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Molecular Dynamics: The Beginning

Study of microscopic nature of liquids and solids (32 atoms).

Hard-sphere potentials were used.
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Molecular Dynamics: The Beginning

Solid phase (3000 collisions). Fluid phase (3000 collisions).

Alder and Wainwright, JCP 31, 459 (1959)

Simulation approach:
1. Identify next pair of spheres to collide and calculate when the collision will occur.
2. Calculate the positions of all the spheres at the collision time.
3. Determine the new velocities of the two colliding spheres after the collision.
4. Repeat from (1) until finished.



Jeffrey C. Grossman & Elif Ertekin, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Molecular Dynamics

A way to generate many-particle trajectories directly from classical
equations of motion

Each particle in the system moves in a potential, V=V(r1, r2,…, rN), caused
by the presence of all the other particles.

This potential should be additive and (at least at this point) contain only one
or two-body terms. For example:
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Molecular Dynamics

GOAL: We would like to obtain the trajectories ri(t) of all of the N particles as
a function of the time t, in a specified time interval.

• These trajectories are solutions to the classical equations of motion:
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for i=1,2,3,…,N with some initial conditions

• Analytic solutions are not possible, in general, so we turn to a numerical
solution.

• In MD, beginning with the initial conditions, one recursively generates the
positions and velocities at successive times:
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Integrate Equations of Motion

How do we derive an algorithm to compute r(t+dt)?

Start with a Taylor expansion:

! 

r(t + "t) = r(t) + v(t)"t +# ("t 2)

v(t + "t) = v(t) +
f(t)

m
"t +# ("t 2)

This would be a first order integration algorithm.

A couple of things to note:

• the functions r(t) and v(t) are assumed to be analytically well behaved

• there is a time-step error which grows with dt

• most expensive part of the simulation is in the calculation of the force
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A Simple Example: Harmonic Oscillator

Let’s assume a 1-dimensional oscillator with mass m:

• x(t) will describe it’s position

• The harmonic potential is given by V(x) = kx2/2

• Instantaneous force (Hooke’s Law): f = -kx

An exact solution is obtainable in this case.

For initial conditions x(0)=0 and v(0)=vo:
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We can compute the total energy of the system as:
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First Order Integration Results

Here is the position and total energy vs. time for the exact solution compared with
our MD integration using several time steps:

Why  is the precision so bad? What can we do?
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More Accurate Integration

Expand Taylor series to second order:
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The df(t)/dt part looks like something we may want to avoid…

One thing we could do is to use the first equation to compute r(t+dt), and then
compute v(t+dt) from the new position as v(t+dt)=[(r+dt)-r(t)]/dt

This is called the “Euler” algorithm and it is a complete disaster - catastrophic
energy drifts and not reversible, for starters.
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The Velocity Verlet Algorithm

We can expand the force derivative as:
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Substituting into the 2nd order Taylor expansion:
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Now we can compute new velocities after computing new positions which
gives us the new forces.
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Verlet Algorithm for MD

The Verlet algorithm is substantially better than a 1st order approximation.
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Velocity Verlet MD Results

Energy is also very well conserved (better
than 0.2%)

Note scale

As simulation time increases, even the
2nd order algorithm fails to match the
exact trajectory. Note: deviation is solely a phase shift - trajectory is physically correct
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Timestep

We still need to pay careful attention to the time step, as can be seen here if a
time step that is too large is chosen.
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Velocity Verlet MD

The fact that the second-order algorithm enjoys a range of stability is related to
its partially implicit character: the determination of the velocity at a successive
time requires knowledge of the acceleration at that same time, which has a
feedback effect on the position. 

In the first-order algorithm, which is fully explicit, quantities at a successive
time can be determined solely on the basis of their value at a previous time,
and this causes the runaway of the trajectory at long times.
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Other MD Integration Schemes

There are actually a number of MD integrations schemes. It turns out that the
Verlet algorithm is often (but not always) the best choice.

Here are some of the main reasons for this:

• It is very fast computationally
• It requires little memory
• Short-term energy conservation is decent
• Long-term energy conservation is excellent
• It is time-reversible

Other, “Verlet-type” schemes are common, such as the “Leap-Frog” algorithm.

Higher order methods, such as the “Predictor-Corrector” scheme are less
common. One can use larger time steps, but these algorithms suffer from
being slower, requiring more storage, not being reversible, and needing to take
differences of large numbers.
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Accuracy in MD

Is it possible, in theory, to develop an algorithm that accurately predicts the
trajectory of all particles at both short and long times?

No such algorithm exists!

The trajectory of a system is usually very sensitive to the initial conditions.

This means that two trajectories that are initially very close will diverge
exponentially as time progresses.

If we consider the integration error as the source of an initial (small) difference,
then we always have a simulated trajectory divergent from the “true” one.

Is this a devastating blow to molecular dynamics?

Not really - in MD we’re essentially always interested in making statistical
predictions, not in knowing precisely what will happen given some initial
condition.
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Interatomic Potentials
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Note that if the potential is central, we can write v(ri,rj) as v(rij) where rij=|ri-rj|

Higher order terms, such as a three-body v(ri,rj,rl) are preferably avoided, as
they increase considerably the computational expense (the calculation of
three-body forces require a number of operations proportional to N3, four-body
to N4, etc.).

In those cases where three-body effects are too large to be neglected, such as
in molecular hydrogen, often one attempts to incorporate them into an effective
two-body potential, by modifying the 2-body potential to include some of the
effects due to three-body terms.
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The Pair Potential

What determines the interaction between two molecules, or two atoms?

Atoms and molecules consist of electrically charged particles, protons and
electrons, which, to a very large extent, are responsible for the interaction
between them, which is almost exclusively electrostatic.

Also, the distribution of negative charge associated with the electron cloud is
not spherically symmetric, resulting in a nonzero dipole moment of the atom
(molecule).

The electric field generated by a single electrostatic dipole is proportional to
1/r3, and this can be shown to lead to a weak interatomic (intermolecular)
attraction proportional to 1/r6, which is dominant at large distances.

If two atoms or two molecules are brought very close together, the interaction
between them becomes more complicated; quantum effects start playing a
more important a role, resulting in an effective “hard-core” repulsion of atoms
and molecules at sufficiently short distances.
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The Pair Potential

It is clearly very difficult, in general, to provide accurate interparticle potentials
(we will devote a whole lecture to it soon).

Two routes are typically followed:

1. Ab initio quantum-mechanical calculations: these usually consist of
studying a quantum-mechanical system of, say, two atoms, in which the
individual electrons and atomic nuclei are considered separately, and
the energy of the system at various nuclear separations is computed
and tabulated. This is clearly a very difficult task, often undertaken by
performing quantum simulations.

2. More often, one chooses a relatively simple, parametric form for the
potential, incorporating some physical effects deemed relevant, and
adjust the parameters in a phenomenological fashion, by fitting
numerical predictions to known experimental results. Typically,
scattering experiments are good sources of quantitative information, as
well as specific heat, compressibility, sound velocity measurements etc.

Good Reference: M. P.Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press (1994)



Jeffrey C. Grossman & Elif Ertekin, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Lennard-Jones (LJ) Potential

One of the most important and popular potentials is the Lennard-Jones potential:
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The LJ Potential

The long-range part, proportional to 1/r6 attempts to describe the dipole-dipole
attractive interaction.

The short-range part has much less of a physical motivation, and is only aimed
at representing a hard-core repulsion between two atoms.

In fact, the short-range part of LJ is largely unphysical and typically must be
softened to obtain a closer description of the short-range properties of the
interaction.

The Lennard-Jones potential is rather ubiquitous in the simulation literature,
and it is widely considered a paradigmatic potential to simulate most atomic
liquids.

It is occasionally “hidden” behind other appearances. For example, the so-
called “3-9” potential, aimed at representing the interaction of an atom with a
surface is simply the LJ potential where one of the two atoms is replaced with
an infinite, two dimensional uniform atomic distribution.
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The LJ Potential

Another important advantage of the LJ potential is its relatively simple
analytical expression, which permits its evaluation with few computer
operations.

This is an important aspect, as the calculation of the forces from the potential
is the most expensive part of the simulation. 

If a more sophisticated potential is required, involving more terms and/or more
involved analytical expressions, making use of transcendental functions such
as fractional powers, trigonometric functions and exponentials, the toll to be
paid in terms of execution time quickly becomes prohibitive.

This is not to say that more complicated potentials cannot be used, but that
appropriate strategies have to be considered, such as the use of spline-fit
potentials based on look-up table; we will examine this later.
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Beyond the Pair Potential

A central potential may be an acceptable approximation for atomic systems,
but when one is dealing with complex molecules, often it is necessary to
consider explicitly their spatial extension as well as their detailed chemical
structure.

This typically involves considering potentials that have a well-defined angular
part, i. e. they depend on the relative orientation of the molecules.

One possibility of dealing with molecular systems consists of representing
molecules as a collection of individual atoms, where chemical bonds are
represented by further interatomic potentials.

In other words, molecules would lose their identity as far as the simulation is
concerned, as only individual atoms (possibly of different elements) appear.
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Beyond the Pair Potential

Two issues to consider:

• It is often the case that the energy scale corresponding to chemical
bonds within a molecule is much different than the one corresponding to
the self-bonding of the molecular liquid or solid.

• The classical approach might be acceptable to describe a molecular
liquid, but a full quantum mechanical description is needed to
characterize intramolecular bonds.

A possible remedy to the first point consists of simply eliminating
intramolecular potential and replacing them with rigid “dumbbells” or with
flexible “springs”, whose characteristic frequencies are chosen to match the
experimentally observed vibrational spectra of the molecules.

In this case, the molecule has a center of mass and the constituent atoms
move together with it while rotating around it.The second problem can only be
addressed by attempting to incorporate quantum-mechanical effects in the
motion of the molecules.
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Choice of Time Step

There are no hard and fast rules. In general, if dt is too small, not enough of
phase space is explored, and if dt is too large, it will lead to instabilities in the
integration

Typical timesteps fall in the range of 0.1-10 femtoseconds.

For a liquid, the time step should be small compared to the mean time
between collisions.

For a flexible molecule, the time step should be no greater than 1/10 the time
of the shortest period of motion.

Some examples* (dt in seconds) :
• Atoms: translation, dt ~ 10-14

• Rigid Molecules: translation and rotation, dt ~ 5x10-15

• Flexible Molecules: translation, rotation, torsion, dt ~ 2x10-15

• Flexible Molecules & Flexible Bonds: translation, rotation, torsion,
vibration, dt < 10-15

* From “Molecular Modeling,” 2nd edition, A. Leach, Prentice Hall


