,
if our system is strongly coupled to the point where these effects are occurring, it can become
difficult to try and “hang onto” our notions of the states of the individual subsystems in
thinking about the physics of the coupled system.

10.4 Spontaneous and Stimulated Emission

We will now discuss two very important effects that arise due to the interactions between a
circuit and artificial atom. Namely, spontaneous and stimulated emission. Although these
effects can certainly happen in the context of a circuit and artificial atom, they are often
more readily thought of in terms of an atom interacting with an electromagnetic field. We
will continue to use our circuit picture for consistency, but some of the circuits we need to
consider may be on the more “abstract” side.

10.4.1 Spontaneous Emission

We will discuss spontaneous emission in the context of time-dependent perturbation theory
that we considered previously. We will now focus on adapting our time-dependent pertur-
bation theory to the current situation of a quantum LC oscillator coupled to an artificial
atom. For simplicity, we will still treat the artificial atom as a two-level system, although
these considerations can be extended to handle the more complicated level structure of an
actual artificial atom.

Now, following the time-dependent perturbation theory approach, we need to identify a
part of the Hamiltonian as the “unperturbed” part and the remainder as the “perturbation”.
For our current system, it becomes useful to consider the “unperturbed” part of the Jaynes-
Cummings Hamiltonian to be

Ĥo = −1

2
ℏω10σ̂z + ℏωrâ†â (10.79)
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Figure 10.4: The generation of the Jaynes-Cummings ladder. On the left (right), is the
energy levels for the composite system when the two-level system is in its ground (excited)
state. We see that there are always two degenerate states at every “rung” of these two bare
energy spectra. The interaction between these states through the Jaynes-Cummings model
leads to a lifting of the degeneracy, with the amount of splitting dependent on the number of
quanta in the system. The resulting Jaynes-Cummings ladder, which describes the spectra
of the actual coupled system, is shown in the middle of the figure.

and the “perturbation” to be the interaction terms given by

Ĥp = ℏg
(
âσ̂+ + â†σ̂−

)
. (10.80)

The eigenstates of Ĥo that we will describe the perturbation processes through are then
|g,m⟩ and |e,m′⟩, where m and m′ will be the number of photons in the LC oscillator.

We can now follow the typical time-dependent perturbation theory process and find that
the first-order change in the unperturbed states of the system will be given by

ċ(1)q ≈ 1

iℏ
∑
m

c(0)m e−i(Em−Eq)t/ℏ⟨ψq|Ĥp|ψm⟩, (10.81)

where Em and Eq are the total energies of the complete state of the system (two-level system
plus LC oscillator) described by |ψm⟩ and |ψq⟩, respectively. Now, because we are not able
to “switch” off the interaction in this case (because it is not due to some external drive that
we control), it becomes sensible to look at a transition rate in the manner of Fermi’s golden
rule. We can proceed with the same basic steps and find that for our particular case the
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transition rate from state |ψm⟩ to state |ψq⟩ is

wqm =
2π

ℏ
|⟨ψq|Ĥp|ψm⟩|2δ(Em − Eq) (10.82)

To describe the spontaneous emission process, we need to look at the case where the
two-level system is in the excited state and there are no photons in the oscillator. Hence, we
have that |ψm⟩ = |e, 0⟩. We can now see how Ĥp operates on this state to gain insight into
which output states will be relevant to consider. We find that

Ĥp|ψm⟩ = ℏgâσ̂+|e, 0⟩+ ℏgâ†σ̂−|e, 0⟩ = ℏg|g, 1⟩. (10.83)

Considering this, the state that we need to consider for |ψq⟩ that this process will be able to
create an appreciable transition probability to will be |g, 1⟩. However, this will only be able
to occur if the LC oscillator and two-level system are resonant. This ensures that Eq = ℏω10

will equal Em = ℏωr so that the delta function in (10.82) will be “non-zero”. We then see
that the transition rate for spontaneous emission is proportional to g2.

Before continuing on, it is important to emphasize an important nuance about this effect.
In particular, spontaneous emission is a purely quantum process. What we mean by this is
that if we had not quantized our LC oscillator then there would be no Ĥp for the two-level
system to decay through. Instead, it would be in an eigenstate of the two-level system and
would then stay there indefinitely according to the time-dependent Schrödinger equation.
Along these lines, we can interpret spontaneous emission occurring as being due to vacuum
fluctuations in the LC oscillator. These vacuum fluctuations are constantly “interacting”
with the two-level system, providing an avenue for emission to occur. In this perspective, we
can actually think of spontaneous emission as being a kind of “stimulated emission” that is
being stimulated through the vacuum fluctuations of the LC oscillator. Finally, it is worth
noting that most of the light that we interact with on a day-to-day basis is actually due to
spontaneous emission.

10.4.2 Stimulated Emission

We have already discussed stimulated emission at a high-level when we introduced time-
dependent perturbation theory. We will now consider it for our current situation of a quan-
tum LC oscillator coupled to a two-level system.

To describe the stimulated emission process, we need to look at the case where the two-
level system is in the excited state and there is at least one photon in the oscillator. For
simplicity, we will consider this particular situation, hence, |ψm⟩ = |e, 1⟩. We can now see
how Ĥp operates on this state to gain insight into which output states will be relevant to
consider. We find that

Ĥp|ψm⟩ = ℏgâσ̂+|e, 1⟩+ ℏgâ†σ̂−|e, 1⟩ = ℏ
√
2g|g, 2⟩. (10.84)

Considering this, the state that we need to consider for |ψq⟩ that this process will be able
to create an appreciable transition probability to will be |g, 2⟩. We note again that for the
delta function in (10.82) to be “non-zero” we need the two-level system and LC oscillator to
be resonant.
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It is interesting to note that the transition rate for stimulated emission is proportional
to 2g2 when there was only a single photon in the LC oscillator. We can readily see from
the properties of the ladder operators that as we increase the number of photons in the
LC oscillator, this will continue to increase the transition rate to mg2 for m − 1 photons
beginning in the LC oscillator. We can compare this to the spontaneous emission rate of g2

to see that the presence of a photon has actually enhanced the probability of the two-level
system emitting a photon. This is the origin of the name stimulated emission, since the
presence of the photon is stimulating the two-level system to be more likely to emit another
photon.

We are now in a position to have a basic understanding of how a laser works. As men-
tioned previously, the term laser is actually an acronym that stands for “light amplification
by stimulated emission of radiation”. The idea is that if we put a single photon into an
oscillator that is connected to a large number of (artificial) atoms (shown in Fig. 10.5) in
their excited states then stimulated emission will cause a cascade of emission processes to
occur. For instance, we can consider the first photon to interact with a particular atom that
stimulates the emission of a second photon. These two photons can then interact with two
additional atoms, causing 2 more photons to be emitted, bringing us to a total of 4 photons.
This process can continue until we have a very large number of photons.

Although this is the basic idea, there are many other important considerations that go
into achieving successful laser operation (often referred to as lasing). For instance, once an
atom has emitted a photon it is now in the ground state. As a result, it is possible for it
to absorb a photon out of our oscillator and reduce our total number of photons. Hence,
there is a kind of “damping” to the laser amplification due to the natural interaction with
the atoms in the system. Considering this, it is essential that we are able to maintain our
system in an overall state where there are more atoms in the excited state than the ground
state. This is referred to as population inversion.

How do we maintain population inversion if we are constantly stimulating the atoms to
emit photons? The answer lies in pumping the atoms with some other energy source. As
is the case with any amplification process, there is “no free lunch”. We have to expend
energy in some other form to ensure that the atoms are in their excited state, and we must
continue doing this during the laser operation to maintain population inversion. The exact
way that this pumping is done depends on the specific design of the laser, and many different
approaches have been developed. Overall, there is usually a delicate balance in achieving
lasing that requires careful engineering of a system to ensure successful operation.

Although many different pumping approaches have been developed, it is often the case
that the most useful “atoms” for use in a laser will actually require more than two levels.
The idea is that we can pump the systems into a third level that is higher than the excited
state that we will interact with for stimulated emission. The most useful third level is one
that has some other natural relaxation process that will occur quickly to cause the system
to drop into the desired excited state. Having this third state not be resonant with our
stimulated emission process is beneficial so that whatever we use for our pump will not be in
the same spectral location as the signal emitted from the laser. This results in a purer laser
signal, which is often a priority for many applications that utilize lasers. In reality, actual
physical systems may not have such a convenient “third level” to be used in the laser, and
so more complicated schemes may be utilized (e.g., ones with four levels, etc.).
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Figure 10.5: Schematic of a “circuit laser” where an LC oscillator is coupled to a large
number of artificial atoms.

10.4.3 Purcell Effect

Our treatment of spontaneous emission made it clear that this rate depends on the interaction
Hamiltonian between the artificial atom and the LC oscillator. However, this link was not
always so obvious, and so for many years it was originally thought that the spontaneous
emission rate of an atom was an intrisic property of the system. That this notion persisted
for quite some time was mostly due to the fact that spontaneous emission was mainly able to
be investigated experimentally in the form of a collection of atoms in “free space” (i.e., more
or less in empty air rather than in a heavily-engineered system). However, later studies and
theoretical analysis made it clear that the spontaneous emission rate is actually an extrinsic
property that depends on details of the system that the atom is coupled to. This is often
referred to as the Purcell effect, and is an important effect because it makes it clear that we
can engineer our systems in particular ways to suppress or enhance the spontaneous emission
rate.

Now, we will not go into detail on how to derive the specific form of the Purcell effect for
a particular system. Instead, we will simply comment on the overall result in the context
of circuits and look at some simple examples. Overall, one of the very important aspects of
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Figure 10.6: Generic representation of a charge qubit capacitively coupled to an environment
represented by Z.

the Purcell effect is that it links the spontaneous emission rate (a purely quantum effect) to
classical properties of the system the atom is coupled to. Typical terminology would refer
to the system the atom is coupled to as the environment.

In the case of a charge qubit with qubit capacitance Cq, we can consider the environment
to be represented as a general impedance Z that the qubit is capacitively coupled to, as
illustrated in Fig. 10.6. One then finds that the relaxation time T1 of the qubit (which is the
inverse of the spontaneous emission rate) is given by the classical decay time of the qubit
capacitance, i.e., ReqCq, where Req = 1/Re{Yeq} and Yeq is the equivalent admittance of the
environment and coupling capacitance across the terminals of Cq [31].

As an example, we can consider that the environment is simply a resistor R0. This is
a good representation of an “open” environment from the perspective of the qubit because
the dissipation of the resistor means that the excitation of the qubit will effectively be
“lost” to the environment once it has been emitted. If the environment were instead an LC
oscillator, we would have a more complicated situation where the quanta emitted into the
LC oscillator could potentially be absorbed back by the charge qubit, like in the vacuum
Rabi oscillations we considered previously. It should be noted, however, that the case of
vacuum Rabi oscillations occur when the qubit and LC oscillator are strongly coupled to
each other. In that case, the assumptions built into our time-dependent perturbation theory
treatment arriving at the spontaneous emission rate through Fermi’s golden rule would have
broken down so that our current analysis would no longer be applicable.

For now, we just need to determine the equivalent admittance seen by the qubit capac-
itance. For the circuit in Fig. 10.6 with Z = R0, we would have Yeq being given by the
series combination of the coupling capacitance Cc and the terminating resistance R0. The
equivalent impedance in this case can be easily found to be

Zeq = R0 +
1

iωCc
, (10.85)

so that the equivalent admittance is

Yeq = 1/Zeq =
iωCc

1 + iωR0Cc
. (10.86)
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Figure 10.7: Schematic of a charge qubit capacitively coupled to an LC oscillator that is
then coupled to the environment.

With a little more algebra, we can find that the real part of the admittance is then

Re{Yeq} =
ω2R0C

2
c

1 + (ωR0Cc)2
. (10.87)

To arrive at a bit simpler result, it is useful to consider some relevant values for actual
physical systems. In these, the qubit capacitance will typically be in the tens of femtofarad
range, with the coupling capacitance some fraction of that. The environmental resistance
is typically 50Ω, and the frequency is usually in the ones of gigahertz range. In this case,
(ωR0Cc)

2 ≪ 1, so we can usually approximate Re{Yeq} as

Re{Yeq} ≈ ω2R0C
2
c . (10.88)

The resulting relaxation time is then

T1 ≈
Cq

ω2R0C2
c

. (10.89)

Let’s now consider what happens to the relaxation time when we couple the charge qubit
to an LC oscillator that is then coupled to the environment, as illustrated in Fig. 10.7. It is
relatively straightforward to analyze this circuit, but the formulas become rather tedious to
write down. Considering this, we will instead present numerical results of T1 as a function of
frequency for an LC oscillator with resonant frequency of 5 GHz. These results are shown in
Fig. 10.8, where they are compared to the results of the qubit capacitively coupled directly
to the environment.

It is seen that if the qubit frequency is away from the resonance of the LC oscillator than
the relaxation time becomes much higher than the case of the qubit capacitively coupled
to the environment. This is equivalent to suppressing the spontaneous emission rate, which
leads to the qubit staying in its excited state for a longer period of time. This is often very
advantageous for many quantum technologies, especially quantum computers, because we
do not often want our qubit to spontaneously relax to its lower state in the middle of using
it to try and process some kind of quantum information. However, for other technologies

204



CHAPTER 10. CIRCUIT AND ARTIFICIAL ATOM INTERACTIONS

Figure 10.8: Relaxation time as a function of qubit frequency when it is coupled directly to
the environment or to the environment through an LC oscillator. Parameters for the circuits
are R0 = 50Ω, Cq = 50 fF, Cc1 = 5 fF, Cc2 = 50 fF, Cr = 2.8 pF, and Lr = 0.362 nH.

it can be advantageous to increase the spontaneous emission rate (e.g., if this emission will
act as a source for a later process). We see that if we bring the qubit closer to resonance
with the LC oscillator than we can enhance the spontaneous emission rate. However, we
must be careful with our operating parameters to ensure that the system does not become
so strongly coupled to the LC oscillator that other effects, like vacuum Rabi oscillations,
become prevalent.

10.5 Practice Problems

1. Consider a circuit like that shown in Fig. 10.9 that uses a phenomenological model
to describe a classical voltage source (due to the large capacitance C2) that drives a
charge qubit. Following a semiclassical treatment of this problem, we found that the
Hamiltonian could eventually be written as

ĤTLS,RWA = −1

2
ℏδσ̂z +

1

2
ℏgVx(t)σ̂x +

1

2
ℏgVy(t)σ̂y (10.90)

where δ is the detuning between the qubit’s transition frequency and the oscillating
drive of the classical voltage source. If we only consider drives along the Vy channel with
detuning δ = 0, use the time-dependent Schrödinger equation to formulate appropriate
ordinary differential equations to solve for the time evolution of the qubit’s expansion
coefficients c0(t) and c1(t). For a constant envelope function of Vy(t) = Vy,0, solve
for the driven Rabi oscillations that will occur for this qubit if it starts in its ground
state. Use these solutions to demonstrate that this drive will result in counterclockwise
rotations of the qubit state vector on the Bloch sphere around the +y-axis.
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Figure 10.9: Circuit schematic for a large capacitance (C2) capacitively-coupled to a charge
qubit.

2. This problem will consider the Jaynes-Cummings model Hamiltonian given by

Ĥ = −1

2
ℏω10σ̂z + ℏωrâ†â+ ℏg

(
âσ̂+ + â†σ̂−

)
. (10.91)

(a) The operator

N̂ = σ̂+σ̂− + â†â (10.92)

is the excitation number operator for the Jaynes-Cummings model. Show that
the expectation value of this operator for any valid state of the Jaynes-Cummings
model returns the total number of excitations in the system (e.g., the TLS in its
excited state and the oscillator with 4 quanta would have an excitation number
of 5; if the TLS was in its ground state the total excitation would then be 4).

(b) Show that [N̂ , Ĥ] = 0. From the perspective of the Heisenberg picture, what
does this mean about the Jaynes-Cummings model and the excitation number as
a function of time?

3. In practical quantum computing applications, it is common to couple a transmon
qubit to a microwave transmission line resonator to facilitate measuring the state of
the qubit. The stronger the coupling is between the two systems, the quicker the
state measurement can be made (which is key in building toward error-correctable
quantum computers). Unfortunately, stronger coupling between the two systems also
leads to stronger decay of the qubit state through spontaneous emission due to the
Purcell effect, limiting the length of time an algorithm can be reliably executed for.
This tradeoff can be circumvented by introducing an additional circuit between the
microwave transmission line resonator and the “external environment”. This additional
circuit acts as a filter to protect the qubit from spontaneous emission. In this problem,
you will design such a filtering circuit.

(a) To start, write a computer program to compute the relaxation time of the qubit
for the circuit shown in Fig. 10.10 from 4 to 6 GHz.
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Figure 10.10: Equivalent circuit model of a transmon qubit capacitively coupled to a mi-
crowave transmission line resonator. The transmission line resonator is modeled as a single
LC tank circuit (this approximation is not always reasonable) that is capacitively coupled
to an external environment represented by Zenv.

Figure 10.11: Modified circuit model of a transmon qubit capacitively coupled to a microwave
transmission line resonator to include an additional filtering circuit.

(b) Now, determine an appropriate circuit that can be placed in the “filtering circuit”
black box of Fig. 10.11 to lower the qubit’s spontaneous emission rate. To achieve
this, your filtering circuit should lower the effective impedance seen by the qubit at
the frequency of the qubit, but should otherwise have a minimal effect on a signal
originating from the qubit being able to “reach” the environmental impedance
at the frequency of the intermediary resonator (this is necessary to maintain the
ability to measure the qubit state). For this problem, assume that the qubit has
a nominal operating frequency of 4.3 GHz. To keep the results more reasonable,
assume that any resonator circuits you use in your filter have some small amount
of parasitic resistance to not have “zero” or “infinite” response functions at the
qubit operating frequency (a value of 1mΩ is usually reasonable for a series RLC
circuit and a value of 1MΩ for a parallel RLC). Compute and plot the relaxation
time of the qubit for your solution from 4 to 6 GHz and compare it to the answer
from (a).

Note: There are many valid solutions to this problem. Try and focus on the
simplest solutions.

4. For this problem, consider the Jaynes-Cummings model described by

Ĥ = −1

2
ℏω0σ̂z + ℏω0â

†â+ ℏg
(
âσ̂+ + â†σ̂−

)
. (10.93)
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You have been told that the total number of quanta in the system is equal to 3 and
that at t = 0 the two-level system can be considered to be in state |g⟩ (that is the
ground state, located at the north pole of the Bloch sphere). Describe the trajectory
that the state of the two-level system will take on the Bloch sphere for this system.
Further, what will be the smallest value of t that the two-level system will be found to
be at the south pole of the Bloch sphere if g/(2π) = 100MHz?
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Chapter 11

Quantum Information and Its
Applications

11.1 Density Matrix Formalism

Up to this point, we have been considering quantum systems in a manner where the only
“randomness” involved was due to the inherent statistical aspects of quantum physics. How-
ever, there are many situations in classical physics and engineering where we must rely on
statistical methods to describe systems because there is a “classical” kind of randomness in
the system. These methods often are used when we are in a position where it is not possible
for us to have a definite description of all aspects of our system; e.g., fluctuations of electrons
in the atmosphere causing distortion to electromagnetic signals or a large ensemble of atoms
in a gas interacting with one another. Just as these statistical methods were needed for
complicated classical systems, as we add more and more complexity to the quantum sys-
tems we consider we find that we also need to make use of these statistical tools. The main
approach used to connect the tools of statistical mechanics with quantum mechanics is the
density operator, or more commonly just referred to as the density matrix. This formalism
for quantum systems is a powerful technique that allows us to naturally blend the “classical”
statistical methods with the underlying statistical interpretation of quantum mechanics.

We will now introduce the basics of the density matrix approach to describing quantum
systems. As you learn more about quantum physics, you will increasingly encounter this
approach to analyzing systems. We will use it in this course mainly to make more concrete
certain concepts of “coherence” and “decoherence” that are key in beginning to understand
quantum information, and play an important role in applications that seek to generate and
process this new kind of information.

11.1.1 Pure and Mixed States

As alluded to previously, the only randomness we have been considering up to this point
has been related to the outcomes of performing a quantum mechanical measurement on our
system of interest. For instance, if we consider a two-level system, we have expressed the
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general state of such a system as

|ψ⟩ = c0|0⟩+ c1|1⟩. (11.1)

The randomness occurs when we take a measurement of this system, with the expectation
that when we make our measurement we will find the system in state |0⟩ with probability
|c0|2 and in state |1⟩ with probability |c1|2. If we consider this system from the perspective of
the time-dependent Schrödinger equation, we know that each of the states involved in super-
position |ψ⟩ will evolve with the characteristic frequency of exp[−i(Em/ℏ)t], where Em is the
energy of the mth state. We can then look at the expectation value for different measurable
quantities and expect to see a time dependence due to interaction of these different time
dependencies. This kind of situation is referred to as a pure state. In essence, the system
is completely “definite” in the sense that we have a complete description of it and the only
randomness occurs due to the randomness of quantum mechanical measurements.

Although pure states are certainly of interest, they are not the only kind of situation we
may encounter. For instance, it is also reasonable for us to want to describe the statistical
results of the situation where we have a large ensemble of two-level systems that we randomly
prepare in the |0⟩ or |1⟩ state according to some probability (e.g., a 50-50 split). In this case,
our two-level system is in an energy eigenstate so that if we evaluate the expectation value of
any particular measurable quantity for any of our systems we will find that they do not vary
in time. If we then take the average of these measurements for all of the randomly-prepared
two-level systems, we will also see no oscillation in time (this kind of operation is referred to
as an ensemble average). This situation is then distinct from the idea of a pure state, since
our statistical preparation approach of the two-level systems cannot be described as a linear
superposition of states like in (11.1). We refer to this situation as a mixed state.

The purpose of the density matrix is to provide a unified approach that can represent both
mixed and pure states, and seamlessly give the correct statistical results without requiring
any special treatment for one situation versus the other. As a result, it represents a very
powerful tool for describing complex quantum systems. However, it does require us to
introduce some new techniques to accomplish these goals.

11.1.2 Density Operator and Density Matrix

As alluded to by the name, we will need to introduce a new kind of “operator” to describe
the state of our system. It is important to emphasize that the density operator is not like the
operators we have worked with up to this point, which were often related to a measurable
quantity and regardless were always defined in terms of how they operated on the state of the
system. Since the density operator will be describing the state of our system, it is obviously
not able to operate on the state of the system in the usual sense of our operators. So why
do we bother with calling the density operator an operator if it is so different? The reason
is because the density operator takes the mathematical form of

ρ =
∑
n

Pn|ψn⟩⟨ψn|, (11.2)

where Pn represents the “classical” probability describing the preparation of the mixed state.
Hence, we see that (11.2) looks like a special kind of bilinear expansion of an operator, and

210



CHAPTER 11. QUANTUM INFORMATION AND ITS APPLICATIONS

is why it is then referred to as an operator. As is commonly done, we leave off the hat
for ρ to emphasize its unique role and not confuse it with our prior notion of an operator.
Before moving on, it is important to also note that the pure states |ψn⟩ used in describing
our mixed state need not be orthogonal (i.e., ⟨ψm|ψn⟩ may or may not equal 0, depending
on the context).

To see how to use the density matrix to compute ensemble averages of a physical ob-
servable, let’s consider a general case where the states |ψn⟩ making up the density operator
are not orthonormal. Our first step then is to find the matrix representation of the density
operator within some orthonormal basis. If we denote these basis vectors as |ϕk⟩, then we
can expand each of the pure states |ψn⟩ as

|ψn⟩ =
∑
k

c
(n)
k |ϕk⟩. (11.3)

This representation can then be substituted into (11.2) to express the density operator as

ρ =
∑
n

Pn

(∑
k

c
(n)
k |ϕk⟩

)(∑
ℓ

(c
(n)
ℓ )∗ ⟨ϕℓ|

)
. (11.4)

We can rearrange terms to lump all the scalars together to get

ρ =
∑
k,ℓ

(∑
n

Pnc
(n)
k (c

(n)
ℓ )∗

)
|ϕk⟩⟨ϕℓ|. (11.5)

From this expression, we can clearly determine the matrix representation of ρ using the |ϕk⟩
basis. In particular, we see that a given matrix element is

ρkℓ = ⟨ϕk|ρ|ϕℓ⟩ =
∑
n

Pnc
(n)
k (c

(n)
ℓ )∗. (11.6)

We can recognize that this matrix element is the ensemble average of the product of coeffi-
cients involved. A useful shorthand notation for this is

ckc∗ℓ =
∑
n

Pnc
(n)
k (c

(n)
ℓ )∗. (11.7)

Now, since the density operator is essentially always represented in this way, it is often re-
ferred to as the density matrix instead. Although there is technically a distinction, it is so
often unimportant that the terms density operator and density matrix are used interchange-
ably.

We can now look at a few properties of the density matrix. First, we can readily identify
from the expression for the matrix elements given in (11.6) that the density matrix (and,
so also the density operator) is Hermitian, i.e., ρkℓ = ρ∗ℓk. We can also look at the different
matrix elements and ask the question of what these quantities represent. Looking at the
diagonal elements first, we see that this gives us the ensemble average (i.e., the overall
probability) of finding our system in a particular state. This is the case because we can

recognize for ρkk that the c
(n)
k (c

(n)
k )∗ term in (11.6) corresponds to the probability of finding
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the nth pure state |ψn⟩ in the basis state |ϕk⟩. Summing this probability multiplied by the
Pn’s then gives the ensemble average of the overall system being in the basis state |ϕk⟩, as
mentioned earlier.

We can also note that the sum of the diagonal elements of the density matrix is then
equal to 1. Summing the diagonal elements of a matrix is an important tool in mathematical
analysis in its own right, and is known as the trace of the matrix. For the density matrix,
we denote this as

tr{ρ} =
∑
k

ρkk =
∑
k

∑
n

Pn|c(n)k |2. (11.8)

Now, because the pure states must be normalized, we have that
∑

k |c
(n)
k |2 = 1 for each n.

We then have that

tr{ρ} =
∑
n

Pn = 1, (11.9)

since the mixed state probabilities must also sum to 1 to be well-defined probabilities.
Returning to our discussion about the meaning of the different matrix elements, we turn

our attention to the off-diagonal elements. Interpreting the off-diagonal elements is more
subtle, but these terms provide very important insight into the physics of a system. To start
understanding these terms better, let’s look at a simple (but important) use of the density
matrix. In particular, we will consider the density matrix for the pure state |ψ⟩ = c0|0⟩+c1|1⟩.
If we use the states |0⟩ and |1⟩ as our orthonormal basis for expanding the density matrix,
then we find that the density matrix for this pure state will be

ρ =

[
|c0|2 c0c

∗
1

c∗0 c1 |c1|2
]
. (11.10)

At this stage, the important point to note is that the diagonal elements of the density matrix
are real and purely positive, while the off-diagonal elements are complex-valued. Since
these off-diagonal elements are complex-valued, they carry important information about the
relative phase between the states. As a result, they are sometimes informally referred to as
“coherences”. Additionally, the complex-valued nature allows the summation of terms like
c0c

∗
1 for different pure states to interfere with one another. If we have a mixed state that

is significantly “random”, we would expect the summations of all the different c0c
∗
1 terms

to approximately average to 0. Hence, these off-diagonal elements also provide us with
information about whether our system is still coherently evolving as a linear superposition
of states or if it has devolved into a completely random (often called incoherent) mixed
state. This is an extremely important measure when considering the processing of quantum
information in a real system, and we will return to discussing it later.

However, this conversation also raises the interesting question of whether we can tell
if a density matrix corresponds to a pure or mixed state if we are only given the density
matrix and no other information. Fortunately, it is possible to make this distinction, which
is accomplished by looking at the trace of ρ2. If we have a density matrix that corresponds
to a specific pure state |ψ⟩, then we can quickly find that

ρ2 = |ψ⟩⟨ψ|ψ⟩⟨ψ| = |ψ⟩⟨ψ| = ρ. (11.11)
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As a result, we see that

tr{ρ2} = tr{ρ} = 1. (11.12)

For a mixed state, we will find that tr{ρ2} < 1. Hence, one can evaluate tr{ρ2} to determine
if a density matrix represents a pure or mixed state.

Next, we need to finish determining how we actually use the density matrix to compute
something like the ensemble average of a particular measurable quantity associated with an
operator Â. What we will find is that this can be accomplished by evaluating tr{ρÂ}, but
before we can do this we will first need to understand what the diagonal elements of the
product ρÂ “look” like. Considering this, we begin by noting that

ρÂ =
∑
k,ℓ

(∑
n

Pnc
(n)
k (c

(n)
ℓ )∗

)
|ϕk⟩⟨ϕℓ|Â. (11.13)

A specific diagonal element of ρÂ is then

⟨ϕq|ρÂ|ϕq⟩ =
∑
k,ℓ

(∑
n

Pnc
(n)
k (c

(n)
ℓ )∗

)
⟨ϕq|ϕk⟩⟨ϕℓ|Â|ϕq⟩. (11.14)

Using the orthonormality of the |ϕk⟩ basis, we can replace ⟨ϕq|ϕk⟩ as δqk to simplify (11.14)
to be

⟨ϕq|ρÂ|ϕq⟩ =
∑
ℓ

(∑
n

Pnc
(n)
q (c

(n)
ℓ )∗

)
⟨ϕℓ|Â|ϕq⟩. (11.15)

We can now evaluate the trace of ρÂ as

tr{ρÂ} =
∑
q

⟨ϕq|ρÂ|ϕq⟩ =
∑
q

∑
ℓ

(∑
n

Pnc
(n)
q (c

(n)
ℓ )∗

)
⟨ϕℓ|Â|ϕq⟩. (11.16)

We can regroup terms in a more suggestive way to see that

tr{ρÂ} =
∑
n

Pn

(∑
ℓ

(c
(n)
ℓ )∗⟨ϕℓ|

)
Â

(∑
q

c(n)q |ϕq⟩
)
. (11.17)

We can recognize the terms in the large parentheses as being the basis expansion of the nth
pure state via (11.3), so that we can now write (11.17) as

tr{ρÂ} =
∑
n

Pn⟨ψn|Â|ψn⟩. (11.18)

We see that the right-hand side is the ensemble average of the expected value of Â for each
pure state |ψn⟩, and so tr{ρÂ} will indeed calculate this important statistic for us. We also
see that if the density matrix happened to be for a pure state |ψ⟩ so that there would be
only a single Pn that would then equal 1 the result of (11.18) then matches what we already
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know, i.e., that ⟨A⟩ = ⟨ψ|Â|ψ⟩. Hence, as promised, the density matrix formalism will still
work for everything that we have done up to this point in terms of pure states.

Now that we can evaluate the desired statistics, the next piece of machinery needed for
the density matrix formalism is to be able to compute the time evolution of the density
matrix. For a pure state, we used the time-dependent Schrödinger equation

Ĥ|ψn⟩ = iℏ
∂

∂t
|ψn⟩. (11.19)

We can now generalize this result to a mixed state represented by the density matrix. We
will find that the equation of motion looks very similar to the Heisenberg equations of motion
for a Heisenberg picture operator, but that there is a small difference.

To see this, we start by expressing the pure state in (11.19) using the orthonormal basis
set |ϕℓ⟩ to get

iℏ
∑
ℓ

ċ
(n)
ℓ |ϕℓ⟩ =

∑
ℓ

c
(n)
ℓ Ĥ|ϕℓ⟩. (11.20)

We can now take the inner product of this equation with |ϕk⟩ to get

iℏċ(n)k =
∑
ℓ

c
(n)
ℓ Hkℓ, (11.21)

where Hkℓ = ⟨ϕk|Ĥ|ϕℓ⟩ is a matrix element of the Hamiltonian operator. We can also take
the complex conjugate of (11.21) to get

−iℏ(ċ(n)k )∗ =
∑
ℓ

(c
(n)
ℓ )∗Hℓk, (11.22)

where we noted that due to the hermiticity of the Hamiltonian we have H∗
kℓ = Hℓk. Next,

we look at the time derivative of a density matrix element, which we see from (11.6) is

ρ̇kℓ =
∑
n

Pn
[
c
(n)
k (ċ

(n)
ℓ )∗ + (c

(n)
ℓ )∗ ċ

(n)
k

]
. (11.23)

We can substitute in from (11.21) and (11.22) after changing the dummy summation indices
as needed to get

ρ̇kℓ =
i

ℏ
∑
n

Pn

[
c
(n)
k

∑
r

(c(n)r )∗Hrℓ − (c
(n)
ℓ )∗

∑
s

c(n)s Hks

]
. (11.24)

Regrouping terms then gives

ρ̇kℓ =
i

ℏ

[∑
r

(∑
n

Pnc
(n)
k (c(n)r )∗

)
Hrℓ −

∑
s

Hks

(∑
n

Pnc
(n)
s (c

(n)
ℓ )∗

)]
. (11.25)

We can recognize the terms in the large parentheses as being the definition of density matrix
elements from (11.6). Using this shorthand, we then see that (11.25) can be written as

ρ̇kℓ =
i

ℏ

[∑
r

ρkrHrℓ −
∑
s

Hksρsℓ

]
. (11.26)
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We can next note that terms like ∑
r

ρkrHrℓ (11.27)

correspond to evaluating a term in the matrix-matrix multiplication of ρĤ. In the case of
(11.27), this corresponds to the kℓ element of the matrix ρĤ, which we denote as (ρĤ)kℓ.
Using this notation, we see that (11.26) is

ρ̇kℓ =
i

ℏ

[
(ρĤ)kℓ − (Ĥρ)kℓ

]
=
i

ℏ
[ρ, Ĥ]kℓ. (11.28)

Since this holds for a single generic matrix element kℓ, it holds for them all, so that we can
write the general result as

ρ̇ =
i

ℏ
[ρ, Ĥ]. (11.29)

This is sometimes referred to as the von Neumann equation, or the Liouville-von Neumann
equation due to its similarity to the Liouville equation in classical statistical mechanics.

We can use (11.29) to evaluate the time evolution of the density matrix just as we would
use the time-dependent Schrödinger equation for a particular pure state. Recalling the
Heisenberg equation of motion for an operator is

d

dt
X̂H(t) = − i

ℏ
[X̂H(t), Ĥ], (11.30)

we see that this is very similar to that of (11.29). However, there is a sign difference, which
must be included to get the correct result in the end. It is also important to emphasize that
when we work with (11.29) we are treating the density matrix in the Schrödinger picture.
It is in fact possible to use the density matrix formalism within the Heisenberg picture, but
we will not concern ourselves with this in this particular course.

11.2 Introduction to Quantum Information

One of the central areas of electrical engineering is information theory. This discipline
concerns itself with the mathematical study of how we can represent “information” (in an
abstract sense), transmit it, and process it. In the classical case, we think of information
as being encoded in a binary form as a sequence of bits that take a value of 0 or 1, where
we do not concern ourselves with the underlying physical system that we have used to
represent this bit. One of the fundamental reasons information theory is so important is
because it focuses on developing engineering solutions to process information in non-ideal
systems. Many results of information theory come in the form of performance bounds for
various practical situations, like the famous noiseless- and noisy-channel coding theorems
of Claude Shannon. These results have widespread implications on the design of modern
communication systems and error correcting codes, as well as touch on topics like why we
can compress data files (e.g., .zip files) and then recover the full information at a later time.
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Quantum information theory is concerned with many of the same kinds of questions of
classical information theory, but instead looks at the “information” that can be generated
and processed in a quantum mechanical system. Instead of having a typical bit that equals
0 or 1, we concern ourselves with quantum bits (qubits) that have two distinct states |0⟩
and |1⟩ that the qubit can collapse into after measurement. However, prior to measurement,
the qubit follows quantum mechanical rules, and so can exist in a superposition of |0⟩ and
|1⟩. There are also additional resources available to quantum systems that do not have a
classical counterpart, such as quantum entanglement, which lead to the revolutionary ability
of quantum information processing systems to outperform classical systems for specific (im-
portant) tasks. Also in similarity to classical information theory, it is important to note that
quantum information theory studies the information processing ability of quantum systems
in non-ideal situations – e.g., in the presence of noise. Landmark mathematical theorems
in the area of quantum information theory underlie why it is expected that we can actually
build large-scale quantum computers some day. Prior to these theoretical accomplishments,
large-scale quantum computers were thought of as potentially being a “pipe dream” that
would never be achievable due to the difficulty in maintaining quantum coherence for all of
the qubits in a system under the presence of noise.

Quantum information theory can be a challenging subject, and so we will not be able to
explore it in depth in this course. We will comment on some of the basic ideas as we look at
some specific examples of revolutionary quantum information processing technologies, such
as quantum communication systems, quantum computers, and quantum sensors. For those
interested in more details, the standard introductory text (at a graduate level) for quantum
information theory is [32].

11.2.1 Quantum Decoherence and Noise

To begin discussing quantum information, it is helpful to return to considering the meaning
of various elements of the density matrix and the idea of quantum coherence. Recall that if
we had a two-level system in the pure state

|ψ⟩ = c0|0⟩+ c1|1⟩, (11.31)

then the density matrix represented in the |0⟩ and |1⟩ basis would be

ρ =

[
|c0|2 c0c

∗
1

c∗0 c1 |c1|2
]
. (11.32)

We see that the off-diagonal elements contain information about the relative phase between
the |0⟩ and |1⟩ components of the pure state. When this relative phase is “perfectly” specified,
we can think of the two states as being coherent. As they evolve in time, we can see coherent
interference effects between the states that represent different physical ideas depending on
the underlying physical system. For instance, it could be describing the oscillation of the
wavefunction of an electron trapped in a potential well, or could be producing the wave
interference fringes in a double-slit diffraction experiment. When we lose this coherence
(referred to as decoherence), we stop being able to see these interference effects that are
characteristic of many quantum phenomena.
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This idea of decoherence can be very closely linked to the idea of a mixed state. As a
simple example, if we assume that we randomly prepare identical two-level systems with a
50-50 probability of starting in either the |0⟩ or |1⟩ state, we can find that our density matrix
will become

ρ =
1

2

[
1 0
0 1

]
. (11.33)

We see that the off-diagonal elements have vanished because there is no coherence in the
mixed state, we are simply in the |0⟩ or |1⟩ state, there is no longer any superposition.
However, this is not the only way that we can arrive at this density matrix for a mixed state.
Let’s now assume that we randomly prepare our two-level system in a superposition state so
that our c0 and c1 coefficients in (11.31) have the same magnitude but random phases. We
then always have |c0|2 = |c1|2 = 1/2, but that the off-diagonal terms will look like

c0c
∗
1 =

1

2
eiδ, (11.34)

where δ is the (random) relative phase between c0 and c1. If we now take the mean of all
the random realizations of (11.34) for a large number of δ’s, we find that this value very
rapidly goes to 0. This is illustrated visually in Fig. 11.1. The resulting density matrix for
this mixed state is then also given by (11.33).

This example illustrates an important point about the density matrix. We can have
completely different “scenarios”, but still end up with an identical density matrix because
from the perspective of the statistical predictions of quantum theory our different “scenarios”
are actually physically indistinguishable. Hence, we see that preparing our qubit in a random
equal-weight linear superposition state is statistically the same as our earlier example of
randomly placing the qubit in the |0⟩ or |1⟩ states with equal probability. We already
commented on this situation as having no “coherence”, and so we see this classification also
applies to our random equal-weight linear superposition system as well.

Let’s now extend some of these notions to a very practical situation of considering an open
quantum system. The basic idea of an open quantum system is that we have a particular
subsystem that we are focused on analyzing, e.g., a qubit. However, in a real physical system
our qubit is never perfectly isolated from other physical systems. In general, these other
systems our qubit is coupled to are “vast” in the sense that they likely need an infinite-
dimensional Hilbert space to describe their state. As a result, attempting to fully describe
the system we care about (i.e., the qubit) and the environment it is coupled to becomes
something of an impossible task in most situations. The theory of open quantum systems
is focused on determining how the system we care about (i.e., the qubit) evolves in time
given that it is coupled to this vast environment, without attempting to describe in detail
the exact state of the environment. This naturally leads us to the idea of characterizing the
effect of the environment as some form of noise that our subsystem of interest is subjected
to.

For instance, we can have our two-level system subjected to noise due to thermal fluc-
tuations in an adjacent system. In the case of our quantized circuits, this could come from
the finite resistance of circuit components, where the loss in the resistor is then converted
to heat. However, we can also have noise in the form of zero-point fluctuations of nearby

217



CHAPTER 11. QUANTUM INFORMATION AND ITS APPLICATIONS

(a) (b)

(c) (d)

Figure 11.1: Evaluating the off-diagonal element of the density matrix for (a) 10, (b) 100, (c)
1,000, and (d) 10,000 random equal-weight linear superposition states. The red circles are
the realizations of c0c

∗
1 and the blue “x” is the mean value that would be the actual matrix

entry ρ01.

systems, e.g., an LC oscillator that our qubit is coupled to. There can also be noise in
the applied control signals, such as classical voltages, that we use to attempt to control the
qubit. Hence, to consider quantum information processing in a practical scenario we must
invariably consider the presence of noise.

However, not all noise is created equal. In general, we need to understand how the noise
couples to our two-level system to properly characterize its effect. To see this more explicitly,
let’s recall our discussion about a semiclassical treatment of a classical voltage source driving
a two-level system. To begin, we considered a bias voltage of

Vb(t) =

{
Vx(t) cos(ωdt) + Vy(t) sin(ωdt), 0 < t < tg

0, otherwise,
(11.35)

and saw that upon substituting this into our Hamiltonian and making the rotating-wave
approximation we could write our resulting system Hamiltonian as

ĤTLS,RWA = −1

2
ℏδσ̂z +

1

2
ℏgVx(t)σ̂x +

1

2
ℏgVy(t)σ̂y. (11.36)
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We then discussed the idea of a driven Rabi oscillation, which involved us designing Vx(t)
or Vy(t) to rotate the state vector of our two-level system around the x- or y-axis of the
Bloch sphere, respectively. If we then were to have noise in this applied voltage, we would
see that this would drive rotations around the respective axes of the Bloch sphere, leading
to the exact location of the state vector on the Bloch sphere becoming less “certain”. We
can express this uncertainty by considering our two-level system to now be in a mixed state,
with the probabilities determining the mixed state linked to the statistics we know about
the noise coupling to the two-level system. More generally, we see that any noise source that
couples to the σ̂x and σ̂y operators of the two-level system will lead to this same kind of
effect.

However, we also had another notion of a spontaneous transition occurring in the state
of our two-level system. For instance, when we considered the fully-quantized treatment
of a two-level system coupled to an LC oscillator, we saw that vacuum fluctuations in the
LC oscillator coupled to the σ̂x and σ̂y operators lead to a spontaneous emission rate that
characterized how likely it was for the two-level system to drop from its excited to ground
state. This kind of effect is sometimes referred to as a longitudinal relaxation process because
it modifies the qubit state along the axis of the qubit basis states in the Bloch sphere
representation. It is typical to lump all longitudinal relaxation effects together into an overall
longitudinal relaxation rate given by Γ1 ≡ 1/T1. The T1 time notation has its origins in the
study of nuclear magnetic resonance (the effect used in magnetic resonance imaging), and is a
common terminology that is now applied to many quantum systems. This relaxation time is
not a perfect characterization of the different noise processes that impact a two-level system,
but it is used as a common figure of merit because it does an adequate job in many situations.
In practice, we operate our two-level systems so that their equilibrium state would be |0⟩
(i.e., if we let the system sit for a very long time we would expect to find the system in its
equilibrium state) and that there is a negligible chance of “spontaneous absorption” raising
the two-level system to its |1⟩ state. The T1 relaxation time then describes the exponential
decay process as a function of time in terms of our density matrix for initial pure state
|ψ⟩ = c0|0⟩+ c1|1⟩ as

ρ “ = ”

[
1 + (|c0|2 − 1)e−Γ1t c0c

∗
1

c∗0 c1 |c1|2e−Γ1t

]
. (11.37)

Note that the “ = ” is used here because this expression does not yet fully show how T1
relaxation effects impact all elements of the density matrix. We turn to discussing this
broader picture now.

Although the T1 time does encapsulate many important effects, like spontaneous emission,
it does not completely describe all possible types of noise. For instance, when we discussed
the transmon qubit we mentioned that we could make the operating frequency of the qubit
tunable using a SQUID instead of a single Josephson junction. If we have magnetic flux
noise intersecting the SQUID loop, then we will find that the operating frequency of the
qubit becomes “noisy”. Looking back at our Hamiltonian in (11.36), we see that this kind
of noise will couple to our system in terms of the σ̂z operator. As with the other Pauli
matrices, this operator drives rotations around its axis, in this case the z-axis. This kind of
noise impacts the coherence of a linear superposition state. For instance, one can consider
the case of a qubit in an equal-weight superposition and recognize that the resulting state
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vectors lie on the equator of the Bloch sphere. Noise applied to the σ̂z operator will then
cause the relative phase in the superposition to become noisy. We have already seen from
our earlier discussions that this will impact the off-diagonal terms of the density matrix.

More generally, we sometimes refer to this kind of effect as a transverse relaxation process
because it modifies the qubit state in the plane transverse to the qubit axis on the Bloch
sphere. Broadly speaking, any “phase-breaking” process that upsets a superposition state
will be incorporated into the transverse relaxation rate Γ2. Since longitudinal relaxation does
constitute a “phase-breaking” process, we find that the Γ1 will actually also be included in
our Γ2 relaxation rate. More specifically, we have that

Γ2 ≡
1

T2
=

Γ1

2
+ Γφ, (11.38)

where T2 is the transverse relaxation time and Γφ is referred to as the pure dephasing rate.
This pure dephasing rate specifically characterizes the impact of the noise coupled to the σ̂z
operator. As alluded to earlier, the transverse relaxation impacts the off-diagonal terms of
the density matrix. The typical format of this then causes (11.37) to become

ρ =

[
1 + (|c0|2 − 1)e−Γ1t c0c

∗
1e

−Γ2t

c∗0 c1e
−Γ2t |c1|2e−Γ1t

]
. (11.39)

This model for qubit decoherence is sometimes referred to as the Bloch-Redfield model. It
should be noted that this model is an idealization that assumes the noise impacting the
system is rather “simple” (e.g., like white noise), and though real systems can often interact
with noise that deviates from this simple model it still serves as a useful starting point in
many cases for understanding the coherence of a quantum system. Rigorously considering
open quantum systems with more realistic noise models is a complicated endeavor, and still
represents an active area of research.

These two relaxation processes help us start to understand why processing quantum
information can be so difficult. Our systems will always be subjected to noise, which work
together to destroy the coherence of our linear superpositions of qubit states. This leads
to the quantum information stored in the qubit state to decay. A significant component
of designing quantum information processing systems today involves attempting to increase
the T1 and T2 times so that we can accomplish more processing tasks within the finite time
that we can expect a linear superposition to maintain coherence. Once the coherence has
vanished, the system has lost all of its meaningful quantum information, and any further
operations we perform on the quantum state will not be performing the intended effect on
the superposition state that we used to have.

11.2.2 Quantum Entanglement

Quantum entanglement is a rather mysterious, but fundamental property, that is central to
the performance advantage possible with many quantum information processing technologies.
We will first introduce it through a rather mathematical definition, and will then see how it
“pops up” time and time again as we discuss the basics of various revolutionary quantum
technologies.
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Entanglement is a property that can exist between two or more “quantum systems”.
For now, let’s make our conversation explicit by considering as our “quantum systems”
two distinct qubits that can interact with one another. We have already discussed how to
describe such a composite quantum system earlier in the course when we considered the
fully-quantized treatment of two LC oscillators capacitively coupled to one another or a
single LC oscillator capacitively coupled to an artificial atom (e.g., a transmon or charge
qubit). In particular, we found that the total Hilbert space that the state of the composite
system should be described in was given by the tensor product of the Hilbert spaces of the
individual systems. For two qubits, we could then write a generic state as

|ψ⟩ = c00|0⟩1|0⟩2 + c01|0⟩1|1⟩2 + c10|1⟩1|0⟩2 + c11|1⟩1|1⟩2, (11.40)

where |m⟩n is the mth state of the nth qubit. Another more common notation would be to
consolidate the different kets as

|ψ⟩ = c00|00⟩+ c01|01⟩+ c10|10⟩+ c11|11⟩. (11.41)

We see that our two 2-dimensional Hilbert spaces have combined into a new Hilbert space
with a dimension of 4. This trend continues, so that if we were to have a system of N qubits
coupled to each other the dimension of the resulting Hilbert space would be 2N , which is a
number that “explodes” very quickly.

One important property of the generic state given in (11.41) is that it is factorizable. In
particular, we can think of it as a tensor product between the two linear superposition states
|ψ1⟩ = a

(1)
0 |0⟩1 + a

(1)
1 |1⟩1 and |ψ2⟩ = a

(2)
0 |0⟩2 + a

(2)
1 |1⟩2. Explicitly, we have

|ψ1⟩ ⊗ |ψ2⟩ =
(
a
(1)
0 |0⟩1 + a

(1)
1 |1⟩1

)
⊗

(
a
(2)
0 |0⟩2 + a

(2)
1 |1⟩2

)
= a

(1)
0 a

(2)
0 |00⟩+ a

(1)
0 a

(2)
1 |01⟩+ a

(1)
1 a

(2)
0 |10⟩+ a

(1)
1 a

(2)
1 |11⟩.

(11.42)

We can then identify by matching to (11.41) that c00 = a
(1)
0 a

(2)
0 , c01 = a

(1)
0 a

(2)
1 , and so on. In

this case, we see that the states of the two subsystems are independent of one another. If we
make a measurement on one of our two subsystems, nothing happens to the other subsystem.

However, this is not the only kind of state that is allowable. For example, we could have
the state

|Φ±⟩ = 1√
2

(
|00⟩ ± |11⟩

)
, (11.43)

which cannot be factorized into a product of the states of the individual subsystems like
in the first line of (11.42). Such a state that cannot be factorized in this way is called
entangled. In this case, we are no longer able to think of the states of the two subsystems
individually anymore. In particular, if we were to make a measurement on the first qubit,
we would find that this would not only collapse the wavefunction for qubit 1, but also for
qubit 2. For instance, if we measure qubit 1 and find that it is in the state |0⟩1, then we
immediately know for the state given in (11.43) that qubit 2 has also collapsed into the state
|0⟩2. This effect can happen even if the two qubits are spatially separated, and apparently

221



CHAPTER 11. QUANTUM INFORMATION AND ITS APPLICATIONS

occurs instantaneously. This is a very peculiar effect, that has bemused physicists for decades
due to certain paradoxes that seem to be possible with this “spooky action at a distance”
(to quote Einstein’s views on the subject). As bizarre as these entangled states seem, they
have many important consequences in developing technology and are a central resource in
quantum information theory. We will discuss some of these ideas in more depth in the final
sections of this course.

11.3 Bell’s Inequalities and Interpretation of Quantum

Mechanics

Previously, we briefly introduced the idea of quantum entanglement by looking at the exam-
ple two-qubit states

|Φ±⟩ = 1√
2

(
|00⟩ ± |11⟩

)
. (11.44)

Another set of two-qubit states with similar properties are

|Ψ±⟩ = 1√
2

(
|01⟩ ± |10⟩

)
. (11.45)

Collectively, these are referred to as Bell states, and they form a basis for all possible com-
posite two-qubit states. We saw that there would be certain situations for these kind of
states that if we apply the “rules” of quantum mechanics (in particular, quantum mechan-
ical measurement) we have been using up to this point we could have some very peculiar
results. The main reason for this was that these entangled states are arranged in such a
manner that it becomes impossible for us to properly think about the state of an individual
qubit irrespective of the other qubit. Mathematically, this was expressed by the fact that
the states given in (11.44) and (11.45) cannot be factored into a tensor product of the two
single qubit states.

The thought experiment that we did to consider one of the very peculiar properties of
these entangled states was to imagine that our two qubits were spatially separated when we
perform a measurement on one of the qubits. From our rules of quantum mechanics, this
measurement causes the wavefunction of the system to collapse according to the measured
result. Due to the inseparability of these different states, we see that the collapse due to the
measurement on one qubit actually influences the other qubit as well, forcing it to collapse
into the appropriate value according to the measurement on the first qubit. This effect
apparently happens instantaneously, and to be frank about it, just seems completely wrong
from our classical intuition about physical systems. This uncomfortable physical process
was referred to as “spooky action at a distance” by Einstein, and was considered to be
utterly ridiculous to him and his collaborators. He and his co-authors (Podolsky and Rosen)
presented this paradoxical situation (referred to as the EPR paradox after the initials of the
authors) and introduced some of their ideas on how to overcome this paradox.

Before discussing more about this, it is important to note that the Bell states given in
(11.44) and (11.45) are not simply some imagined “crazy” quantum state that does not occur
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in practice. Rather, they can be generated quite readily due to various physical processes.
We will not go into detail about these physical processes, but they often occur naturally
in systems where a single “particle” decays into two others where the decay process must
occur in a manner that conserves momentum. For example, a single high frequency photon
propagating in a nonlinear crystal can cause a mixing process to occur that leads to the
generation of two lower frequency photons (this is referred to as spontaneous parametric
down-conversion). To conserve momentum, the two generated photons must propagate in
opposite directions and have a fixed relationship between their polarization. The resulting
polarization states can act as the states of a qubit, and because the two photons propagate
in opposite directions we see that we can very quickly have two qubits spatially separated
from one another quite quickly (the speed of light is 3× 108 m/s, after all).

So, given that the Bell states do actually occur due to a number of possible physical
processes, it was the notion of Einstein, Podolsky, and Rosen that quantum mechanics must
be an incomplete theory in some manner. They proposed one possible attempt to overcome
this kind of issue in 1935. At that time, quantum mechanics had been found to work very
successfully, so they did not attempt to say that quantum mechanics was “wrong”. Rather,
they felt that the reason for the statistical nature had to come from the fact that we were
having an incomplete description of the physical system in some manner. Their view was
that there were some kind of hidden variables that we are unaware of that caused the two
photons that were generated to have a specific set of complementary polarizations at the
moment of creation. Within this physical picture, the measurement outcomes were decided
at the time of creation, and so there was no wavefunction collapse or “spooky action at a
distance” to contend with.

Work proceeded on developing quantum mechanics and possible hidden variable theories
for some time, but the story changed rather dramatically in 1964 when John Bell determined
a simple but clever experimental test to see whether quantum mechanics (as we have been
learning it) or some hidden variable theory was correct. In particular, he developed a test
that was applicable to any local hidden variable theory. The term local here is sometimes
restated as the “principle of locality”, which in vague terms means that a physical system can
only be influenced by its “immediate surroundings”. More specifically, these ideas of “local”
and “influence” are usually framed in the context of the theory of relativity, which has a
central tenet that no physical influence/information can propagate at a speed greater than
that of light. What John Bell proved was that quantum mechanics was incompatible with any
local hidden variable theory, and thus made it an experimental (rather than philosophical)
question as to which viewpoint was correct.

The proof of this centers around the outcomes of measurements on Bell states, where it
was shown that any local hidden variable theory would be bound by the same inequality,
regardless of the possible hidden variables involved. Traditionally, any inequality of this form
is referred to as a Bell inequality. The surprising result was that for this set of measurements
the expected outcome based on a quantum mechanical calculation would violate the Bell
inequality. As a result, it came down to engineering a physical system well enough to be
able to perform the requisite experiments. This was completed (fairly) convincingly in 1982
by Alain Aspect, with the results coming out in overwhelming favor of quantum mechanics.
These Bell tests have been completed by many other scientists with many different physical
systems over the years with more and more refined setups to close various “loopholes” that
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may exist. In all cases, the results have agreed with quantum mechanics and the Copenhagen
interpretation that we have learned in this course. As a result, we can conclusively say
that nature is apparently nonlocal, either in the form of an instantaneous collapse of a
wavefunction or due to some kind of nonlocal hidden variable theory.

There are various interpretations of quantum mechanics that attempt to provide a con-
sistent way to explain these very peculiar effects. We will not discuss those here, but the
interested reader can find more information in [8, 9] and the references therein. For now,
we will conclude our discussion by stating that the loss of locality to quantum mechanics
is a central component of what makes many quantum information processing technologies
able to “work”. If everything was determined by some local hidden variables upon creation,
we would not be able to process the various superpositions of entangled states in a quan-
tum mechanical manner that is essential for generating the non-classical results of many
revolutionary quantum technologies. So although it is perhaps disconcerting to think about
some of the odder possible implications of the nonlocality of quantum physics, there are
certainly extremely exciting technological innovations to focus on instead to distract us from
any philosophical questions!

11.4 Introduction to Quantum Communications

Quantum communication systems can broadly be thought of as a communication system
that communicates quantum information, rather than just classical information. It turns
out that there are a number of possible applications for such systems. One example is
superdense coding, which is a quantum communication protocol that is able to communicate
some number of classical bits of information using a smaller number of qubits. Another
interesting use of quantum communications is for networking together quantum computers
to lead to an overall larger quantum computing architecture (much like how we network
together many classical computers to form supercomputers). However, possibly the most
famous use of quantum communication systems is for quantum cryptography – i.e., a secure
form of encryption for a communication that is impossible to “crack”.

11.4.1 Quantum Key Distribution

To understand a basic form of quantum cryptography, known as quantum key distribution, it
is necessary to first establish the no-cloning theorem. As the name suggests, the no-cloning
theorem proves that it is impossible to perfectly copy one quantum state onto another. As a
basic sketch of this proof, consider that we set our first system (the one we wish to clone) into
an arbitrary state |ψa⟩1 and our second system (the one we wish to copy the first system’s
state onto) into a standard starting state |ψs⟩2. What we will find is that it is not possible
to arrive at the composite state |ψa⟩1|ψa⟩2 for an arbitrary state |ψa⟩.

To see why, we note that because we are dealing with quantum mechanical states we can
imagine that our “copying” functionality must be accomplished by some linear time-evolution
operator acting on our composite system. For instance, we have previously discussed that
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the time-evolution operator can be generically written as

T̂ = e−i(Ĥ/ℏ)t, (11.46)

where our task then would be to design a Hamiltonian to perform the copying functionality.
Assuming we have done this, we can consider how T̂ will affect our composite system for two
basis states we choose for qubit 1. To denote these generically, we will call the basis states
|ψ1⟩1 and |ψ2⟩1. For the copy function to work correctly for these basis states we must then
have,

T̂ |ψ1⟩1|ψs⟩2 = |ψ1⟩1|ψ1⟩2 (11.47)

and

T̂ |ψ2⟩1|ψs⟩2 = |ψ2⟩1|ψ2⟩2. (11.48)

If we now consider a superposition state |ψ⟩1 = α|ψ1⟩1 + β|ψ2⟩1, we see that

T̂
(
α|ψ1⟩1 + β|ψ2⟩1

)
|ψs⟩2 = αT̂ |ψ1⟩1|ψs⟩2 + βT̂ |ψ2⟩1|ψs⟩2

= α|ψ1⟩1|ψ1⟩2 + β|ψ2⟩1|ψ2⟩2,
(11.49)

due to the linearity of quantum operators. We note that our result in (11.49) does not equal
the correctly copied state, which should have been |ψ⟩ =

(
α|ψ1⟩1+β|ψ2⟩1

)(
α|ψ1⟩2+β|ψ2⟩2

)
.

Hence, due to the linearity of quantum mechanics, it is impossible to perfectly clone an
arbitrary superposition state.

To see how to use this for a simple quantum encryption scheme, we imagine that we
have two people attempting to communicate securely with one another. These individuals
are typically referred to as “Alice” and “Bob” by convention. In addition to Alice and Bob,
there is a third person named “Eve” who is attempting to eavesdrop (this pun brought to
you courtesy of quantum physicists...) on the communication. Our goal is to devise a scheme
that allows Alice and Bob to determine whether Eve is present and intercepting the message
or not.

To begin, let’s imagine that Alice sends a qubit to Bob in the |0⟩ or |1⟩ state, and that Bob
is able to orient his measuring apparatus to measure these states perfectly. This approach is
not secure, because if Eve is present she can intercept the message, take note of it, and then
prepare a qubit of her own in the same state she just received and then transmit this to Bob.
This is effectively how a classical communication system works, there is not in principle a
sufficiently strong way to detect whether an eavesdropper is present or not.

If Alice changes her basis from the |0⟩ and |1⟩ basis to the |+⟩ = 1/
√
2(|0⟩ + |1⟩) and

|−⟩ = 1/
√
2(|0⟩ − |1⟩) basis and Bob leaves his measurements in the |0⟩ and |1⟩ basis, we

end up with a very different result. In this case, Bob always has a 50-50 chance of measuring
a |0⟩ or a |1⟩, and so he does not receive any information from Alice.

Let’s now assume that Alice and Bob are both measuring in the |±⟩ basis, but that
Eve is present and is measuring in the |0⟩ and |1⟩ basis. Alice and Bob can now send a
number of test qubit transmissions and then communicate with one another classically on
their outcomes. They will quickly be able to deduce that something is wrong because their
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list of transmissions and measurement results will not be correctly correlated. In particular,
each time Eve receives a qubit she will have a 50-50 chance of measuring a |0⟩ or a |1⟩, which
she will then transmit to Bob. Each time Bob receives a |0⟩ or a |1⟩ and measures in his
|±⟩ basis, he will have a 50-50 probability of getting a |+⟩ or a |−⟩. By sending enough
test qubits, the statistics of the situation can quickly make it abundantly clear whether
something has gone wrong in their communication channel, possibly due to an eavesdropper
being present.

This approach is again not actually secure, because it could happen that Eve has hap-
pened to measure in the correct basis. The key to overcoming this is for Alice and Bob to
both randomly choose which basis they will transmit and receive in. They can then classi-
cally communicate with one another after performing a sufficient set of transmit and receive
cycles to determine for which set of transmitted qubits they were aligned with one another.
They can then compare records of transmitted and received qubits for some set of these to
determine whether they are correctly correlated or if there is an eavesdropper present. If
they are properly correlated, they can then be comfortable knowing that they have some set
of bits that they have shared with one another that no one else has access to. For an idea
of how many qubits need to be compared, the probability of finding a disagreement between
Alice and Bob in the presence of Eve is

P = 1−
(
3

4

)n

, (11.50)

where n is the number of comparisons made. For a value of n = 72 comparisons, the proba-
bility of detecting an eavesdropper becomes P = 0.999999999. Overall, this communication
strategy works because of the no-cloning theorem. This prevents Eve from being able to
clone the qubit transmitted by Alice, and then send the clone on to Bob while keeping
the original qubit for herself to try and gain some partial information about what is being
communicated.

An example set of scenarios for this protocol with and without an eavesdropper present are
tabulated in Figs. 11.2 and 11.3. In these examples, a basis composed of photon polarization
states are used instead of our {|0⟩, |1⟩} and {|+⟩, |−⟩} sets. One does not need a detailed
understanding of electromagnetic field polarization to interpret the examples in Figs. 11.2
and 11.3, simply know that sending within the + basis (vertical and horizontal polarizations)
or the × basis (rotated basis by 45◦) is equivalent to our scenario in terms of {|0⟩, |1⟩} and
{|+⟩, |−⟩} sets.

In reality, this communication process is not particularly efficient for attempting to send
an entire message. Instead, what is done is this process is utilized to distribute what is
known in cryptography as a key. This key can be much smaller, and is a shared resource
that is used to encrypt and then decrypt a classically communicated message. By securing
the transmission of the key due to the rules of quantum mechanics, the resulting classi-
cal transmission is much more secure than existing cryptographic communication protocols.
This is referred to as quantum key distribution, and is a quantum technology that has been
successfully implemented in a growing number of more and more practical scenarios. How-
ever, this approach is hardly perfect, since if there is an eavesdropper present the outcome is
that Alice and Bob must abort their attempt to communicate securely until Eve leaves (or
the communication channel is repaired in case there was some other physical error source
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Figure 11.2: Tabulation of a set of send and measurement scenarios without an eavesdropper
present (image from Wikipedia [33]).

Figure 11.3: Tabulation of a set of send and measurement scenarios with an eavesdropper
present (image from Wikipedia [33]).

present that was causing the issues). As a result, there is still significant work in the area
of quantum communications and quantum cryptography to develop better protocols and
analyze their level of security (and practicality).

11.4.2 Quantum Teleportation

Another important type of quantum communication comes in the form of quantum teleporta-
tion. Unfortunately, despite the exciting name, quantum teleportation is a far cry away from
being able to teleport matter (sorry, Trekkies...). Rather, quantum teleportation is focused
on transferring a quantum state between two places, not the underlying physical carrier of
that state. Accomplishing this goal seems perhaps rather challenging, since we already know
that we cannot clone a quantum state and then send that cloned state somewhere. The
way that we end up accomplishing quantum teleportation is through sharing entanglement
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Figure 11.4: Basic schematic of how a quantum state can be teleported between two locations.

between two locations. A basic schematic of the quantum teleportation protocol is shown in
Fig. 11.4.

The basic idea begins with an EPR source, which is named after the EPR paradox because
this source produces a pair of qubits in a particular Bell state. The EPR source produces
the Bell state

|Ψ−⟩23 =
1√
2

(
|0⟩2|1⟩3 − |1⟩2|0⟩3

)
(11.51)

in such a way that the qubit 2 travels to Alice and qubit 3 travels to Bob. Our goal is to
now take an input qubit at Alice’s location and “teleport” its state to Bob’s location.

Let’s now assume that the input qubit at Alice’s location has the state

|ψ⟩1 = α|0⟩1 + β|1⟩1. (11.52)

The state of our entire composite system of the 3 qubits is then

|Ψ⟩ = 1√
2

(
α|0⟩1 + β|1⟩1

)(
|0⟩2|1⟩3 − |1⟩2|0⟩3

)
. (11.53)

Recalling that the Bell states form a complete basis for two-qubit states, we can show after
some algebra that it is possible to rewrite (11.53) in terms of Bell states for qubit’s 1 and 2.
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The result is

|Ψ⟩ = 1

2

(
|Φ+⟩12

(
α|1⟩3 − β|0⟩3

)
+ |Φ−⟩12

(
α|1⟩3 + β|0⟩3

)
+ |Ψ+⟩12

(
− α|0⟩3 + β|1⟩3

)
− |Ψ−⟩12

(
α|0⟩3 + β|1⟩3

))
. (11.54)

Alice can now perform a Bell state measurement to determine which Bell state qubits 1
and 2 are in. If we assume she performs this measurement and the result corresponds to the
|Φ−⟩12 state, then we know that the qubit at Bob’s location has collapsed into the state

|ϕ⟩3 = α|1⟩3 + β|0⟩3. (11.55)

This is not exactly the input state that Alice had for |ψ⟩1 given in (11.52). However, we can
apply some known set of unitary operations to |ϕ⟩3 to make the result eventually equal |ψ⟩3.
The catch is that the particular unitary operations that Bob needs to perform depends on
the Bell state measurement that Alice completes, as is evident from the different terms in
(11.54). To fix this issue, Alice uses a classical communications channel to tell Bob what
the result of her Bell state measurement was. Based on this, he can then perform whichever
unitary operations are needed to recover |ψ⟩3, thus “teleporting” the state of the input qubit
at Alice’s location to Bob’s location.

This teleportation is accomplished without Alice or Bob ever measuring the state to be
teleported directly. By avoiding needing to determine the coefficients α and β, Alice and
Bob are able to avoid the statistical uncertainties in quantum mechanics, as well as the issues
surrounding cloning a quantum state. However, although we have instantaneously teleported
the quantum state from Alice’s location to Bob’s location, it is important to note that no
actual information has been transferred until Alice classically communicates with Bob as to
what unitary operations he needs to perform to recover |ψ⟩3 at his location. This “loophole”
(as one may wish to view it) allows for us to consider that quantum teleportation does not
violate the principle of special relativity that no information can be transmitted at speeds
faster than the speed of light.

11.5 Introduction to Quantum Sensors

Devices that use quantum mechanical principles to measure or “sense” a physical quantity
have become extremely widespread technologies. Although these are very mature technolo-
gies with many products commercially available, most quantum sensors to date fall in the
category of “first-generation” quantum technologies. That is, they require understanding
quantum mechanical principles to have been designed and to be successfully operated, but
they do not leverage many effects trademark of “second-generation” quantum technologies
(e.g., quantum superposition or entanglement). However, these first-generation type of sen-
sors continue to be developed and have had significant impacts on society in many ways
(similar to how transistors have enabled classical information technology). For instance,
atomic clocks have revolutionized how we measure and keep track of time, and is an en-
abling technology for satellite positioning and many other technologies. More broadly, there
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is an ongoing trend of using first-generation quantum sensors/effects in forming the standard
that various SI units are based on due to the fundamental nature of these effects. In other
areas, sensitive photodetectors that utilize the photoelectric effect to measure the presence
of light enable many optoelectronic technologies that are a key component in the communi-
cations infrastructure that underlies the Internet. There are of course, many, many, other
examples of first-generation quantum sensors, with more continually being designed as other
quantum technologies are matured. We will not focus on these kinds of quantum sensors
here.

Instead, we will discuss a few examples of quantum effects that are often of interest in
designing second-generation quantum sensors. These effects require control over the quantum
state of a system, and can provide better performance than is possible using classical sensing
approaches. In particular, we will discuss the concept of a squeezed state, as well as how
certain kinds of entangled states can be used for sensing purposes.

Although we will not discuss them, another broad class of second-generation quantum
sensors involve using an artificial atom as a sensor. Artificial atoms can be very sensitive to
different external physical stimuli, which can be leveraged to measure the external physical
stimuli by monitoring the behavior of the artificial atom. Since artificial atoms are also
typically extremely small in size (often in the nanometer range), these kinds of sensors can
also provide extremely fine spatial resolutions compared to larger-scale traditional sensing
methods. Some notable examples of these kinds of sensors are nitrogen-vacancy centers [34]
and Rydberg atoms [35].

11.5.1 Squeezed States

One important technique that is often used with second-generation quantum sensors is to
utilize squeezed states when making measurements. At a high level, a squeezed state makes
clever use of the uncertainty principle to allow a measurement to be performed that is subject
to less noise than would be possible using classical means. This allows for higher-precision
measurements to be made, which can be exploited in certain applications.

Prior to discussing the specifics of squeezed states, it will be helpful for us to revisit some
properties of coherent states once more. First, recall that coherent states are defined for
quantum harmonic oscillators and that we typically characterize a coherent state by a single
complex number α, with the property that

â|α⟩ = α|α⟩, (11.56)

where â is the annihilation operator of the quantum harmonic oscillator. We can evaluate
the expectation value of the number operator to see that

⟨α|â†â|α⟩ = |α|2. (11.57)

From this, we conclude that |α| is related to the mean number of quanta in the quantum
harmonic oscillator.

Another important property of the coherent state is that it behaves close to classically,
in the sense that the parameter α follows the trajectory expected of a classical harmonic
oscillator. We found this property by computing the time evolution of |α⟩ by applying the
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time evolution operator of the quantum harmonic oscillator to it. For the free quantum
harmonic oscillator (i.e., there is no interaction with another system), it can be shown that

e−i(Ĥ/ℏ)t|α⟩ = e−iω0(â†â+1/2)t|α⟩ = e−iω0t/2|e−iω0tα⟩. (11.58)

That is, up to a global phase of exp[−iω0t/2], the coherent state simply evolves into a new
coherent state oscillating at the frequency of the free quantum harmonic oscillator. It is
common to express this trajectory for free evolution in terms of the two quadratures that we
use to describe the harmonic oscillator. For the case of an LC oscillator, our quadratures
were the nodal flux ϕ and charge Q. In terms of these, we can express the time evolution of
the expected values of ϕ and Q as

⟨e−iω0tα|ϕ̂|e−iω0tα⟩ = 2ϕZPF Re{αe−iω0t}, ⟨e−iω0tα|Q̂|e−iω0tα⟩ = 2QZPF Im{αe−iω0t},
(11.59)

where ϕZPF and QZPF characterize the magnitude of the zero-point fluctuations in their
respective quantities. Due to the form of the expressions in (11.59), it is often convenient to
picture the evolution of the coherent state using a phasor diagram. In our case, we would
associate the real axis of the diagram with the ϕ quadrature and the imaginary axis with the
Q quadrature. In addition to decomposing a complex number into its real and imaginary
parts, it can equally well be characterized by its magnitude and phase. Here, we would have
that

α = |α|eiφ. (11.60)

Before giving an example of such a phasor diagram, it is important to remember that
our state is still quantum mechanical, and as a result still has a statistical uncertainty to
it. One very important property of coherent states was that they are an example of a
minimum-uncertainty state that saturates the uncertainty principle (i.e., the product of the
two uncertainties equals the minimum value allowable according to quantum mechanics).
Further, for a coherent state there is no “preference” between the two quadratures so the
uncertainty is distributed evenly between the two. Considering this, we typically draw a
coherent state on a phasor diagram as a circle with center defined by α(t) and the diameter
of the circle given by the uncertainty. An example of a typical phasor diagram of a coherent
state is shown in Fig. 11.5. Alternatively, due to the circular nature of the uncertainty region,
we can also think of the uncertainty as being distributed between the number of photons N
(which would change the length of the phasor) and the phase φ of the phasor. For some of
the most famous applications of squeezed states, it is usually this second perspective that is
more useful.

Now, a squeezed state is also an example of a minimum-uncertainty state that saturates
the uncertainty principle. The difference with a coherent state is that a squeezed state reduces
the uncertainty along one direction at the cost of increasing the uncertainty in the orthogonal
direction. Examples of states squeezed in the phase and number directions are shown in Fig.
11.6. The purpose of this squeezing process is to reduce the noise in the measurements
made in a particular “favored” quantity. For the examples in Fig. 11.6, squeezing along
the N direction allows for more accurate amplitude measurements and squeezing along the
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Figure 11.5: Typical phasor diagrams of a coherent state. The quantum uncertainty in the
state is represented by the circular area centered at the |α|eiφ point on the phasor diagram.
(Left) Uncertainty is shown in the ϕ and Q axes, or (right) equivalently in terms of the
number of photons N and the phase of the state φ.

Figure 11.6: Phasor diagrams of squeezed states. The quantum uncertainty in the equivalent
coherent state is represented by the circular outline centered at the |α|eiφ point on the phasor
diagram. The uncertainty region of the squeezed state is shown by the shaded blue region.
(Left) State squeezed along the N direction and (right) the φ direction.

φ direction allows for more accurate phase measurements. Classical measurements are best
described in terms of coherent states, so we see that using a squeezed state can provide a
boost in measurement accuracy past what is possible with any classically-prepared state.

One famous application of this kind of quantum sensing approach is with interferometers.
These have long histories in detecting properties of various kinds of waves by interfering two
waves that have traveled down different “arms” of the interferometer. Small deviations
in the phase accumulated by the two waves as they propagate down the different arms
of the interferometer will modify the interference pattern produced when the waves are
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superposed back together later in the device. By squeezing the phase of the light waves
propagating in an interferometer, it is possible to enhance the measurement accuracy of
the device by reducing the noise in the system. This effect is exploited in the LIGO (laser
interferometer gravitational-wave observatory) interferometer that has been used to detect
gravitational waves [36]. These waves stretch and compress space in the different arms of the
interferometer, which leads to changes in the interference observed with the interferometer.
In the case of LIGO, using squeezed states of light was very beneficial as the effect of a
gravitational wave can be extremely small – sometimes on the order of 10−19 m, which is
around 1/10,000th of the width of a proton!

The details of generating squeezed states are outside of the scope of this course. At a high
level, the generation of squeezed states is usually accomplished through some nonlinear effect.
For optical systems, this can be accomplished using certain nonlinear materials that can allow
for a mixing process to occur between a weak signal (sometimes just the vacuum fields) and
a strong pump tone (see [11] for an introductory account). At microwave frequencies, a
similar process can be achieved with specially-designed parametric amplifiers [37,38]. These
devices can find potential use with the kinds of superconducting circuit systems we have
learned about within this course.

11.5.2 Quantum Ghost Imaging Systems

In comparison to other areas of quantum information processing technologies (e.g., quantum
computers or quantum communication systems), quantum sensing systems that utilize com-
plex quantum states are not as mature. One reason for this is that quantum sensing systems
by their nature must interact with an external system in a somewhat “uncontrolled” manner.
This can make the issue of decoherence of the quantum states involved even more challenging
to cope with than in other quantum technologies. As a result, experimental realizations of a
substantial quantum advantage with a quantum sensor in comparison to classical techniques
have not been widely observed yet. Despite this, the field of quantum sensing is still growing
and there are theoretical proposals for technologies that are of significant interest for prac-
tical applications. Here, we will discuss one interesting quantum sensing approach; namely,
a quantum ghost imaging system.

A quantum ghost imaging system uses correlations between entangled photons to image
a target object. In its most simple configuration, a quantum ghost imaging system begins
by generating a pair of entangled photons in a Bell state. This is typically achieved using
spontaneous parametric down-conversion by sending a pump signal into a nonlinear crystal.
The two photons leave the nonlinear crystal propagating in different directions (this occurs
due to conservation of momentum), with both photons then collected into an optical setup
to route the photons as needed.

One photon is sent to interact with the target object that is to be imaged. Behind the
target is a “bucket detector”, that is used to receive the photon. This bucket detector is
large so that any photon that is able to pass through the target object will be received by
it. A device is connected to this bucket detector that then keeps track of every time that
a photon is received by the detector. By scanning the location of the photon propagation
path with respect to the target object, different parts of the object can be interacted with.

The second of the entangled photons is sent through a separate optical path that does not
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interact with the target object. After passing through the optical path, this single photon is
directed toward a multi-pixel detector that has a fine spatial resolution. This detector tracks
when and where a photon is received, which can then be compared with the time history of
photon detections made at the bucket detector. To enable this comparison to be made, the
path length of the second photon’s optical path can be roughly matched to that of the first
photon to enable correlations to be made between the receive history of the two photons
more readily.

A spatially-resolved image of the target object can now be reconstructed by calculating
the correlation of when photons are detected between the two detectors. Importantly, the
spatial resolution of the image is set by the photon in the second optical path that does
not interact with the target object and that is received by the multi-pixel detector. This
property can be exploited in interesting ways for certain applications. For instance, when
imaging biological media it is generally difficult to penetrate deep into a target and achieve
fine spatial resolution. The reason for this is that to achieve fine spatial resolution one must
use a high frequency photon, but these are more prone to loss in the biological media that
prevents them from penetrating through a thick object. With a quantum ghost imaging
setup, a lower frequency photon that can penetrate through the object can be directed to
the target object and the bucket detector while a higher frequency photon can be sent to the
multi-pixel detector. This provides greater penetration depth for a given spatial resolution
than is possible with traditional imaging techniques.

It is also possible, in principle, to use higher entangled states to achieve further perfor-
mance boosts in a quantum ghost imaging setup. One particular state that has been studied
significantly is a NOON state, which has the mathematical form of

|ψ⟩NOON =
1√
2

(
|N⟩1|0⟩2 + |0⟩1|N⟩2

)
. (11.61)

By investigating higher-order correlation functions with this kind of state, it is possible to
enhance the resolution of the quantum ghost imaging system beyond the classical diffraction
limit (this is usually referred to as super-resolution). Although NOON states are of great
interest, they are quite fragile and are very difficult to generate and measure experimentally.
As a result, we show here simulation results of a NOON state quantum ghost imaging setup
rather than experimental results.

The basic setup of the quantum ghost imaging system is shown in Fig. 11.7. In this
numerical example, a 2D analysis is used that assumes all objects are infinitely-long in the
z-dimension (into and out of the page). A dielectric object with a subwavelength slit is placed
in front of the bucket detector. The simulation is then performed for various values of N and
the correlation functions are computed to reconstruct the image. It is seen that by increasing
N , the subwavelength slit (that is below the diffraction limit) becomes increasingly better
resolved, which is an indication of super-resolution.
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(a) (b)

Figure 11.7: (a) Setup of a 2D quantum ghost imaging system using a NOON state and
(b) simulation results of the correlation function. The higher values of N achieve a super-
resolution result by detecting the slit that is smaller than the diffraction limit. A classical
imaging system that does not have super-resolution would not be able to detect the slit at
all. (Images courtesy of D.-Y. Na, Pohang University of Science and Technology.)

11.6 Practice Problems

1. An infinitely-deep potential well with width L has been prepared in the pure state

|ψ⟩ = 1√
3
|ψ1⟩ − i

√
2

3
|ψ2⟩, (11.62)

where |ψj⟩ denotes the jth stationary state of the system. For this scenario, answer
the following questions.

(a) Find the matrix representation of the position operator x̂ using as basis the states
|ψ1⟩ and |ψ2⟩.

(b) Find the density matrix representation of |ψ⟩ using as basis the states |ψ1⟩ and
|ψ2⟩.

(c) Compute the expectation value of position for state |ψ⟩ using the density matrix.

(d) Show that the density matrix found in (b) corresponds to a pure state by using
properties of the density matrix.

2. Independently study a quantum topic of interest to you and prepare a presentation
and a formal written report designed to teach someone with a similar background in
quantum mechanics as yourself about your selected topic. Suggested project topics
and initial resources for learning about the topics are included below.

(a) Quantum mechanics of finite potential wells and electron tunneling through a
potential barrier (Suggested Reference: D. A. B. Miller, Ch. 2.8 – 2.9).

(b) Approximate solutions using time-independent perturbation theory and tight bind-
ing models (Suggested Reference: D. A. B. Miller, Ch. 6.3 – 6.5).
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(c) Effective mass theory of an electron in a crystal (Suggested Reference: D. A. B.
Miller, Ch. 8.1 – 8.3, 8.5, and 8.6).

(d) Quantum mechanics of angular momentum and relation to “s, p, d, f, etc.” atomic
orbitals (Suggested Reference: D. A. B. Miller, Ch. 9).

(e) Quantum mechanics of a hydrogen atom (Suggested Reference: D. A. B. Miller,
Ch. 10 or D. Griffiths, Ch. 4.1 – 4.2. Note: This is an advanced topic, you will
want to be quite comfortable with solving partial differential equations.).

(f) Use of the density matrix to describe the interaction of light with a two-level
system (Suggested Reference: D. A. B. Miller, Ch. 14.5).

(g) Quantization of electromagnetic fields (Suggested Reference: D. A. B. Miller, Ch.
15.3 – 15.7. Note: Not everything in here has to be covered.).

(h) Example use of Bell’s inequalities that supports the Copenhagen interpretation
of quantum mechanics (Suggested Reference: D. A. B. Miller, Ch. 19.1).

(i) Particle in a 3-D box and relation to quantum dots (just a conceptual relation,
not detailed mathematics) (Suggested Reference: Chemistry LibreTexts).

(j) Introduction to phase and/or flux superconducting artificial atoms (Suggested
References: N. Langford’s lecture notes [Section 4.3 and 4.4], Krantz’s intro to
superconducting qubits [Section II-B-2], S. Girvin’s lecture notes [Section 4.2],
and/or Kockum and Nori’s superconducting qubit chapter [Ch. 17.3.2 and 17.3.3]
).

(k) Design of two-qubit gates in superconducting processors (Suggested Reference:
Krantz’s intro to superconducting qubits [Section IV-E – IV-G, not all of these
gates need to be covered])

(l) Measurement of the state of a transmon qubit via dispersive readout (Suggested
References: Roth’s intro to transmon qubits [Section about interfacing transmon
qubits with other circuitry], Krantz’s intro to superconducting qubits [Section V],
and some more mathematical details in Gu’s review on superconducting quantum
circuits [Section 4.2.4 and B.3]).

(m) Use of Purcell filters for faster dispersive readout (Suggested Reference: Krantz’s
intro to superconducting qubits [Section V-D, and some earlier sections in V]).

(n) Introduction to lasers (Suggested Reference: Chemistry LibreTexts and related
pages).

(o) Quantum communication protocol of superdense coding (Suggested Reference:
Qiskit tutorial).

(p) Introduction to the quantum Fourier transform and its applications (Suggested
Reference: Qiskit tutorial).

(q) Introduction to the Deutsch-Joza algorithm (Suggested Reference: Qiskit tuto-
rial).

(r) Rydberg atom field sensors and radios (Suggested Reference: Holloway’s intro-
duction to the subject).
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