
Make Sense Inc.
Grades 9-12

DRAFT

2
MAKE SENSE INC.

1
MAKE SENSE INC.

Cover Information

Copyright SCALE K-12 © 2023 Purdue University Research Foundation

Unit Title:				 Make Sense Inc.
Grade Level Range:		 Grades 9-12

Acknowledgments

Teacher Authors
Jonathan Woessner
Tracie N McAtee

Program Authors
Azizi Penn
Breejha Quezada

2
MAKE SENSE INC.

Overview: Engineering Design Process

De�ne

Learn

Plan

Try

Test

Decide

Pr
o

b
le

m
So

lu
ti

o
n

Engineering Design Process
A way to improve

Copyright © 2015 PictureSTEM- Purdue University Research Foundation

C
o

m
m

u
n

icatio
n

 &
 Team

w
o

rk

DEFINE THE PROBLEM

•	Who is the client?
•	What does the client need?
•	Why does the client need it?
•	Who is the end user?
•	Why might the end user want it?
•	What are the criteria (requirements)and

constraints (limits) of the solution?
Problem Scoping:

WHO needs WHAT because WHY

LEARN ABOUT THE PROBLEM

•	What kind of background knowledge is
needed?

•	What science/math knowledge will be
needed?

•	What materials will be needed?
•	What has already been done to solve the

problem?
•	What products fill a similar need?
•	How should we measure success and

improvement?

PLAN A SOLUTION

•	Continue to specify the criteria/ constraints
•	Generate ideas of possible solutions
•	Develop multiple solution paths
•	Consider constraints, criteria, and

trade-offs (criteria that compete with one
another)

•	Choose a solution to try
•	Develop plans (blueprints, schematics,

cost sheets, storyboards, notebook pages,
etc.)

COMMUNICATION

•	 Communicate the solution clearly and make
sure it is easily understandable

•	 Use evidence to support why the client
should use your solution

3
MAKE SENSE INC.

Overview: Engineering Design Process

De�ne

Learn

Plan

Try

Test

Decide

Pr
o

b
le

m
So

lu
ti

o
n

Engineering Design Process
A way to improve

Copyright © 2015 PictureSTEM- Purdue University Research Foundation

C
o

m
m

u
n

icatio
n

 &
 Team

w
o

rk

TRY A SOLUTION

•	Put the plan into action
•	Consider risks and how to optimize work
•	Use criteria/constraints and consider

trade-offs from the problem/plan to build a
prototype (a testable representation of a
solution), model, or product

TEST A SOLUTION

•	Consider testable questions or
hypotheses

•	Develop experiments or rubrics to
determine if the solution is meeting the
stated criteria, constraints, and needs

•	Collect and analyze data

DECIDE IF THE SOLUTION IS GOOD
ENOUGH

•	Are users able to use the design to help
with the problem?

•	Does the design meet the criteria and
constraints?

•	How could the design be improved based
on test results and feedback from the
client/user?

Iterative nature of design: Always
consider which step should be next!

TEAMWORK

•	 Discuss in teams how the solution meets
the criteria and needs of the client

•	 Consider different viewpoints from each
teammate

4
MAKE SENSE INC.

Overview: How to make EDP sliders

How to create the poster
1.	 Download the high-quality PictureSTEM Slider Poster and the paper clip images from

PictureSTEM.org.
2.	 Print the poster and the paper clip on poster-sized paper and cut to size. High-gloss or semi-

gloss paper is the best choice.
3.	 Use self-sticking Velcro on the back of the paper clip and down the side of the poster so that

the paper clip can be placed to point at all 6 sections of the slider.

How to create individual sliders
1.	 Print the sliders on the opposite page - enough for one slider per student in your class.
2.	 Cut the sliders apart.
3.	 Laminate the sliders individually.
4.	 Use a jumbo paper clip as the pointer for each slider.

Individual sliderPoster

De�ne

Learn

Plan

Try

Test

Decide

ProblemSolution

Engineering D
esign Process

A
 w

ay to im
prove

Copyright ©
 2015 PictureSTEM

- Purdue U
niversity Research Foundation Communication & Teamwork

De�ne

Learn

Plan

Try

Test

Decide

ProblemSolution

Engineering D
esign Process

A
 w

ay to im
prove

Copyright ©
 2015 PictureSTEM

- Purdue U
niversity Research Foundation Communication & Teamwork

De�ne

Learn

Plan

Try

Test

Decide

ProblemSolution

Engineering D
esign Process

A
 w

ay to im
prove

Copyright ©
 2015 PictureSTEM

- Purdue U
niversity Research Foundation Communication & Teamwork

5
MAKE SENSE INC.

6
MAKE SENSE INC.

Unit Overview

Lesson Summaries

Lesson 1: Make Sense Inc.
Make Sense Inc. is a smart home development company looking to build new and improved homes in
Indiana. They want to take advantage of the new microelectronics industry that is growing in Indiana, and
wants your help. As computer scientists and engineers, your job is to learn about the sensors and the
computer code that we will use to build homes and satisfy customer needs

Lesson 2: What Makes a Computer a Computer?
Do we need computers in our smart homes? To answer this question we want you to explore what
characteristics determine a computer, and be able to classify all types of electronics as either computers
and not computer. To best bring you up to speed on current technology, we would also like you to learn
about microcontrolers and how the fit into what our industry needs to do.

Lesson 3: Function-al Design
Functions are one of the most important elements of computer science, and because of that a key part
of our favorite apps and other devices. This lesson will explore how to set up functions that will help us
program our smart homes.

Lesson 4: Make Some Sense
Summary
Teacher will model assembling the temperature sensor and creating a function using the sensor.

Students will be assigned groups along with a sensor. Each group will assemble their sensor and create
a function using the assigned sensor. Each group will share out their findings with the class

Lesson 5: Plan It Out
Plan - Drawing Pictures, Creating Flowcharts, Writing Pseudocode

Students will choose sensors and actuators to accomplish their chosen smart home goals. They should
identify inputs, conditions, and desired outputs. They should then plan out how they will use sensor data
to make decisions and control the outputs, using flowcharts and pseudocode. They will design based on
a standard mock home from the client. They should choose which sensors to use, as well as where to
place them in the home and what to use them for. Continue to reference the client letters to insure you
are meeting their needs.

Lesson 6: Try It Out
Creating an algorithm, Using a common model to try the code.

Using their model home, sensors, and microbit, assemble your smart home layout. Use your
pseudocode and flowchart to create python code to control the smart home.

7
MAKE SENSE INC.

Lesson 7: Test It Out
Summary
Test your design against a standard rubric. Evaluate how well your design meets needs such as
usability, features, efficient sensor use, etc

Lesson 8: Decide/Redesign
Client letter suggests/asks for more complex triggers. We anticipate initial student designs will be very
1-dimensional (ex: push button, turn light on/off). The client will request solutions that have additional
complexity or inter-related-ness. Examples: change the temperature set point based on time of day or
outside weather or human presence, change light brightness or temperature based on brightness outside
or time of day, allow user to wirelessly control parts of the house (with a second microbit).

Standards Addressed
7183.D2.1 Identify the standard documentation tools of displaying algorithms such as pseudocode,
flowchart symbols and UML
7183.D2.3 Apply truth tables, Boolean logic, control structures, relational and logical operators to
program algorithms
7183.D2.5 Document and express code and algorithms in an easily understandable manner using tools
such as data flow diagrams, flowcharts, use case diagrams, activity diagrams, and state tables.
7183.D2.6 Develop a simple program and/or script using a compiled, object-oriented scripting language
like Python.
7183.D2.15 Describe the components of a computer architecture
7183.D2.17 Successfully identify and debug errors in applications produced by themselves or others.
7183.D2.19 Apply critical thinking and problem-solving methodologies
7183.D2.20 Show the ability to delegate tasks into user defined procedures for the purpose of efficiency.

Unit Description (Make Sense Inc.)
In this unit that pairs computer science with engineering
design, students are contracted by “Make Sense Inc.,” a fictional smart home development company
aspiring to incorporate Indiana’s emerging microelectronics industry into their smart home designs.
Students do this by learning about Python functions, sensors, computers, and microelectronics.
Ultimately, they use their functions and coding knowledge to program a microcontroller kit with
interactive sensors to simulate a potential smart home system design.

8
MAKE SENSE INC.

Page title

9
MAKE SENSE INC.

Page title

10
MAKE SENSE INC.

Lesson Summary
Students are introduced to the Engineering Challenge by their client
which will serve as the context within which students can learn
about microelectronics and coding functions in Python. Students
will learn about the Engineering Design Process and then take
part in iterative class and group discussions to identify criteria,
constraints, and knowledge gaps needed to successfully solve the
client’s challenge.

Teacher Background
Teamwork
Students should be teamed strategically and may or may not be
assigned jobs within their team. When forming student teams,
consider academic, language, and social needs. In place of
strategic teaming, a random teaming can be substituted. Students
will work in these teams of 3 or 4 throughout the unit. Effective
teamwork is essential in this unit as well as in engineering in
general. The teams will operate as software engineers with each
team working together to develop an application for a smart home
sensor and code the function to control it.

Engineering Design Process
NOTE: If students are familiar with the engineering design process
(EDP) before beginning the unit, the teacher can skip this (EDP)
introduction.

The engineering design process (EDP) is an iterative, systematic
process used to guide the development of solutions to engineering
problems. There is no single engineering design process, just like
there is no one scientific method. However, the various engineering
design processes have similar components. The engineering
design process (EDP) involves understanding the problem, learning
background information necessary to solve the problem, planning,
trying, testing the solution, making changes based on the tests, and
communicating their ideas. Students will use an engineering design
process slider throughout the unit to help them understand where
they are in the design process. For more information about the
steps of the engineering design process presented in this unit, see
the front matter section about it.

Lesson Objectives
Students will be able to:
•	 Identify the problem

from a client.
•	 Identify background

knowledge needed to
develop a solution.

•	 Explain the criteria and
constraints.

Time Required
One 50-minute lesson

Standards Addressed
NGSS HS ETS1-1 Analyze
a major global challenge
to specify qualitative and
quantitative criteria and
constraints for solutions
that account for societal
needs and wants.

ICS-2.1 Use the design
process to iteratively
develop a computing
artifact.

ICS-5.3 Utilize a problem-
solving approach to develop
a solution using technology.

Key Terms
Client, engineering
design process,
criteria, constraints,
microelectronics, smart
home

Lesson Materials
Per classroom
•	 EDP Poster
•	 Chart paper
Per Student
•	 EDP slider and paperclip
•	 Laptop/Chromebook/

Tablet
•	 Engineering notebook

LESSON ONE:

11
MAKE SENSE INC.

Some common misconceptions about engineering
•	 Engineers do not have to learn anything new when they are

working on a project. In reality: Engineers need to continually
learn throughout their lives.

•	 Engineers come up with solutions that are just “good enough”
and do not take risks. In reality: Engineers strive to create
the best solution possible through optimization. It is normal to
experience failure when solving engineering problems.

•	 Engineers work alone to solve a design problem. In reality:
Engineers collaborate with people in different disciplines and
fields to best solve a problem. Engineering problems often
require a wide range of content knowledge.

Some common misconceptions about the EDP
•	 The engineering design process is linear, and you never need

to go back to previous phases. In reality: The EDP is a cyclical
process that requires many iterations.

•	 Once the project is done, it is considered complete and not
revisited. In reality: The engineering design process is never
really “done” and it is revisited so engineers can improve
projects and make changes.

Criteria and Constraints
One difficulty that students might experience is distinguishing
between criteria and constraints. Criteria are the things required
for a successful design, or goals of the designed solutions. They
help engineers decide whether the solution has solved the problem.
Another way of thinking about criteria are that they represent
anything that the client and the engineers will use to judge the
quality of a solution. Constraints are a specific type of criteria;
they are those criteria that limit design possibilities, or the ways
that that problem can be solved. If constraints are not met, the
design solution is by default not a viable solution to the problem.
The relationship between criteria and constraints is represented in
the figure. It may be helpful to post the definitions with the figure
somewhere in the classroom for future reference.

Problem Scoping
In this lesson, students will be in the problem scoping section
of the engineering design process, specifically on the define the
problem step. Define the problem and learn about the problem
combine to make problem scoping. In this stage, students will be

Duplication Masters
1.A Python Installation
Instructions
1.B Content Pre-
Assessment
1.C Client Letter
1.D Problem Scoping
1.E Client Response

Educator Resources
1.F Content Pre-
Assessment Key
1.G Problem Scoping Key

Assessment
Pre-Activity Assessment
Assess students’ prior
knowledge by listening
to their responses to 1.D
Problem Scoping. Use
students’ answers to 1.B
Content Pre-Assessment
as baseline data about
the students’ current level
of understanding and
background knowledge. Do
not assess 1.B as right or
wrong.

Activity Embedded
Assessment
Observe students’
discussions and written
responses to 1.D Problem
Scoping. Check students’
brainstorming lists to see if
they can identify the content
they will be expected to
master by the end of the
unit.

Post-Activity Assessment
Use the 1.G Problem
Scoping Key to evaluate
students’ answers to the
notebook prompts.

12
MAKE SENSE INC.

first introduced to the engineering problem through a client letter
and then be given a chance to ask questions to the client to receive
more information about the problem. The problem statements given
in the client memos purposefully do not provide all the information
necessary to solve the problem. Students are tasked with
generating questions about the problem to try to fill in this missing
information. Based on all information from the client, students will
then define the problem in terms of: what the problem is and why it
is important, who are the client and end users, what are the criteria
and constraints, and what other information they may need to learn
about in order to solve the problem. This process of generating
ideas and questions for the client is an important skill on its own
both in engineering and in other fields, but it also helps to ensure
that the students fully understand the problem and their task in the
engineering design challenge.

Solution Generation
The Solution Generation section of the engineering design process
includes plan the solution, try out the plan of the solution, test the
solution, and decide whether the solution is good enough. When
engineers are generating solutions, they will use iteration as a
means to continually improve their solution, reflect back on the
problem definition and what they have learned about the problem,
and consider criteria, constraints, and trade-offs. Trade-offs involve
having to make compromises about which criteria to emphasize
because they compete with one another in terms of making the
solution effective. For example, cost could be a trade-off for
durability.

Engineering Notebook
Throughout the unit students will be recording information in an
engineering notebook, and they will need the notebook immediately
in Lesson 1. The engineering notebook is digital set of documents
which includes writing prompts, blank space to take notes or upload
pictures of work, and digital copies of the duplication masters that
are listed in each lesson. The engineering notebook is offered as a
google doc but can be adapted to your classroom needs. Students’
engineering notebooks will support their communication of ideas
and should be used consistently throughout the unit.

LESSON ONE:

13
MAKE SENSE INC.

Vocabulary
Students will be introduced to many new science and engineering
vocabulary terms throughout the unit. It may be helpful to create
a vocabulary section in their notebook with term definition and
memory clue. Additionally, the class could maintain a word wall.

Before the Activity
•	 Assemble the Engineering Design Process Sliders and post the

EDP poster in the classroom (see the front matter for how to
assemble them). If your students do not want to use the sliders,
simply hanging the poster achieves the same result. Make sure
you and your students can refer to the EDP sliders and/or poster
throughout the unit.

•	 Determine student teams of three or four. These teams should
be their teams throughout the rest of the unit.

•	 Python should already be installed on classroom and student
computers. The instructions for installation can be found in 1.A
Python Installation Instructions

•	 Print and make copies of the following worksheets in the labeled
amounts:
	◦ (1 per student) 1.B Content Pre-Assessment, 1.C Client

Letter, 1.D Problem Scoping (or they can put the 1.D
answers directly in their notebook – recommended)

	◦ (Optional) Prepare the pre-assessment activity in the form
of a survey, kahoot, etc. using the questions on 1.B Content
Pre-Assessment

Classroom Instruction
Introduction
1.	 Complete the content pre-assessment activity. The students

will participate in a more formal pre-assessment to assess their
current level of knowledge and understanding regarding the
topics of the curriculum, microelectronics, and the engineering
design process. Using the questions on the 1.B Content Pre-
Assessment, distribute hard copies or have students respond
to a digital version of the survey. Make sure to tell students that
this is just to assess any prior knowledge, so it is okay to not
know the answers.

2.	 Review prior knowledge. Lead a discussion with the class in
which students are able to share their prior knowledge on the
topics of engineering, coding, and microelectronics. Prompts

14
MAKE SENSE INC.

may include the following: What do engineers do? What kinds of
industries do engineers work in?

3.	 Introduce and set up engineering notebooks. Say: Engineers
use notebooks to document their design process and keep
notes. We will also be using engineering notebooks throughout
our engineering challenge. Each day, you’ll use the notebooks
to take notes and record what you are learning. In addition,
there are questions that you’ll be asked to answer. NOTE: You
can have your students type in their notebooks in two different
colors – one for thoughts and prompts that are individual and
one for thoughts and prompts that they discuss in their teams.
This will help both you assess, and the students recognize,
where ideas came from. You also may want to have students
start a table of contents.

4.	 Form teams. After students have finished the prompts, explain
that for the rest of the unit they will start the day with a review
of the engineering design process, and then look at a specific
problem that will require the use of that process. Explain that
students will be working in small teams to solve a problem being
brought to them by the client. Divide students into teams of 3s
and 4s.

Activity
5.	 Introduce the problem. Let the students know that they are

being asked to work for a company called Make Sense Inc.
Provide copies of the 1.C Client Letter to the students so that
they can read it. Encourage them to add information to their
notebooks as they read to keep track of important items. Give
students time to discuss in small teams what information they
read in the letter.

6.	 Complete problem scoping section 1. The above sets up the
need to discuss engineers and engineering. Direct students to
the 1.D Problem Scoping in their engineering notebooks. Have
students individually answer the prompts from section 1. Make
sure to let them know that it is okay if they do not know very
much about engineers or engineering – just have them answer
these questions to the best of their ability.

7.	 Discuss engineers and engineering. Allow students to share
their answers from 1.D Problem Scoping section 1. Define
engineers and engineering and take some notes for students to
type in their notebooks. As a class create a list of the different
types of engineering and have students brainstorm careers
that may fall within each type of engineering in their notebooks.
Explain that the problem they will be solving falls under the

LESSON ONE:

15
MAKE SENSE INC.

category of engineering design and draws on microelectronics
to understand the context and generate a solution.

8.	 Introduce the Engineering Design Process. Display the
Engineering Design Process poster and pass out individual
EDP Sliders and a paper clip to each student. Say: Engineers
use an engineering design process, along with mathematics,
science, and creativity, to understand a problem and come up
with a solution. Since we are working as engineers during this
unit, we will be using this engineering design process as a guide
while we come up with a solution for our engineering problem.
Go through the EDP Slider and ask the students what they think
each stage involves. Be sure to clarify any misconceptions and
elaborate where needed. There is a detailed description of the
EDP Slider in the front matter of the unit.

9.	 Identify the problem from the client and develop questions
for the client. Have the students reread the letter, if necessary,
to identify the problem and add it to their notebooks. Have them
brainstorm questions for the client using 1.D Problem Scoping
Section 2. Ask: What does the client need from you? What are
some possible constraints and criteria?

10.	“Send a response” to the client with the brainstormed
questions. Create a list of the questions from your students
and “send” a response from the class asking the questions the
students came up with.

11.	Identify the problem from the client. Have the students
reread the original letter and response as needed to identify the
problem and add it to their notebooks.

12.	Identify required information. Have students work together
to brainstorm a list of “required information” in order to help the
client with their request. Encourage them to highlight/underline
the things on their list they already know. Then as a class create
an anchor chart that will be revisited throughout the unit. As
students learn information you can check content off of the
anchor chart or add to it if they think of some other information
that they will need to help the client.

13.	Provide the client response to the students. You can tell the
students that you now have a response from the client (1.E.
Client Response). It is best if you can make this feel as real
as possible. It may be good if you can display this to the class
rather than make copies so that if feels like it came as an email
response. You can provide them with hard copies at a later time
if you want them to be able to come back and refer to it later.

14.	Complete problem scoping section 3. Now that you have all
of the information from the client, direct students to section 3 of

16
MAKE SENSE INC.

1.D Problem Scoping Prompts. They can do this individually or
in teams. Discuss their responses. Update your anchor chart as
needed based on the conversations happening in class

Closure
15.	Revisit the problem. Give the students a chance to revise their

list of questions or required information they composed for the
engineering challenge.

16.	Discuss the engineering design process. Ask: Which phase
of the engineering design process did we focus on related to our
challenge today? Why is this important? Ex: Students need to
understand the root problem from the perspective of the client
and other stakeholders before attempting a solution.

LESSON ONE

17
MAKE SENSE INC.

We intend to use python.microbit.org for the programming environment.
https://python.microbit.org/
This is a completely online editor for coding in MicroPython for the micro:bit that does not need to be
installed on individual student computers.
MicroPython is a subset of Python that is specifically for the microcontroller. The editor is specifically for
the micro:bit microcontroller. The editor has online documentation, code hints and a linter (debugging
tool). It also has a micro:bit simulator. Browse the micro:bit Python site to become more familiar with the
environment.

https://microbit.org/get-started/user-guide/python-editor/
1.	 Students will need to be able to access the python.microbit.org site with their computers. They will

also need to have a USB-A port on their computer so that they can flash the code to the micro:bit.

Figure 1: Python editor for the micro:bit

1.A Python Installation Instructions

https://python.microbit.org/
https://microbit.org/get-started/user-guide/python-editor/

18
MAKE SENSE INC.

Name__ Date_______________ Period __________

1.B Content Pre-Assessment

1. Write a definition for the word, “computer”.

2. What is a central processing unit (CPU)?

3. What is the difference between random access memory (RAM) and hard drives?

4. What does an actuator do?

5. List three examples of coding languages.

6. Within programming, what is a variable?

7. What is the difference between software and hardware?

8. What does the term, “microelectronics” mean?

9. How are microelectronics used in the field of computer science?

10a. What jobs would you be interested in that use microelectronics?

10b. Provide one example of how microelectronics is used in that job.

19
MAKE SENSE INC.

Dear Software Engineers,

Make Sense Inc. is company that designs smart homes in Indiana. With the recent boom of industries
coming to Indiana, we are looking to capitalize on the new microelectronics coming from these industries.
We would like to tie smart home sensors that are currently being developed to the new chips being
manufactured here to offer our smart home customers many features to make their homes more efficient,
easier to manage, more fun, etc. We need to develop code that will allow our new sensors to work with
the chips as they are manufactured. We are also looking to expand how the sensors are used in our
smart home applications.

The chips and sensors are not yet designed or manufactured, but we want to be ready for them
when they begin to be available. So, what we need is a set of working code for already existing
microprocessors that can be used as the base code for the sensors we are creating to work with the
new chips as they are manufactured. So we need you to develop code that is modifiable and modular
that makes our planned sensors work for smart home applications. The code to run our sensors should
be able to be put easily into other code as needed for the applications intended. Some of our sensors
include: a light sensor, a sound sensor, and a temperature sensor.

We will provide you with the main code that runs the whole smart home system. Your code should patch
into that code and run your chosen sensor in the way you intend it to run.

I am sure that this has set up many questions for you. Please respond with questions and I will do my
best to get back to you with the additional information you need.

Sincerely,

Sammy H. Sensier
Make Sense Inc.

1.C Client Letter

20
MAKE SENSE INC.

Name__ Date_______________ Period __________

Section 1:
Directions: Please answer the following questions.

1.	 What do engineers do?

2.	 How do engineers solve problems?

Section 2:
Directions: Please answer the question after hearing about the engineering design challenge.

3.	 What questions do you want to ask the client?

Section 3:
Directions: Please answer these questions after you have been able to ask questions about the
challenge. First, complete each prompt on your own. Then write your revised answer (if different) to the
prompt, based on the discussion with your team. You may use a different color writing utensil or font
color to distinguish your answer and how it changed after talking with teammates.

4.	 The client is:

5.	 The client’s problem is:

6.	 The problem is important to solve because:

7.	 The end-users are:

1.D Problem Scoping

21
MAKE SENSE

Name__ Date_______________ Period __________

8.	 An effective solution for the client will meet the following criteria:

9.	 The constraints (or the limits) of the solution are:

10.	Think about the problem of designing a smart home. In terms of designing a program to help solve
this problem, what are at least 2 things you need to learn in order to make an evidence-based
recommendation? Make sure to consider all important aspects of the problem. Be specific.

22
MAKE SENSE INC.

Dear Software Engineers,
Thank you for your excellent questions. Here are answers to most of your questions.

[INSERT ANSWERS TO QUESTIONS]

If you have more questions for me or my team, give them to your teacher who will pass them along to us.
Sincerely,
Sammy H. Sensier
Make Sense Inc.

[DO NOT INCLUDE THIS SECTION -- THESE ARE DIRECTIONS FOR THE TEACHER] TEACHER
NOTE: Before distributing this to students, fill in answers to their questions. Students will come up with a
variety of questions, but good problem scoping questions help clarify the problem, identify what needs to
be done, and identify the acceptable ways it can be done. Here are some sample questions/responses.
[This will need to be added later… some ideas are:
What kind of things do you want the smart home sensors to do exactly?
What’s going to power these sensors, and how long do they need to last before changing batteries or
charging?
Do you have any size or shape requirements for the code? Like, does it need to be super small or able to
run really fast?
Is there a certain way the sensors need to talk to the main smart home system or to each other?
Lastly, are there any special features you already know you want to include?]

1.E Client Response Template

23
MAKE SENSE INC.

1.F Content Pre-Assessment w/Answer Key

1.	 Write a definition for the word, “computer”.

A computer is a programmable electronic device that stores and processes data.

2.	 What is a central processing unit (CPU)?

The CPU is the brain of a computer. It interprets, processes, and executes instructions.

3.	 What is the difference between random access memory (RAM) and hard drives?

RAM is temporary storage that is lost when the power is turned off. A hard drive maintains
long-term storage and keeps data safe even when power is turned off.

4.	 What does an actuator do?

An actuator converts energy into mechanical force.

5.	 List three examples of coding languages.

There are many answers to this question, but examples include C, C++, HTML, Java,
JavaScript, PHP, Python, R, Ruby, and SQL.

6.	 Within programming, what is a variable?

A programming variable is value or set of values that store information.

7.	 What is the difference between software and hardware?

Hardware is any physical component of a computer. Software is the programming that tells the
hardware what to do and how to do it.

8.	 What does the term, “microelectronics” mean?

Student answers may vary, but the formal definition of microelectronics is the design,
manufacture, and use of microchips.

9.	 How are microelectronics used in the field of computer science?

There are many answers to this question, but examples include the design and manufacturing
of computing devices (such as CPU, memory, GPU, sensors, etc.). Microelectronics are
foundational in computer science as they are the hardware that allow for programmable
automation.

10.	What jobs would you be interested in that use microelectronics? Provide one example of how

microelectronics is used in that job.

Students’ answers will vary based on interest. Credit may be given as long as at least one job
example is provided with their logic behind how that job uses microelectronics.

24
MAKE SENSE INC.

Section 1:
Directions: Please answer the following questions.

1.	 What do engineers do?

Engineers solve problems by designing and building things like machines, systems, and
structures to fulfill a specific purpose or address a particular need.

2.	 How do engineers solve problems?

Engineers solve problems by identifying the issue, brainstorming possible solutions, testing
their ideas, and then refining the designs until they work well.

Section 2:
Directions: Please answer the question after hearing about the engineering design challenge.

3.	 What questions do you want to ask the client?

This will vary.

Section 3:
Directions: Please answer these questions after you have been able to ask questions about the
challenge. First, complete each prompt on your own. Then write your revised answer (if different) to the
prompt, based on the discussion with your team. You may use a different color writing utensil or font
color to distinguish your answer and how it changed after talking with teammates.

4.	 The client is:

Make Sense Inc., a company that specializes in designing smart homes and is looking to
integrate new smart home sensors with newly developed microelectronics in Indiana.

5.	 The client’s problem is:

The client needs modular and adaptable code developed for current microprocessors that
can serve as a foundation for the operation of future smart home sensors in conjunction with
new chips, ensuring efficiency, ease of management, and expanded functionality within smart
homes.

6.	 The problem is important to solve because:

Indiana is going to have a big microelectronics production industry, and so using
microelectronics in homes will be popular and valuable

1.G Problem Scoping Prompts Key

25
MAKE SENSE INC.

7.	 The end-users are:
Homeowners in Indiana who are looking to purchase smart homes with the latest technology
that offers increased efficiency and new features.

8.	 An effective solution for the client will meet the following criteria:

The solution must be adaptable to work with future chips and sensors that are not yet
designed.
It should allow for easy integration with the main smart home system.
The code should be modular, allowing for updates and changes without disrupting the overall
system.
It needs to be efficient in terms of processing speed and power consumption.

9.	 The constraints (or the limits) of the solution are:

The current unavailability of the new chips and sensors for direct testing and development.
Potential limitations in computational power and energy usage.
The need to adhere to the specifications and communication protocols of the future chips.

10.	Think about the problem of designing a smart home. In terms of designing a program to help solve

this problem, what are at least 2 things you need to learn in order to make an evidence-based
recommendation? Make sure to consider all important aspects of the problem. Be specific.
I would need to know:
The programming best practices for creating modular and adaptable code, particularly in
environments where hardware specifications might change or be updated frequently
And
About all different types of sensors

26
MAKE SENSE INC.

Lesson Summary
Students will explore the question “Do we need computers in our
smart homes?” To answer this question, students will explore what
characteristics determine a computer, and be able to classify all
types of electronics as either computers or not computers. Students
will also explore microcontrollers and system-on-chip and their
relationship to computers. All of this will be related to the problem of
designing smart homes.

Teacher Background
This lesson explores the differences between computers,
microcontrollers, and systems on a chip. If you need additional
background in these areas, there are many videos on the internet
that will give some background. Here are a few that might get you
started, but there are many more:

Compare microprocessor, microcontroller, and system-on-
chip:
•	 https://www.youtube.com/watch?v=9Rrt0n1oY8E&ab_

channel=NilabhNayanBorthakur

What is a computer?:
•	 https://www.youtube.com/watch?v=Cu3R5it4cQs&ab_

channel=GCFLearnFree
•	 https://www.youtube.com/watch?v=-HCJDWfCl-M&ab_

channel=AaronWissner
•	 https://www.youtube.com/watch?v=HB4I2CgkcCo&ab_

channel=GCFLearnFree

What is a microcontroller?:
•	 https://www.youtube.com/watch?v=jKT4H0bstH8&ab_

channel=MicrochipTechnology
•	 Much more detailed:

https://www.youtube.com/watch?v=CmvUY4S0UbI&ab_
channel=SolidStateWorkshop

What is a system-on-chip?:
•	 https://www.youtube.com/watch?v=dokgLSAhqHI&ab_

channel=Arm%C2%AE

Lesson Objectives
Students will be able to:
•	 Identify electronic

devices as a computer
or not a computer

•	 Describe the
components of a
computer and their basic
function

Time Required
One 50-minute lesson

Standards Addressed
7183.D2.15 Describe the
components of a computer
architecture

ICS-4.1 Demonstrate
understanding of the
hardware and operating
systems of computers.

Key Terms
Computer, microcontroller
(uC), system-on-chip
(SoC) Input, Output ,
Operating System (OS),
Random Access Memory
(RAM), Hard Drive, Central
Processing Unit (CPU)

Lesson Materials
Per classroom
•	 EDP Poster
•	 3-5 everyday items

slightly disassembled to
show the microcontroller
or system-on-chip inside

Per Student
•	 EDP slider and paperclip
•	 Laptop/Chromebook/

Tablet
•	 Engineering notebook

LESSON TWO:

https://www.youtube.com/watch?v=9Rrt0n1oY8E&ab_channel=NilabhNayanBorthakur
https://www.youtube.com/watch?v=9Rrt0n1oY8E&ab_channel=NilabhNayanBorthakur
https://www.youtube.com/watch?v=Cu3R5it4cQs&ab_channel=GCFLearnFree
https://www.youtube.com/watch?v=Cu3R5it4cQs&ab_channel=GCFLearnFree
https://www.youtube.com/watch?v=-HCJDWfCl-M&ab_channel=AaronWissner
https://www.youtube.com/watch?v=-HCJDWfCl-M&ab_channel=AaronWissner
https://www.youtube.com/watch?v=HB4I2CgkcCo&ab_channel=GCFLearnFree
https://www.youtube.com/watch?v=HB4I2CgkcCo&ab_channel=GCFLearnFree
https://www.youtube.com/watch?v=jKT4H0bstH8&ab_channel=MicrochipTechnology
https://www.youtube.com/watch?v=jKT4H0bstH8&ab_channel=MicrochipTechnology
https://www.youtube.com/watch?v=CmvUY4S0UbI&ab_channel=SolidStateWorkshop
https://www.youtube.com/watch?v=CmvUY4S0UbI&ab_channel=SolidStateWorkshop
https://www.youtube.com/watch?v=dokgLSAhqHI&ab_channel=Arm%C2%AE
https://www.youtube.com/watch?v=dokgLSAhqHI&ab_channel=Arm%C2%AE

27
MAKE SENSE INC.

Before the Activity
The teacher should prepare by reviewing the original client letter,
setting up the class EDP chart, and ensuring the PowerPoint
activity and 2.1 Components of a Computer System worksheet are
ready for use. Prepare the materials that are partially torn apart to
explore microelectronics.

Classroom Instruction
Introduction
1.	 Remind students of the engineering problem. Ask: What is

our engineering design problem? Students may need to revisit
the original client letter to remind themselves of the engineering
design challenge. Ask: What were some of the things we
decided we needed to learn about in order to develop a solution
to this problem? Remind students to refer to their notes from the
previous lesson. Teachers may encourage students to add to
the class anchor chart if you made one.

2.	 Begin to build a common definition of “computer.” Say:
Our goal today is to begin to answer the question, “Do we need
computers in our smart homes?” In order to begin to answer
this, we really need to have a deep understanding of computers.
Ask: What is a computer? How do you define it? Write some
of the student responses up on the board. Then ask: What are
some items that are close to a computer, but aren’t actually a
computer?

3.	 Identify where they are in the engineering design process
(Learn). Say: So far, we have defined the problem with help
from our client. Point out the “Problem” block of the Engineering
Design Process (EDP) poster and have students look at their
EDP sliders. Say: Before we can start designing solutions,
we need more information. Ask: What step of the engineering
design process are we in? The students should identify that they
are in the “Learn” stage.

Activity
4.	 Identify computers vs not computers. As a warm up activity,

pull up this Google Sheets activity “What is a Computer?”
https://rebrand.ly/computeractivity. Make a copy for your use:
File > Make a Copy > Entire Presentation. Then use your
editable copy to move the images on the slide to the “computer”
or “not a computer” side of the slide. Discuss each image and
how the students know that it is or is not a computer. Use their

Duplication Masters
2.1 Components of a
Computer System

Assessment
Pre-Activity Assessment
Use the student responses
to the introduction questions
about the definition of a
computer to gauge their
background knowledge.

Activity Embedded
Assessment
Use the student
individual answers on 2.1
Components of a Computer
System worksheet to
understand what students
already know about
computer systems.

What Makes a Computer a Computer?

https://rebrand.ly/computeractivity

28
MAKE SENSE INC.

LESSON TWO:

answers to understand any misconceptions the students may
have about computers.

5.	 Exploring the components of a computer system. Distribute
the 2.1 Components of a Computer System worksheet with
the diagram of a basic computer system. The diagram should
have labels missing. Students should fill in the blanks with
words from the word bank. This can be used as an individual
formative assessment to understand the current level of
students’ background knowledge, or the students can work in
teams to complete if an exploration is more appropriate. Review
2.1 Components of a Computer System worksheet as a class
and clarify any misunderstandings. The following are simple
definitions of the components that may be used to guide the
discussion:
	◦ Input: Explain that computers need a way to receive data.

Show examples like keyboards, mice, touchscreens, etc.
	◦ Processing: Introduce the Central Processing Unit (CPU)

and its role. Briefly explain that the CPU is the brain of the
computer – so it processes inputs, calculations, storage, and
outputs. Also discuss how it processes data based on a set
of instructions (programs).

	◦ Storage: Discuss the need for memory and storage.
Differentiate between RAM (temporary, volatile storage) and
hard drives or SSDs (long-term, non-volatile storage).

i.	 RAM (Random Access Memory): RAM is a temporary
storage that quickly reads and writes data the CPU
uses during operation, but loses all information when
the power is off.

ii.	 Hard Drives (HDDs) and Solid State Drives (SSDs):
HDDs and SSDs provide long-term storage, keeping
data safe even when the computer is turned off, with
SSDs offering faster access to this data.

	◦ Output: Describe how computers present data after
processing, e.g., through monitors, speakers, printers.

	◦ Operating System: Briefly introduce the role of OS in
managing all these components and tasks. Discuss how the
OS and the CPU work together.

i.	 The Operating System (OS) manages the computer’s
hardware and software resources, coordinating tasks
and ensuring efficient operation, while the CPU
executes instructions provided by the OS to perform
user-directed tasks.

Have students take notes on each item in their notebooks
near their computer system worksheet or have them sketch
components.

29
MAKE SENSE INC.

What Makes a Computer a Computer?

6.	 Discuss the nuances of being a computer or not. Have the
students discuss in small groups the question: “Can a device
lack any of these qualities and still be considered a computer?”
Bring the class back together and discuss some of the points
that came up in the groups.

7.	 Discussion of microcontrollers, system-on-chip (SoC), and
computers. Use the Powerpoint slides (link here) or develop
your own discussion.
	◦ Microcontollers in everyday life. Ask: What are things you

encounter in your life that contain microcontrollers or SoCs?
Take answers and use the discussion to further build on the
differences between microcontrollers, SoCs, and computers.

	◦ Activity: Show the students several items that have been
partially deconstructed to be able to see the microcontroller
or SoC inside. Assign each team to one of the devices. Have
the students:

i.	 find the microcontroller or SoC in the device and
record the device ID number

ii.	 use a search engine to look up the ID number to find
out what the device does

iii.	 record the device name, ID number, and function in
their notebooks

Share out the results with the class and lead a discussion
on the findings. Use the discussion to tie into the
engineering design challenge.

8.	 Erase when ppt is complete and don’t need the comment here. :

Closure
9.	 Summary and reflection on the lesson. Summarize

the primary components and the qualities that define
computers, microcontrollers, and SoCs. Have students
reflect on the following prompt in their notebooks: “How has
your understanding of computers, microcontrollers, or SoC
changed?” Have them identify one thing they didn’t know was a
computer, microcontroller, or system on chip in their notebooks.

10.	Connect the activity to the engineering design challenge.
Ask: What did we learn today that will help us with our solution
for the client? What else do we still need to learn? What is your
answer to the question “Do we need computers for our smart
homes? Use this discussion to clear up misconceptions and set
up the next lesson. Let them know that they will continue this
during the next class.

30
MAKE SENSE INC.

Name__ Date_______________ Period __________

2.1 Components of Computer System

Word Bank:

•	 Input
•	 Output
•	 Operating System (OS)

•	 Random Access Memory (RAM)
•	 Hard Drive
•	 Central Processing Unit (CPU)

1. 2.

3. 4.

5.

6.

31
MAKE SENSE

Name__ Date_______________ Period __________

Answer Key

1. 2.

3. 4.

5.

6.

Operating System (OS)

Output

Input

CPU

Hard Drive

RAM

32
MAKE SENSE INC.

Lesson Summary
This lesson introduces the concept of physical computing. It
distinguishes between writing code for software only applications
and writing code for applications that interact with physical devices.
This lesson discusses functions and has students practice creating
functions based on redundant code that they identify. This lesson
also introduces coding the micro:bit.

Teacher Background
The purpose of this lesson is two-fold: 1. to introduce the concept
of functions, 2. To introduce the concept of physical computing.
Students will gain hands-on experience creating functions from
redundant code. Students will also gain experience coding the
micro:bit device while becoming familiar with the Python for
micro:bit online editor: https://python.microbit.org/v/3/.

This lesson assumes that students have done some programming
in a text-based (Python) or block-based (Scratch) language.

Vocabulary:
Microcontroller, physical computing, micro:bit

Before the Activity
Task 1: Open the Python for micro:bit editor. Open the Ghost_Story.
py code in the editor. Flash the Ghost_Story.py code to a micro:bit.
Test that the micro:bit performs the code. Unplug and set the
micro:bit aside, but have the battery pack ready to plug in during
Activity 1.

Task 2: Assemble and hang up the code poster for the non-
functionalized code. Have the functionalized code poster on
standby.

Classroom Instruction
Introduction
1.	 Identify where they are in the Engineering Design Process.

(Learn) Ask: What phases of the engineering design process
have we used so far? Say: In the last lesson we learned about
microcontrollers. Ask: What more do you think we’ll need to
learn in order to meet the design challenge?

Lesson Objectives
Students will be able to:
•	 Create programs that

are clear and organized
•	 Reduce code complexity

(optimize) by writing
functions

•	 Understand how to work
with the micro:bit

•	 Understand, at a high
level, the paradigm of
physical computing

Time Required
Three 50-minute lessons

Standards Addressed
7183.D.2.1 Develop a
simple program and/or
script using a compiled,
object-oriented scripting
language like Python

7183.D2.3 Apply truth
tables, Boolean logic,
control structures, relational
and logical operators to
program algorithms

7352.D1.3 Analyze and
explain behavior of simple
programs utilizing variables,
expressions, assignments,
I/O, control structures,
functions, parameter
passing, preconditions,
postconditions, and
invariants.

Key Terms
Function, Variables, Control
Structure, Python

LESSON THREE:

https://python.microbit.org/v/3/

33
MAKE SENSE INC.

2.	 Identify what students need to learn about: Say: The client
has asked us to create modular code for their microcontroller.
So we will need to learn about how to create modular code. We
will also need to learn how to code microcontrollers.

Activity
Activity 1: Laminated Poster code

3.	 Ask: What languages have you written code in? What did you
write the code to do?
a.	 Students may say Scratch or Python, etc. The object is to

get students to identify that different “types” of code are
used for different purposes.

2.	 Direct students’ attention to the large post containing
the code that has not been broken into functions (Ghost_
Story-main.py). Say: This is Python code for the micro:bit
microcontroller. Ask: What do you notice about this code?
Have small groups discuss what they notice about the code
and then report out.

3.	 Explain physical computing: Even though this is Python,
a language you may have seen before, the code is a little
different. This is actually MicroPython. It’s a subset of
Python designed specifically for microcontrollers. Since
microcontrollers don’t have as much memory as our laptop
or desktop computers, languages used to code them must
be small enough to fit in the memory that’s available. Say:
The type of coding that we’ll be doing falls into the category
of physical computing. In physical computing, the code you
write doesn’t just run on a computer screen, it interacts with
the “real-world” through devices like sensors or motors.

4.	 Equate to smart home: The code we’ll write for our smart
home design will make things happen in the “real-world” too,
so we’ll need to learn something about how to write code for
physical computing. That means we will have to think a little
differently about how we code, even though the language is
the same.

5.	 Flow Chart the code. Say: Let’s try to understand what this
code does. This code tells a story. Let’s figure out what the
story is. On the board, Co-construct the story with students
by creating a flow chart of the code with the whole class.
Say: Look at this block of code (the first block). What can we
decipher about what it’s doing? Draw a flow graph based on
what students say for each block of code by writing on the
board.
a.	 What does the code tell us happens first?

Lesson Materials
Per classroom
•	 Projector/Way to Display

Computer Screen
Per Group (3 per group)
•	 Computer with Internet

access

Posters
1.	 GhostStory-main
2.	 GhostStory-functions

Duplication Masters
3A. Activity 2: function
templates
3B. Activity 2: Code
Skeleton
3C: Activity 3 Walk_
Heartbeat Code
3D. Available Images for the
Microbit

Python Codes
GhostStory-comments.py
GhostStory-functions.py
GhostStory-main.py
Tortoise_Hare-functions.py
Tortoise_Hare-main.py
Tortoise_Hare-template.py
Walk_Heartbeat.py

Assessment
Activity Embedded
Assessment
Students correctly divide
code into functions.
Students flash code to the
micro:bit

34
MAKE SENSE INC.

LESSON THREE:

b.	 What happens next?
8.	 Run the simulator in the editor. Say: Okay let’s see if we

were right.
i.	 Open the micro:bit Python editor.
j.	 Say: Here is the editor that was used to write the code.

It’s a special editor for using Python with the micro:bit.
k.	 Upload the Ghost_Story code. Say: I’ve uploaded the

code here. Point out the code. Say: This editor has a
simulator that will preview for us what the code will do
once flashed to the micro:bit. Let’s see if we were right
about what the code does. Press play on the simulator.

9.	 Briefly discuss the differences between what the co-
constructed flow chart said and what the simulator
showed. Say: This code tells a ghost story.

10.	Flash the micro:bit. Say: Now let’s flash the micro:bit
with this code and see it run on the physical device. Show
students how to plug in the micro:bit using the USB cable.
Press the “Send to micro:bit ” button. Show students the code
running on the micro:bit.
a.	 Note: Sometimes this process requires the microbits to

update firmware first, go to https://microbit.org/get-started/
user-guide/firmware/ for instructions if the code does not
download/flash to the mico:bit right away.

2.	 Functions: Post the functionalized poster (GhostStory-
functions.py) next to the un-functionalized poster of the Ghost
Story. Say: “Here’s another piece of code for the micro:bit
microcontroller.” Do you think this code does more work or
less work than the other code (from the long poster.) After
students answer say, “Let’s see what this code does.” Open
the functionalized Ghost_Story code in the editor. Simulate
it. Say: It does the same exact thing! But it’s much shorter.
Why is that? (Instead of repeating the same blocks of code,
this code is using functions.) This makes the code more
modular like our client is asking for. Let’s learn more about
making code more modular by using functions.

3.	 Discuss the structure of the function declaration:
a.	 How it has a “def” keyword, a “:” and indented code body
b.	 How it has parameters
c.	 How the function is called in the main body of the code
a.	 How the parameters are passed to the function and how

they are used to make the person walk faster or slower
and how many steps are taken.

https://microbit.org/get-started/user-guide/firmware/
https://microbit.org/get-started/user-guide/firmware/

35
MAKE SENSE INC.

36
MAKE SENSE INC.

LESSON THREE:

Activity 2 – On paper
For this activity, students will identify repeated code in a program,
turn that code into functions and “re-write” the code using functions.
This is an offline activity that utilizes paper and pencil.

Story for Activity 2:
Build basic circuits from Schematic Diagrams
Say: Look at the code for Activity 2. This code tells the story of the
Tortoise and the Hare. With your team, you will identify portions of
repeated code and turn that code into one or more functions. Then
you will re-arrange the code to tell the same story using functions.
Steps:

1.	 Identify repeated sections of code and draw a box around
those sections. Encourage students to use colored pencils,
etc, and use one color for each new repeated code chunk/
function. For example, use blue for all the Tortoise code and
red for all the Hare code.

2.	 Create a function definition that will contain that piece of
code.
a.	 Use the function definition template and write the

statements of code inside that you identified should be
converted into a function. (Students hand write the code
in inside of the function def template).

2.	 Repeat step 2 for any new functions.
3.	 Call the functions. Look at the skeleton code. Place calls to

your new functions inside the skeleton code to replace the
code that you made into functions.

Activity 3: Walk_Hearbeat code and getting to know the
micro:bit.

37
MAKE SENSE INC.

Students type in the Walk_Hearbeat code to the python.microbite
online editor.
Students use the simulator to simulate the actions of the micro:bit.
Students download code to the micro:bit to view the physical
device.
Challenge: Students change the code to make the heart beat faster,
and the person walk faster, going from strolling to running.

Activity 4 – Tell a story with functions
Write your own story using functions. Make sure you include
functions.
Map out the story first, using a flow chart then execute the map.
The python micro:bit editor has built-in documentation that can help
students discover images to code.
The online reference documentation located at: https://microbit-
micropython.readthedocs.io/en/latest/image.html also refers to
images and image manipulation.
The Micropython codes for this lesson are located here: https://
purdue.app.box.com/folder/234476685537

Closure
1.	 Discuss usefulness and need for writing clear functions.

This is for motivation for students to understand why they
should use functions. A usual hangup for students at this stage
is: Why should I do this ‘extra’ work to write a function, when I
could just put the code in the main section? This should help
show that functions make code more modular, easier to read,
and easier to modify and fix.

2.	 Discuss with students the differences in physical
computing and software computing. Their code will “manifest”
itself in the ‘real world’, on a physical device. The language,
Python, is the same but there are different considerations that
the programmer must take into account. Ask students to name a
few of those considerations (see Note if students ask questions
like what some other considerations could be. This distinction
between coding for software applications and coding for
physical devices will help prepare students for lesson 4, where
they will go to a deeper level in communicating with the sensors
and actuators.
a.	 Note: Other considerations could be: processor speed,

low power or energy conservation requirements (say to
conserve battery power), the need to interact with lower-
lever hardware functions like turning an output on/off, or
communicating with sensors that need specific signal timing.

https://python.microbit.org/
https://microbit-micropython.readthedocs.io/en/latest/image.html
https://microbit-micropython.readthedocs.io/en/latest/image.html
https://purdue.app.box.com/folder/234476685537
https://purdue.app.box.com/folder/234476685537

38
MAKE SENSE INC.

Imports go at the top
1 	 from microbit import *
2 	 import music

3 	 # Code in a ‘while True:’ loop repeats forever
4 	 while True:
5 	 #Hare
6 	 display.show(Image.RABBIT)
7 	 sleep(1000)
8 	 audio.play(Sound.SPRING, False)
9 	 display.clear()
10 	 sleep(100)
11 	 display.show(Image.RABBIT)
12 	 sleep(1000)
13 	 display.scroll(“FAST”)
14 	 for count in range(15):
15 	 audio.play(Sound.SPRING, False)
16 	 display.show(Image.RABBIT)
17 	 sleep(100)
18 	 display.clear()
19 	 sleep(100)
20 	 display.show(Image.RABBIT.shift_left(1))
21 	 sleep(100)
22 	 display.show(Image.RABBIT.shift_left(2))
23 	 sleep(100)

24 	 #Tortoise
25 	 display.show(Image.TORTOISE)
26 	 sleep(1000)
27 	 audio.play(Sound.HELLO,False)
28 	 display.clear()
29 	 sleep(100)
30 	 display.show(Image.TORTOISE)
31 	 sleep(1000)
32 	 display.scroll(“SLOW”)
33 	 for count in range(5):
34 	 audio.play(Sound.HELLO,False)
35 	 display.show(Image.TORTOISE)
36 	 sleep(200)
37 	 display.clear()
38 	 sleep(200)
39 	 display.show(Image.TORTOISE.shift_left(1))
40 	 sleep(200)
41 	 display.show(Image.TORTOISE.shift_left(2))

Activity 2 Code: Tortoise and Hare Code

39
MAKE SENSE INC.

42 	 sleep(200)

43 	 #Hare
44 	 display.show(Image.RABBIT)
45 	 sleep(1000)
46 	 audio.play(Sound.SPRING, False)
47 	 display.clear()
48 	 sleep(100)
49 	 display.show(Image.RABBIT)
50 	 sleep(1000)
51 	 display.scroll(“FAST”)
52 	 for count in range(15):
53 	 audio.play(Sound.SPRING, False)
54 	 display.show(Image.RABBIT)
55 	 sleep(100)
56 	 display.clear()
57 	 sleep(100)
58 	 display.show(Image.RABBIT.shift_left(1))
59 	 sleep(100)
60 	 display.show(Image.RABBIT.shift_left(2))
61 	 sleep(100)
62 	 display.scroll(“SLEEP”)
63 	 display.show(Image.ASLEEP)
64 	 music.play(music.POWER_DOWN)
65 	 sleep(2000)

66 	 #Tortoise
67 	 display.show(Image.TORTOISE)
68 	 sleep(1000)
69 	 audio.play(Sound.HELLO,False)
70 	 display.clear()
71 	 sleep(100)
72 	 display.show(Image.TORTOISE)
73 	 sleep(1000)
74 	 display.scroll(“SLOW”)
75 	 for count in range(5):
76 	 audio.play(Sound.HELLO,False)
77 	 display.show(Image.TORTOISE)
78 	 sleep(200)
79 	 display.clear()
80 	 sleep(200)
81 	 display.show(Image.TORTOISE.shift_left(1))
82 	 sleep(200)
83 	 display.show(Image.TORTOISE.shift_left(2))

40
MAKE SENSE INC.

84 	 sleep(200)

85 	 display.scroll(“WIN!”)
86 	 display.show(Image.TARGET)
87 	 sleep(2000)
88 	 display.show(Image.HAPPY)
89 	 music.play(music.ENTERTAINER)
90 	 sleep(2000)

91 	 display.show(Image.RABBIT)
92 	 music.play(music.POWER_UP)
93 	 sleep(100)
94 	 display.scroll(“WAKE”)

95 	 #Hare
96 	 display.show(Image.RABBIT)
97 	 sleep(1000)
98 	 audio.play(Sound.SPRING, False)
99 	 display.clear()
100 	 sleep(100)
101 	 display.show(Image.RABBIT)
102 	 sleep(1000)
103 	 display.scroll(“FAST”)
104 	 for count in range(15):
105 	 audio.play(Sound.SPRING, False)
106 	 display.show(Image.RABBIT)
107 	 sleep(100)
108 	 display.clear()
109 	 sleep(100)
110 	 display.show(Image.RABBIT.shift_left(1))
111 	 sleep(100)
112 	 display.show(Image.RABBIT.shift_left(2))
113 	 sleep(100)

114 	 display.scroll(“LOST”)
115 	 display.show(Image.SAD)
116 	 music.play(music.CHASE)
117 	 sleep(2000)

118 	 display.scroll(“END”)

Activity 2 Code: Tortoise and Hare Code

41
MAKE SENSE INC.

1.	 Define the function and place the code inside the function

def tortoise():
#Place tortoise code below

def hare():
#Place hare code below

2.	 Make function calls inside the Skeleton Code
a.	 tortoise()
b.	 hare()

Activity 2: Tortoise and Hare Define Functions –
See duplication Masters

42
MAKE SENSE INC.

Activity 2: Tortoise & Hare Functions Code
Skeleton

43
MAKE SENSE INC.

1 	 # Imports go at the top
2 	 from microbit import *
3 	 import music

4 	 def hare():
5 	 display.show(Image.RABBIT)
6 	 sleep(1000)
7 	 audio.play(Sound.SPRING, False)
8 	 display.clear()
9 	 sleep(100)
10 	 display.show(Image.RABBIT)
11 	 sleep(1000)
12 	 display.scroll(“FAST”)
13 	 for count in range(15):
14 	 audio.play(Sound.SPRING, False)
15 	 display.show(Image.RABBIT)
16 	 sleep(100)
17 	 display.clear()
18 	 sleep(100)
19 	 display.show(Image.RABBIT.shift_left(1))
20 	 sleep(100)
21 	 display.show(Image.RABBIT.shift_left(2))
22 	 sleep(100)

23 	 def tortoise():
24 	 display.show(Image.TORTOISE)
25 	 sleep(1000)
26 	 audio.play(Sound.HELLO,False)
27 	 display.clear()
28 	 sleep(100)
29 	 display.show(Image.TORTOISE)
30 	 sleep(1000)
31 	 display.scroll(“SLOW”)
32 	 for count in range(5):
33 	 audio.play(Sound.HELLO,False)
34 	 display.show(Image.TORTOISE)
35 	 sleep(200)
36 	 display.clear()
37 	 sleep(200)
38 	 display.show(Image.TORTOISE.shift_left(1))
39 	 sleep(200)
40 	 display.show(Image.TORTOISE.shift_left(2))
41 	 sleep(200)

Answer Key: Tortoise and Hare with Functions

44
MAKE SENSE INC.

42 	 # Code in a ‘while True:’ loop repeats forever
43 	 while True:
44 	 hare()
45 	 tortoise()
46 	 hare()

47 	 display.scroll(“SLEEP”)
48 	 display.show(Image.ASLEEP)
49 	 music.play(music.POWER_DOWN)
50 	 sleep(2000)

51 	 tortoise()

52 	 display.scroll(“WIN!”)
53 	 display.show(Image.TARGET)
54 	 sleep(2000)
55 	 display.show(Image.HAPPY)
56 	 music.play(music.ENTERTAINER)
57 	 sleep(2000)

58 	 display.show(Image.RABBIT)
59 	 music.play(music.POWER_UP)
60 	 sleep(100)
61 	 display.scroll(“WAKE”)

62 	 hare()

63 	 display.scroll(“LOST”)
64 	 display.show(Image.SAD)
65 	 music.play(music.CHASE)
66 	 sleep(2000)

67 	 display.scroll(“END”)

Answer Key: Tortoise and Hare with Functions

45
MAKE SENSE INC.

def tortoise():
#Place tortoise code below

def hare():
#Place hare code below

3A. Activity 2: function templates

46
MAKE SENSE INC.

3B. Activity 2: Code Skeleton

47
MAKE SENSE INC.

3C. Activity 3: Walk_Heartbeat Code

48
MAKE SENSE INC.

https://microbit-micropython.readthedocs.io/en/latest/image.html

3D. Activity 4: Tell a story using functions

https://microbit-micropython.readthedocs.io/en/latest/image.html

49
MAKE SENSE INC.

50
MAKE SENSE INC.

Lesson Summary
Students learn about sensors and actuators. Students examine and
use code for a sensor and actuator. Students create a program that
uses the output from a sensor to trigger the action of an actuator.

All code, slides and full-size duplication masters
are located on Box: https://purdue.app.box.com/
folder/217818657940?s=pyptq46jq6e1dixvfoh5fretcb2r7r0c
Under the MicroPythonCode and Resources folders.

Standards
7183.D2.6 Develop a simple program and/or script using a
compiled, object-oriented scripting language like Python.

7183.D2.19 Apply critical thinking and problem-solving
methodologies

Background
Teacher Background
Sensors:
See Duplication Masters 4C & 4D

Before the Activity
•	 Set up sensor for class demonstration using slide 3 – Crash

Sensor Demo Circuit
•	 Set up sensor/actuator for class demonstration using 4.F

Sensor/Actuator Demo Circuit
•	 Have the code for both setup on hand and have the Micropython

micro:bit editor ready to upload the code and flash the micro:bit.
•	 Have the slide deck ready to display the slides and duplication

masters as indicated.

LESSON FOUR:

Lesson Objectives
Students will be able to:
•	 Implement control

structures (sequence,
logic, and selection)
within their program

•	 Implement Boolean logic
•	 Understand sensor,

threshold, trigger and
actuator relationship.

•	 Understand how to plug
the sensor in

•	 Understand how to
write code that uses
information from the
sensor.

•	 Write code that reads
data from a sensor and
print the values out to
the terminal.

•	 Use conditional logic to
decide what to do with
sensor input.

•	 (How do the sensors
behave – experiment
with what the data from
the sensors means)

Time Required
Two-three 50-minute
lessons

Standards Addressed
ICS-2.2 Demonstrate
competencies of
programming constructs,
including: use of data types
and variables, control
structures (sequencing,
looping, branching), and
modularity (such as a
function)

https://purdue.app.box.com/folder/217818657940?s=pyptq46jq6e1dixvfoh5fretcb2r7r0c
https://purdue.app.box.com/folder/217818657940?s=pyptq46jq6e1dixvfoh5fretcb2r7r0c

51
MAKE SENSE INC.

Classroom Instruction
Introduction
1.	 Connect to the engineering challenge. Ask: What is our

engineering challenge from the customer? Potential answer is:
Write modular code for a smart home.

2.	 Revisit the EDP. Have students identify where in the EDP we
are: Learn.

3.	 Introduce sensors: Say: The client has asked us to
understand sensors and how they can be used in a smart
home. Let’s explore what sensors do and how they are used in
different contexts. Show the video: https://www.youtube.com/
watch?v=ht-_RmhLD7k
Say: Sensors are used any many places when we want to
detect some properties in the physical environment and take an
action based on those properties. Ask: Where have you seen
sensors used in your everyday environment?
Ask: For the sensors that we’ve mentioned, what property
in the environment are they actually reading? (For example,
if someone mentions a thermostat, the sensor is reading
temperature. If someone mentions an automatic door, this
sensor is reading the distance of an object from the door or the
presence of weight on a touchpad embedded in the ground in
front of the door.)

4.	 Example scenario: Say Let’s use an example to better
understand how sensors work. In the video we saw many
different types of sensors. For our example, let’s take a smoke
sensor. Ask: Who here has a smoke detector at home? Has the
smoke detector ever sounded an alarm at your house? What
made the smoke alarm go on? What if there’s smoke coming
from a cigarette, does the alarm sound? What if there’s a small
amount of smoke from someone cooking food on the stove does
the alarm sound?
The point of these questions is to get students to think about a
threshold level. Not ALL smoke will trigger the alarm, the smoke
needs to reach a certain level to trigger the alarm.

5.	 Trigger/Threshold: Say: Okay, so we’ve determined that not
just any amount of smoke will trigger the alarm. There has to
be a lot of smoke. So I’ll introduce a new word – threshold. The
threshold describes how much the monitored element needs
to deviate from the norm in order to trigger the sensor to take
action.

Making Some Sense (of the Sensors)

Key Terms
Sensor, Micro:bit, Pins,
Raw data, Library, Analog
signals, Serial protocol,
Binary

Lesson Materials
Per classroom
•	 Projector
Per Group (3 per group)
•	 1 micro:bit
•	 1 set of external sensors
Per Student
•	 Notebook
•	 computer

Slides
1.	 Human Sensor Actuator

Trigger
2.	 Human & Electronic

Sensor Actuator Trigger
3.	 Crash Sensor Demo

Circuit
Also, several of the
duplication masters will be
used as slides.

Duplication Masters
4A. Human Sensor Actuator
Trigger
4B Human Sensor Actuator
Trigger - If – Then Logic
4C. Sensors and Actuators
built into the micro:bit
4D. External Sensors and
Actuators
4E. Micro:bit pins
4F. Sensor/Actuator Demo
Circuit
4G. Sensor/Actuator Demo
Code
4H. Code Snippets
4H(b). Code Snippets

https://www.youtube.com/watch?v=ht-_RmhLD7k
https://www.youtube.com/watch?v=ht-_RmhLD7k

52
MAKE SENSE INC.

6.	 Actuator: Say: Ok when the smoke sensor inside the smoke
detector senses that there’s too much smoke, what happens?
Students answer, “An alarm goes off.” Say: Correct: But the
sensor is not the alarm. Even though the smoke detector in
your house looks like its all one piece, inside of it there is both
a sensor and an alarm. The alarm only sounds when the sensor
detects a level of smoke above a set threshold. The alarm is
an actuator. An actuator is a device that takes input from the
sensor and performs a physical action based on that input. In
the case of a smoke detector, the alarm actuator makes a loud
noise and continues making a loud noise until the smoke sensor
ceases to detect smoke or is reset. Show Slide 1 Say: Here’s
a picture of the inside of a smoke detector. It shows that the
detector has both a sensor and an actuator.

Activity 1: Human sensor, threshold, actuator examples (Day 1)
7.	 Human sensor, threshold, actuator examples. Say: Let’s use

this idea of sensor, actuator and trigger with a human body.
Remember from the video that humans have sensors too. We
have eyes, ears, a tongue, hands, and a nose. Humans also
have actuators that will do something in response to what we
sense. The body parts that we can voluntarily move, are our
actuators.
a.	 Have students view Duplication Master 4A
b.	 Say: On this sheet, there is a sensor, an actuator, and a

trigger. Identify each. [give students time to write]. Review
answers with the students.

LESSON FOUR:

Python Codes
Builtin_Light_Sensor.py
Buttons_Sensor.py
Capacitive_Touch.py
Crash_Sensor.py
Demo_Sensor_Actuator_
Code.py
Neopixel_Actuator.py
Servo_Actuator.py
Sound_Sensor.py
Temperature_Sensor.py

Assessment
Activity Embedded
Assessment
Students can discuss the
functionality of sensors and
actuators.

Post-Activity Assessment:
Students have written code
that uses sensor data to
trigger an actuator.

53
MAKE SENSE INC.

Making Some Sense (of the Sensors)

c.	 Say: Okay so for the hand, eye, mosquito example – let’s
identify the threshold that must be crossed for the sensor
to signal the actuator to do something. How close will the
mosquito have to get to you before your hand slaps it away?
Students name a distance. Say: Let’s call this distance the
threshold. Translate this into conditional logic on the board.

d.	 For example if students say the threshold is 7 inches.
i.	 Write “if mosquito_distance < 7 then slap_it_away”

b.	 Have students identify thresholds for the other scenarios
and translate those into conditional logic statements:
Heat of the water before removing hand, smell of the food
before refusing to eat it, loud noise before it gets attention.
Students use Duplication Master 4B to write their answers.

54
MAKE SENSE INC.

LESSON FOUR:

8.	 Say: So we know that as humans, we have sensors (our five
senses) and actuators, our body parts that can move. Ask:
What is the key part of humans that connects our sensors to
our actuators? The idea is that students will identify that our
brain needs to take the input from the sensor and activate the
actuator based on that input. Once students identify the brain –
show the slide that has the brain with all of the scenarios from
Slide 2.

9.	 Say: Now let’s translate this idea to microelectronics. Show
Slide 3 We have electronic sensors like smoke sensors. The
electronic sensor senses the environment and translates that
information into numeric data. Electronic actuators like the
alarm receive an electronic signal that triggers them to activate.
An electronic brain coordinates between the sensor and the
actuator. It takes the input from the sensor and controls the
action of the actuator. That electronic brain is a microcontroller
like the micro:bit. A human must code the microcontroller to get
environmental data from the sensor, detect whether a threshold
has been crossed, and activate the actuator.

55
MAKE SENSE INC.

10.	Show the first micro:bit slide that lists the built in sensors &
actuators., 4C. Sensors and Actuators. Discuss briefly.

11.	Show the second micro:bit slide that lists the external sensors
& actuators. 4D. External Sensors and Actuators. Discuss
briefly. Say: The micro:bit allows us to attach external devices
and use the micro:bit as the brain for those devices. An
extension device like the sensor:bit allows us to access all of
the micro:bit pins. Without the sensor:bit, we would have limited
access to any micro:bit pin except 0, 1, 2, 3V and GND. With
the sensor:bit, we expand our access to include micro:bit pins
4 – 20.

Making Some Sense (of the Sensors)

56
MAKE SENSE INC.

12.	Day 1 Discuss the concepts as a class. Encourage students
to share information they found interesting with the class. Ask:
Based on what we’ve discussed today, how do sensors work?
After writing down student responses, summarize the thoughts
of the class. Ask: What are the differences between sensors
and actuators? Again, write down student responses then
summarize the thoughts of the class. Students should be able to
identify that sensors take in information and produce output that
can trigger a reaction.

13.	Have each team choose two items: one internal sensor, one
internal actuator and/or one external device (sensor or actuator)
that they will utilize for Day 2 lesson. Be sure that each sensor/
actuator is chosen by at least one team.

Activity 2: Coding sensors & actuators Day 2
1.	 Demonstrate an example of a sensor with digital data, serial

monitor. Set up the crash sensor using the diagram on Slide
3: Crash Sensor Demo Circuit. Load the code for this sensor
(Crash_Sensor.py) into the Micropython micro:bit online editor.
Explain the following aspects of the functioning sensor using the
following information:
b.	 Sensor circuit: The demo uses an external crash sensor. The

external crash sensor is connected to the microcontroller via
pin1.

c.	 Sensor code: Show the Micropython editor with the code
loaded. Connect the micro:bit to the computer via a USB
cable.When you flash the micro:bit, you will see that a serial
monitor becomes available. Press “Show serial” to see what
the serial monitor produces. Press down on the crash sensor

LESSON FOUR:

57
MAKE SENSE INC.

and the value will change from 1 to 0. Explain that the
code is reading a signal from the sensor. Since it’s binary,
either the value will be 1 for open or 0 for closed. The serial
monitor is a way to view the values sent by the sensor so
that you can write logic to test for the values you want to act
upon.

Making Some Sense (of the Sensors)

58
MAKE SENSE INC.

2.	 Micro:bit pins Show the micro:bit pin schematic on 4E.
Micro:bit pins.

Discuss: The micro:bit microcontrollers read the sensor data
digitally (or convert analog to digital). Data is represented in binary,
and is usually a raw voltage number that the programmer has to
convert to more useful units. Only certain pins can read analog
signals (like those from a sensor) and some pins are shared with
other things like the physical capabilities on the micro:bit (e.g. pin 5
and 3.) All sensors send data to the micro:bit in a form that is NOT
readable for humans. This data must be translated to be “human-
readable”.

a.	 A “library” contains code others have written. These libraries
can be used to read and convert the data from sensors.
These sensors communicate with a serial protocol. This
means that someone else has written the code needed to
“talk” over serial to these sensors.

b.	 Direct attention back to the demo sensor setup. Show that
the line pin1.read_digital() calls a library that someone else
has written that converts the data from the sensor to either
a 0 or 1, which your program then displays on the serial
monitor.

LESSON FOUR:

59
MAKE SENSE INC.

3.	 Demonstrate an example of a functional sensor/actuator
setup. Set up the sensor/actuator using the diagram in 4F
Sensor Demo Resource.

Explain the following aspects of the functioning sensor using the
following information:

a.	 Inputs/sensor: The demo uses two sensors: the internal
capacitive touch sensor and the external crash sensor. The
external crash sensor is connected to the microcontroller via
pin1.

b.	 Outputs/actuators: The demo uses three actuators: the
internal actuators are the LED display and the microphone.
The external actuator is the RGB LED ring. The RGB LED
ring is connected to the microcontroller on pin 8.

c.	 Demonstrate the operation of the circuit. When the crash
sensor is pressed, the RGB LED changes color and the
micro:bit LED matrix displays a butterfly. When the pin logo
is touched, the speaker plays the giggle sound.

d.	 Have students identify the actuators and sensors in this
circuit.

4.	 Demo Schematic and Code: Show 4F. Sensors Demo Circuit.
Point out how the external devices are connected to pins on the
sensor bit, which correlate to the micro:bit pins from the schematic.
Say: “See how we are using the sensor:bit to gain access to the
small pins on the micro:bit. The micro:bit can communicate with
the external sensor and actuator using the pins that you saw in the
schematic we looked at earlier.

Making Some Sense (of the Sensors)

60
MAKE SENSE INC.

LESSON FOUR:

5.	 Show 4G Sensors Demo Code.

Say: Let’s look at the code that makes this circuit work and how
the code interacts with the sensors and actuators. Ask students
to examine the code and offer their opinions about how/what the
code does.

6.	 Provide students an opportunity to ask questions. After
demonstrating how the sensor works together with the micro:bit
to trigger the output, allow students time to ask questions about
the device and do some additional research if necessary.

Activity: Group exploration of sensors. (Day 2-3)
7.	 Day 2 Group exploration of sensors and actuators. Say:

Now you, as a team, will explore the sensors and actuators
that you chose yesterday. You have been given a small snippet
of code for your sensor and actuator (4H & 4H(b): Code
Snippets.) Use this code as a starting place to explore how
to get input from the sensor and send signals to the actuator.
Use the Micropython editor to enter the code, flash it to your
micro:bit and see what it does. Test each individually, then pair
the sensor with the actuator by deciding on a threshold that will
trigger action. Write this code and flash it to your micro:bit.

8.	 Day 2 Have groups share out information. After all groups
have been explored their sensors and actuators, walk through
one or two devices as a class. Give students the chance to
share what they have learned and discuss any challenges they
experienced.
Ask: What does the data from the sensor mean? How did you
associate the sensor output to the action of the actuator?

61
MAKE SENSE INC.

NOTE: It may be beneficial to reflect using a jigsaw-style activity
instead of sharing out to the class. Have one student from
each team collaborate with two students from different teams.
The groups for this reflection should be able to have enough
information to fill out the entire guidebook (all six sensors).

Closure
9.	 Summarize: Say: Between each team, we have written code

to interact with all of the sensors and actuators available to us
in this lesson. So, as a class we have all of the sensors and
actuators available to use for our smart home design.

10.	Connect to the engineering challenge. What phase of the
engineering design process do you think we’ll be in next time?
Do you feel you have learned enough to be able to work through
the design challenge? What further questions do you have.

Making Some Sense (of the Sensors)

62
MAKE SENSE INC.

Slides

63
MAKE SENSE INC.

64
MAKE SENSE INC.

Duplication Masters

65
MAKE SENSE INC.

66
MAKE SENSE INC.

Duplication Masters

67
MAKE SENSE INC.

68
MAKE SENSE INC.

Duplication Masters

69
MAKE SENSE INC.

70
MAKE SENSE INC.

Classroom Instruction
Introduction
1.	 Tie in the engineering problem. Ask: What is our engineering

design problem?
2.	 Identify where they are in the engineering design process

(Plan). Say: So far, we have defined the problem with help from
our client. Point out the “Problem” block on the EDP poster and
have students look at their EDP sliders. Say: Before we can
start designing solutions, we need more information. Ask: What
step of the engineering design process are we in? The students
should identify that they are in the “Plan” stage.

3.	 Connect back to Prior Knowledge. Say: In the previous
lesson, you learned about coding, functions, and sensors. Now,
you will use that knowledge to help solve the client problem.

Activity
4.	 Discuss tools to generate ideas for a solution. Say: There

are different ways that engineers generate ideas to solve a
problem. Brainstorming, and sketching are tools that we can
use to work toward solving the challenge. Brainstorming is
the generation of ideas to work toward a goal. Sketching your
ideas will help visualize the electric expansion pack so your
teammates can ask questions about how it will work.

5.	 Brainstorm potential solutions to the client’s problem.
Say: We are going to brainstorm individually, and then work
as a group to continue brainstorming solutions to the client’s
problem. Hand out Duplication Master 7.C Brainstorming
Worksheet and allow a few minutes for the students to
brainstorm individually.

6.	 Gather into pre-determined design teams to brainstorm.
Say: Now that you have come up with some ideas on your own,
with your team to review your ideas and pick 2-3 of the best
sensors and operations. Allow the students a few minutes to
discuss.

7.	 Sketch top design choices. Hand out Duplication Master 7.D
Design Sketching. Say: Now that you have a final design choice
to pursue, sketch it out! Each student in your group should
make a sketch so you can see if your visualizations are similar
or different. Allow students some time to sketch their primary
idea.

8.	 Create Flowcharts. Show Slides with flow chart components
and explain how these work like a choose-your-own-adventure
game. Decisions, or in this case conditions indicate which

Lesson Objectives
Students will be able to:
•	 Brainstorm potential

solutions
•	 Generate Flowcharts
•	 Write Pseudocode

Time Required
One-two 50-minute
lesson(s)

Standards Addressed
ICS-2.5 Formulate
algorithms using
programming structures
to decompose a complex
problem.

Key Terms
Flowcharts, pseudocode

Lesson Materials
Per Classroom
•	 EDP Poster
Per Student
•	 EDP slider and paperclip
•	 Laptop/Chromebook/

Tablet
•	 Engineering notebook

Duplication Masters
5.A, 5.B, 5.C

LESSON FIVE:

71
MAKE SENSE INC.

path your program will take and what will happen next. Write
Flowcharts for each of the chosen functions

9.	 Write Pseudocode. Using their flow charts, have students write
out lines of pseudocode for them to reference when they start
their final program in the next session.

Closure
Connect the activity to the engineering design challenge. Ask:
What did we learn today that will help us provide a recommendation
to the client? Why is brainstorming important? How did sketching
help explain your idea? Say: We will move to the Try stage during
our next class.

Plan It Out

72
MAKE SENSE INC.

Name__ Date_______________ Period __________

For each idea, ask yourself the following questions:
What sensor does it use?
Where in the house would it go?
How does it help solve the Client Problem?
How does it help the end users?

When brainstorming with your teammate(s), you get to ask the questions! Try to figure out what they are
thinking about and how it will help our client with the challenge.

Idea #1:

Idea #2:

Idea #3:

Idea #4:

Idea #5

Idea #6

5.A Brainstorming Worksheet

73
MAKE SENSE

Name__ Date_______________ Period __________

Now that you have chosen which idea will be proposed as your solution to the engineering design
challenge, it is time to draw it! Make a sketch of your design in the box below. What components will
there be? Where in the house will they be? Ensure you label components clearly.

5.B Design Sketching

74
MAKE SENSE INC.

Name__ Date_______________ Period __________

Pseudocode Tips:

1.	 Have a goal in mind. Sometimes it is easiest to start with the beginning and end of your process.
Having these clear will help you not get confused for the middle part of the process.

2.	 Use (Mostly) Plain English – we want this to be understandable to someone with very limited
understand of the project and even programming

3.	 Use Control Structures: Introduce standard control structures such as if/else, while, for, etc. These
should be written in a way that clearly shows the flow of the program. Use your flowcharts to figure
out where these structures should be written.

5.C – Flowchart Symbols and Pseudocode Tips

Symbol Name Function

Oval

Start/End Start or End of Code

Arrow
Arrow Connects other Shapes

Parallelogram

Input/Output
Data that is provided to or

produced by the code

Rectangle

Process Action that the code performs

Diamond

Decision If/Else code block, or decision
between two or more options

75
MAKE SENSE

Name__ Date_______________ Period __________

76
MAKE SENSE INC.

Lesson Summary
Lesson Summary: Creating an algorithm and using a common
model to try the code. Using their model home, sensors, and
microbit, assemble your smart home layout. Use your pseudocode
and flowchart to create microbit code to control the smart home.

Classroom Instruction
Introduction
1.	 Identify Where Students are In the Engineering Design

Process. Say Last time we Planned our solution all out, well
today we get to try!

2.	 Discuss the Worksheets from last lesson, they will use these
documents to try out their designs. Have students also have
their notes and/or code from lessons 3 and 4

Activites
3.	 Assembling the Smart Home Layout. Using Duplication

Masters 6.1 as a template, cut out and construct the house
models from cardboard.

4.	 Programming the Sensors. Have students begin translating
their pseudocode into code for their microbits. Encourage
students to work with each other to debug and solve problems
as the come up. Occasionally remind students by saying “This
is a prototype and most likely will not work perfectly. Engineers
and programmers often have to try over and over again to get
things right.”

Conclusion
5.	 Wrap Up and Reflection

a.	 Reflect on the challenges and successes of the
implementation phase.

b.	 Briefly introduce the next lesson’s objective of evaluating
their designs

Lesson Objectives
Students will be able to:
•	 Write functions to control

sensors
•	 Use flowcharts and

pseudocode to build
algorithms, and evaluate
that the algorithms are
accomplishing their
goals

Time Required
One-two 50-minute
lesson(s)

Standards Addressed
ICS-2.1 Use the design
process to iteratively
develop a computing artifact

ICS-2.2 Demonstrate
competencies of
programming constructs,
including: use of data types
and variables, control
structures (sequencing,
looping, branching), and
modularity (such as a
function).

ICS-2.3 Understand
how abstractions hide
implementation details
when used in everyday
objects.

ICS-2.4 Use abstraction to
manage program complexity
(such as a function to
create recallable code).

ICS-2.5 Formulate
algorithms using
programming structures
to decompose a complex
problem

LESSON SIX:

77
MAKE SENSE INC.

Key Terms
Functions, debugging

Lesson Materials
Per classroom
•	 EDP Poster
Per Student
•	 EDP slider and paperclip
•	 Laptop/Chromebook/

Tablet
•	 Engineering notebook
Per Group (3 per group)
•	 Sensor 1
•	 Sensor 2
•	 Sensor 3
•	 Microbit

Duplication Masters
6.1

Try It Out!

78
MAKE SENSE INC.

Duplication Masters 6.1

79
MAKE SENSE INC.

80
MAKE SENSE INC.

Before the Lesson
Review Duplication Masters 7.1, teacher may want to decide to give
students the rubric early so that they can start refining the projects
for a grade. It is possible that this presentation of rubric becomes
the main focus of students however, and overshadows the lesson
activities. Teachers should use their best judgement when it comes
to their students.

Classroom Instruction
Introduction (5 minutes)
1.	 Identify where students are in the Engineering Design

Process. Say: Today we will focus on testing and presenting
your smart home sensor coding solutions. Emphasize how
testing validates the functionality and reliability of their
solutions.

Activity (40 minutes)
2.	 Testing Preview (5 minutes): Distribute Duplication Masters

7.2. Explain that students are first going to have a chance to
test their own functions, then demonstrate their solutions to
their peers. Optional: Also pass out Duplication Masters 7.1,
explain to students that they will ultimately be graded on these
standards, but not today.

3.	 Hands-On Testing (10 minutes): Students use their model
homes to test their sensor solutions. Encourage them to make
notes of any issues and improvements needed.

4.	 Peer Presentations (20 minutes): In pairs or small groups,
students present their tested solutions to each other. Use
Duplication Masters 7.2 Peers provide constructive feedback,
focusing on functionality and problem-solving aspects.

Conclusion (5 minutes)
5.	 Reflection and Learning Points: Guide students in reflecting

on what they learned from the testing process. Discuss the
value of feedback and iteration in developing effective solutions.
a.	 Final Remarks and Q&A: Sum up the session, highlighting

the importance of thorough testing in engineering projects.
b.	 Address any final questions or concerns from the students.

Lesson Objectives
Students will be able to:
•	 Demonstrate their

code’s functionality by
testing it

•	 Communicate the
solution to their peers

Time Required
One 50-minute lesson

Standards Addressed
ICS-2.1 Use the design
process to iteratively
develop a computing artifact

ICS-2.6 Assess a program
by testing to verify correct
behavior.

ICS-5.4 Analyze the work
of peers and provide
feedback.

Key Terms
Functions, debugging

Lesson Materials
Per classroom
•	 EDP Poster
Per Student
•	 EDP slider and paperclip
•	 Laptop/Chromebook/

Tablet
•	 Engineering notebook
Per Group (3 per group)
•	 Sensor 1
•	 Sensor 2
•	 Sensor 3
•	 Microbit

Duplication Masters
7.1
7.2

LESSON SEVEN:

81
MAKE SENSE INC.

Assessment
Activity Embedded
Assessment:
Peer Feedback During the
Testing Stage

Test It Out!

82
MAKE SENSE INC.

Name__ Date_______________ Period __________

Duplication Masters 7.1

Rubric

Concept Potential Scores Student Score
Use of the Design
Process (ICS-2.1)

Exemplary (4 points): Demonstrates a thorough
understanding of the design process with clear,
iterative development steps.
Proficient (3 points): Adequately uses the design
process with some iterative development.
Basic (2 points): Shows minimal use of the design
process with limited iteration.
Needs Improvement (1 point): Little to no evidence
of using the design process.

Programming
Constructs (ICS-2.2)

Exemplary (4 points): Excellent use of data types,
variables, control structures, and modularity in
programming.
Proficient (3 points): Good use of programming
constructs with minor errors or inefficiencies.
Basic (2 points): Basic use of constructs but with
notable errors or misconceptions.
Needs Improvement (1 point): Limited or incorrect
use of programming constructs.

Abstraction in Everyday
Objects (ICS-2.3)

Exemplary (4 points): Demonstrates a deep
understanding of abstraction and its application in
hiding implementation details.
Proficient (3 points): Adequate understanding and
use of abstraction in the project.
Basic (2 points): Shows basic understanding with
some misconceptions or limited application.
Needs Improvement (1 point): Poor understanding
or application of abstraction concepts.

Managing Program
Complexity (ICS-2.4)

Exemplary (4 points): Effectively uses abstraction
to create clean, recallable code, significantly
managing complexity.
Proficient (3 points): Manages complexity
well, though there may be minor issues in code
organization.
Basic (2 points): Some effort to manage
complexity, but the approach is rudimentary or
flawed.
Needs Improvement (1 point): Little effort or
success in managing program complexity.

83
MAKE SENSE

Name__ Date_______________ Period __________

Algorithm Formulation
(ICS-2.5)

Exemplary (4 points): Excellent formulation
of algorithms to decompose complex problems
efficiently and creatively.
Proficient (3 points): Good formulation with
effective problem decomposition, albeit with some
inefficiencies.
Basic (2 points): Basic algorithm formulation, but
lacking in efficiency or creativity.
Needs Improvement (1 point): Limited or flawed
approach in algorithm formulation.

Program Assessment
and Testing (ICS-2.6)

Exemplary (4 points): Thorough testing with
comprehensive verification of correct behavior.
Proficient (3 points): Adequate testing with most
behaviors verified correctly.
Basic (2 points): Basic testing performed, but some
aspects of behavior remain unverified or incorrectly
assessed.
Needs Improvement (1 point): Minimal or no
testing, with little verification of program behavior.

Total

84
MAKE SENSE INC.

Name__ Date_______________ Period __________

Peer Observation Report

What Sensor(s) does the team use in this solution?

What does the team claim the code can do?

Does the code Function as explained? If not, where does it fail, or what does it do instead?

What is one or more recommendations you would make to this team to improve their code?

Duplication Masters 7.2

85
MAKE SENSE

Name__ Date_______________ Period __________

86
MAKE SENSE INC.

Classroom Instruction
Introduction (5 minutes)
1.	 Identify Where Students Are In the Engineering Design

Process. Say: Now that you have feedback from your peers,
the client needs you to prepare a final report with your
recommended solutions to them

Activity (2 days)
2.	 Refinement Session (15 minutes): Students work individually

or in groups to incorporate the feedback they received into
their code. Encourage them to focus on improving functionality,
usability, and reliability.

3.	 Preparation of Client Report (20 minutes day 1, all but 10
mins of day 2): Using Duplication Masters 8.A, students prepare
a report that outlines their solution, how it meets the client’s
needs, and any unique features or considerations.

Conclusion (10 minutes)
4.	 Final Remarks and Q&A: Have students reflect on the project

as a whole, spend a few minutes to have a class discussion
about what they learned, and what they liked/didn’t like about
this project.

5.	 Give Post Assessment

Lesson Objectives
Students will be able to:
•	 Refine their code with

peer feedback and
observed issues

•	 Communicate their
revised solutions to the
client

•	 Reflect on the project as
a whole

Time Required
Two 50-minute lesson

Standards Addressed
ICS-2.1 Use the design
process to iteratively
develop a computing artifact

ICS-2.6 Assess a program
by testing to verify correct
behavior.

ICS-5.4 Analyze the work
of peers and provide
feedback.

Key Terms
Functions, debugging

Lesson Materials
Per classroom
•	 EDP Poster
Per Student
•	 EDP slider and paperclip
•	 Laptop/Chromebook/

Tablet
•	 Engineering notebook
Per Group (3 per group)
•	 Sensor 1
•	 Sensor 2
•	 Sensor 3
•	 Microbit

LESSON EIGHT:

87
MAKE SENSE INC.

Duplication Masters
8.A
8.B
8.C
8.D

Report it Out!

88
MAKE SENSE INC.

Name__ Date_______________ Period __________

Preparing Your Make Sense Project Report

Section 1: Understanding the Client’s Needs
1. Describe the Client’s Problem:
 - What is the problem or need addressed by your project?
 - Why is it important to the client?

2. Client’s Expectations:
 - What are the specific requirements or expectations of the client?

Section 2: Your Solution
1. Overview of Your Solution:
 - Briefly describe the solution you have developed.

2. Technologies Used:
 - List the programming languages, tools, and technologies you used.

3. Implementation Process:
 - Outline the steps you took to develop the solution.

Section 3: Meeting the Client’s Needs
1. Solution Alignment:
 - Explain how your solution addresses the client’s problem.
 - How does it meet or exceed the client’s expectations?

2. Benefits of Your Solution:
 - What are the advantages of your solution?
 - How does it improve upon existing solutions?

Section 4: Reflections on Redesign
1. Explain how your solution was refined over time. How did those changes come about?
2. Challenges and Learning:
 - Describe any challenges faced during the project and how you overcame them.
 - What did you learn in the process?

Section 5: Effective Communication
1. Clarity and Conciseness:
 Use clear and concise language.
 - Avoid technical jargon, or explain it if necessary.

2. Structure and Organization:
 - Organize your report logically.
 - Use headings, bullet points, and numbered lists for clarity.

Duplication Masters 8.A

89
MAKE SENSE

Name__ Date_______________ Period __________

3. Visual Aids:
 - Include diagrams, charts, or screenshots to support your text.

4. Proofreading:
 - Check for spelling and grammatical errors.
 - Ensure technical accuracy.

Final Checklist:
	 Report complete with all sections.
	 Technical details accurately explained.
	 Report proofread and formatted.
	 Visual aids included where necessary.

Teacher’s Comments:

90
MAKE SENSE INC.

Name__ Date_______________ Period __________

Duplication Masters 8.B

Rubric

Concept Potential Scores Student Score
Use of the Design
Process (ICS-2.1)

Exemplary (4 points): Demonstrates a thorough
understanding of the design process with clear,
iterative development steps.
Proficient (3 points): Adequately uses the design
process with some iterative development.
Basic (2 points): Shows minimal use of the design
process with limited iteration.
Needs Improvement (1 point): Little to no evidence
of using the design process.

Programming
Constructs (ICS-2.2)

Exemplary (4 points): Excellent use of data types,
variables, control structures, and modularity in
programming.
Proficient (3 points): Good use of programming
constructs with minor errors or inefficiencies.
Basic (2 points): Basic use of constructs but with
notable errors or misconceptions.
Needs Improvement (1 point): Limited or incorrect
use of programming constructs.

Abstraction in Everyday
Objects (ICS-2.3)

Exemplary (4 points): Demonstrates a deep
understanding of abstraction and its application in
hiding implementation details.
Proficient (3 points): Adequate understanding and
use of abstraction in the project.
Basic (2 points): Shows basic understanding with
some misconceptions or limited application.
Needs Improvement (1 point): Poor understanding
or application of abstraction concepts.

Managing Program
Complexity (ICS-2.4)

Exemplary (4 points): Effectively uses abstraction
to create clean, recallable code, significantly
managing complexity.
Proficient (3 points): Manages complexity
well, though there may be minor issues in code
organization.
Basic (2 points): Some effort to manage
complexity, but the approach is rudimentary or
flawed.
Needs Improvement (1 point): Little effort or
success in managing program complexity.

91
MAKE SENSE

Name__ Date_______________ Period __________

Algorithm Formulation
(ICS-2.5)

Exemplary (4 points): Excellent formulation
of algorithms to decompose complex problems
efficiently and creatively.
Proficient (3 points): Good formulation with
effective problem decomposition, albeit with some
inefficiencies.
Basic (2 points): Basic algorithm formulation, but
lacking in efficiency or creativity.
Needs Improvement (1 point): Limited or flawed
approach in algorithm formulation.

Program Assessment
and Testing (ICS-2.6)

Exemplary (4 points): Thorough testing with
comprehensive verification of correct behavior.
Proficient (3 points): Adequate testing with most
behaviors verified correctly.
Basic (2 points): Basic testing performed, but some
aspects of behavior remain unverified or incorrectly
assessed.
Needs Improvement (1 point): Minimal or no
testing, with little verification of program behavior.

Total

92
MAKE SENSE INC.

Name__ Date_______________ Period __________

1. Write a definition for the word, “computer”.

2. What is a central processing unit (CPU)?

3. What is the difference between random access memory (RAM) and hard drives?

4. What does an actuator do?

5. List three examples of coding languages.

6. Within programming, what is a variable?

7. What is the difference between software and hardware?

8. What does the term, “microelectronics” mean?

9. How are microelectronics used in the field of computer science?

10a. What jobs would you be interested in that use microelectronics?

10b. Provide one example of how microelectronics is used in that job.

8.C Content Post Assessment

93
MAKE SENSE

Name__ Date_______________ Period __________

1. Write a definition for the word, “computer”.

A computer is a programmable electronic deivce that stores and processes data.

2. What is a central processing unit (CPU)?

The CPU is the brain of a computer. It interprets, processes, and executes instructions.

3. What is the difference between random access memory (RAM) and hard drives?

RAM is temporary storage that is lost when the power is turned off. A hard drive maintains
long-term storage and keeps data safe even when power is turned off.

4. What does an actuator do?

An actuator converts energy into mechanical force.

5. List three examples of coding languages.

There are many answers to this question, but examples include C, C++, HTML, Java,
JavaScript, PHP, Python, R, Ruby, and SQL.

6. Within programming, what is a variable?

A programming variable is value or set of values that store information.

7. What is the difference between software and hardware?

Hardware is any physical component of a computer. Software is the programming that tells the
hardware what to do and how to do it.

8. What does the term, “microelectronics” mean?

Student answers may vary, but the formal definition of microelectronics is the design,
manufacture, and use of microchips.

9. How are microelectronics used in the field of computer science?

There are many answers to this question, but examples include the design and manufacturing
of computing devices (such as CPU, memory, GPU, sensors, etc.). Microelectronics are
foundational in computer science as they are the hardware that allow for programmable
automation.

10. What jobs would you be interested in that use microelectronics? Provide one example of how
microelectronics is used in that job.

Students’ answers will vary based on interest. Credit may be given as long as at least one job
example is provided with their logic behind how that job uses microelectronics.

8.D Content Post Assessment Key

