

David Daughton

Problem Statement

"The resistance of my device should be about 50E-9 Ohm in the superconducting state. With a fourwire set-up and my M81, I'm measuring a resistance of about 1E-5 Ohm in my cryostat. Can I test such small resistances?"

10000 100 Resistance (Ω) 0.01 1E-4 1E-6 1E-8 · 1.6 1.3 1.4 1.5 Temperature (K)

MAYBE

$V = I R = 50 mA x 50 n\Omega = 2.5 nV$

10:1 SNR for somewhat reliable results

0.25 nV noise floor

3 | **Confidential** Lake Shore Cryotronics, Inc.

Noise Spectral Density

Range	Differential operation	
	Voltage noise at 1 kHz	
10 V	170 nV/√Hz	
1 V	50 nV/√Hz	
100 mV	4.5 nV/√Hz	
10 mV	4.1 nV/√Hz	

Voltage noise spectral density is a measurement of root-meansquare (rms) noise voltage per square root Hertz

RMS voltage noise = 4.1 nV/ \sqrt{Hz} × \sqrt{ENBW}

"ENBW" – equivalent noise bandwidth

ENBW in a lock-in

RMS noise

- Set-up lock-in filter
- Calculate ENBW & settle time
- Acquire a lock-in measurement every settle time period
- Take 750 to 1000 samples
- Look at the statistics

Allan deviation

Fluctuations in the system, electronics & environment may limit the noise floor

Hybrid Filter, 12 dB IIR, 10 to 1 FIR to IIR ratio

Cautionary tale – Cross talk

~40 nV 50 mA + ~ 1000 Hz -

Pick-up increases with:

- **Current Amplitude** _
- Frequency Reduce Frequency -
- Proximity ---> Isolate Twisted pairs -

Size of magnetic aperture — Look for loops, especially at instruments, feedthroughs, and at sample holders

