MSE 582 - Introduction to transmission electron microscopy &
MSE 640 - Transmission electron microscopy & crystalline imperfections

Instructor: Eric Stach
Goals

• Goals:
 – MSE 582: Perform simple imaging and diffraction experiments with the microscope
 – MSE 640:
 • In depth understanding of fundamentals of scattering, diffraction and imaging
 • Practical application of these concepts towards materials characterization

• Taught in four units:
 – Operation of the TEM (MSE 582 content)
 – Diffraction
 – Imaging
 – Spectroscopy
About me …

Education
- B.S.E. - Duke University
- M.S.M.S.E. - University of Washington
- Ph.D. - University of Virginia

Professional Experience
- Graduate research - IBM Watson Research Labs
- Staff Scientist, Principal Investigator and Program Leader, National Center for Electron Microscopy & Materials Sciences Sciences Division, Lawrence Berkeley National Laboratory
- Associate Prof @ Purdue since January 2005

Research expertise
- Crystalline defects, crystal growth, electronic thin films, electron microscopy, mechanical behavior, nanostructured materials
Course mechanics

MSE 582: Pass/Fail
 – Can you take a picture with the microscope?

MSE 640:
 – Homework (20%)
 – Laboratories (30%)
 • We’ll engage in a systematic study of the microstructure of an advanced aluminum alloy
 – Exams (50%)
 • Midterm (after diffraction unit - 20%) and a Final (30%)
What can you do with a TEM?
What can you do with a TEM?

Selected Area Diffraction (SAD)

- Crystallographic structure from particular areas of a sample.
- Used to distinguish and identify crystalline (and amorphous) phases in a material.

Selected area diffraction pattern

10\{1\}0 Zone axis pattern of a hexagonal GaN / cubic GaN heterostructure

Pattern reveals extensive twinning in the cubic layer
What can you do with a TEM?

Convergent Beam Electron Diffraction (CBED)

- Point and Space Group determination
- Local strain
- Nanoscale diffraction

Convergent beam electron diffraction pattern

111 zone axis pattern of silicon
Note detailed structure in the central disk
What can you do with a TEM?

Large-angle Convergent Beam Electron Diffraction (LACBED)

- Misorientation across grain boundaries
- Dislocation Burgers vector
- Crystalline symmetry

From J.P. Mornoroli
What can you do with a TEM?

Diffraction Contrast Imaging

Strain fields

- Dislocations
- Stacking faults
- Grain boundaries
- Precipitates
- Second phases

Typical bright field image

Dislocation configurations at the interface between a SiGe heteroepitaxial layer and a Si (100) substrate viewed in plan view (along [100])
What can you do with a TEM?

Diffraction Contrast Imaging

One beam selected for imaging

- Transmitted - “bright field”
- Diffracted - “dark field”
What can you do with a TEM?
What can you do with a TEM?

‘Weak beam’ dark field image
What can you do with a TEM?

High-resolution imaging
Atomic column images at resolutions from 0.7Å and above
 – Interference of transmitted and diffracted electron waves

Courtesy of U. Dahmen
What can you do with a TEM?

High angle annular dark field (HAADF) imaging

- Accomplished in a dedicated Scanning TEM (STEM)
- Collects incoherent scatter, yields atomic resolution

Mixed dislocation in GaN

Dissociated mixed dislocation in GaN

Courtesy of I. Arslan
What can you do with a TEM?

Electron holography

Map the mean inner potential of a material

Courtesy of J. Cumings
What can you do with a TEM?

“Lorentz” microscopy for imaging of magnetic structures

Defocus = -15µm In focus Defocus = +15µm

Data courtesy G. Kuskiniski
What can you do with a TEM?

Energy Dispersive X-ray Spectroscopy (EDS)

- Detection of characteristic x-rays excited by incident electrons.
- Spatial resolution on the order of probe size (can be as low as 2-3 Å)

Simple EDS spectrum from Al₂O₃

From Williams & Carter
What can you do with a TEM?

Electron energy loss spectroscopy

- Measures the amount of energy lost by the incident electrons.
- Similar spatial resolution, energy resolution of ≈ 1 eV.
- Probes density of state (DOS) locally.

![EELS spectrum from CaCO$_3$](image)

From Williams & Carter
What can you do with a TEM?

Ti valence determination using EELS

Ti L₂,₃ edge from trivalent Ti₂O₃ differs markedly from tetravalent compounds TiO₂ and CaTiO₃.

Ti L₂,₃ edge from twist boundary closely matches edge structure of TiO₂ standard (Ti⁴⁺).

Data courtesy Seth Taylor
What can you do with a TEM?

Energy Filtered Imaging

- Zero loss imaging removes inelastically scattered electrons from image
- Selective imaging of electrons that have lost a particular energy
- Most commonly used to create a map of local (\approx 1 nm) chemistry

Energy filtered image of a SiGe graded buffer structure using the Si K edge.

The brighter the pixel, the larger the concentration of Si.
What can you do with a TEM?

Dynamical behavior
- Possible to apply many types of stimuli to samples during simultaneous imaging.
- Probe interrelationships between structure / properties and processing
- Stimuli include:
 - Temperatures to 1300°C
 - Temperatures to LN₂
 - Chemical flux
 - Nanomanipulation
 - Nanoindentation
 - Electrical bias in combination with heating
 - Uniaxial strain

Interaction between threading and misfit dislocations in a SiGe heterostructure
A way to organize our thoughts

In MSE 582 we will learn how to “use” the microscope

We will discuss:

– Electrons & scattering, briefly
– Electron sources
– Lenses & aberrations
– How the instrument goes together
– Alignment
– The sample

From Reimer
In MSE 640, we will cover:

- Elastic & inelastic scattering
- Diffraction
 - Single scattering (kinematical)
 - Multiple scattering (dynamical)
- Image formation
 - Diffraction contrast
 - Phase contrast
 - Incoherent imaging
- Spectroscopy
 - Energy Dispersive X-ray Spectroscopy
 - Electron Energy Loss Spectroscopy
Basic properties of electrons

a reminder …