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Monte Carlo: What and Why

Monte Carlo

- term coined by physicists at Los Alamos, 1940 (refers to
gambling casinos in Monaco)

- broad term, describes an approach to solving problems that
involves generating a sequence of random numbers

- Monte Carlo simulations are statistical and non-deterministic:
each simulation will give a different result, but the results will be
related via some statistical error

- examples: numerical integration, percolation threshold, diffusion
limited aggregation, brownian motion, Ising models, radiation
transport, subnuclear processes, stellar evolution, econometrics,
Dow Jones forecasting ... very broad, but hopefully you will
have a sense for this by the time we are through with this
discussion
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Example: Computing Pi

S [=] B3

7N

1 10 100 1000 10000

Numbhber of shots

simulation

from http://www.originlab.com

commercially available MC!
(why is this not common?)
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How can we estimate the
value of & using simple

Monte Carlo methods?

Choose N points at random in
the xy-plane so that -1 <
X,y < 1.

Calculate the distance from
the origin for each point --
record whether it fall inside
the circle or not.

Note how the estimate
improves as we use more
points in the simulation!
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Example: Video Scheme Segment

Zhai & Shah. IEEE Transactions on Multimedia, Vol. 8, No. 4, August 2006.

(c) Plot of the visual content in the movie.

[3] (4] [5]

(d) PDFs of the 2D normal distributions of the five scenes.



Example: Video Scheme Segmentation

Zhai & Shah. IEEE Transactions on Multimedia, Vol. 8, No. 4, August 2006.

TABLE III

ACCURACY MEASURES FOR THREE FEATURE MOVIES
Measures Gone in 60 Seconds | Dr. No - 007 | Mummy Returns
Length 01:46:09 01:30:55 01:45:33
Num. of Frames 152665 130811 151802
Num, of Shot 2237 677 1600
Num. of Scenes 29 17 18
Detected Scenes 25 20 18
Match 24 14 15
Insertion 1 3 3
Deletion_ L 5 6 3
Precision | 0960 | 0700 0.833
Recall 0.828 0.824 0.833
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Example: Percolation of Permeable, Hard-

Spheres

Rottereau et al. Eur. Phys. J. E 11, 61-64 (2003).
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Fig. 1. Schematic representation of hard spheres with perme- Fig. 2. Example of the time dependence of the mean distance
able shell. The black areas represent ¢ and the sum of black between nearest-neighboring spheres for ¢ = 0.2 with different
and grey areas represents ¢.. step lengths for L = 40.
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Example: Percolation of Permeable, Hard-

Spheres

Rottereau et al. Eur. Phys. J. E 11, 61-64 (2003).
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Fig. 1. Schematic representation of hard spheres with perme-
able shell. The black areas represent ¢ and the sum of black
and grey areas represents ..
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Example: Percolation of Permeable, Hard-

Spheres

Rottereau et al. Eur. Phys. J. E 11, 61-64 (2003).
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Fig. 1. Schematic representation of bard spheres with perme-  pio 8. The bond percolation threshold as a function of the
able shell. The black areas represent ¢ and the sum of black  ¢4t4] volume fraction for different values of ¢ indicated in the

and grey areas represents de. figure. The solid lines represent fits to equation (2) after trans-
formation of ¢. into ¢.
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Historical Perspective

« Prior to computer simulations, liquids were modeled
mechanically - large assemblies of macroscopic spheres or ball
bearings (crude, and what about thermal motion?)

CHEMICAL PHYSICS

VoruMme 12, Numser 1 January, 1944

On the Statistical Mechanics of Liquids, and the Gas of Hard Elastic Spheres

0. K. Rice
Universily of North Carolina, Chapel Hill, North Carolina

(Received September 4, 1943)

Because of the extreme complications arising from a direct deductive approach, the theory of
the liquid state requires the use of a model‘involving simplifying assumptions. In this paper an
attempt is made to formulate general principles which any such model must follow. The firststep
is a general discussion of “communal"’ entropy, arising from the sharing of available space by all
the atoms. Arguments are advanced to support the contention that for a gas of hard elastic
spheres the communal entropy is fully excited in each direction of space, and amounts in all to
3R per mole. The communal entropy of assemblages of atoms exerting normal attractive and
repulsive forces (in particular, the Debye solid) is considered. The geometry, the equation of
state, and the partition function for an assemblage of hard eclastic spheres are considered in
detail. By extension of these ideas, allowing for the type of force actually exerted on each other
by real atoms, a general form of partition function for a monatomic liquid is set up. This parti-
tion function involves a sum of two parts, one corresponding to a vibrational motion expressed
in terms of the Debye characteristic temperature of the solid, and the other being a translational
term, each part carrying with it its own communal entropy.
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Historical Perspective

« Prior to computer simulations, liquids were modeled
mechanically - large assemblies of macroscopic spheres (crude,
and what about thermal motion?)

J.R. Bernal, Bakerian Lecture, Proc. Roy. Soc. 280:299, 1964.

In the end I fell back on the study of a model of a large number of ball-bearings.
Precautions had to be taken particularly to prevent any plane surfaces around the
block even if it consisted of more than a thousand balls because, as will be shown
later, any regular two-dimensional array produces an effect of regular packing which
goes far into the mass, figure 16, plate 17. The problem of fixing such an arrangement
so that it could be measured was achieved very simply by adding black paint and
letting it harden. This provided, as figure 11, plate 14 shows, marks indicating
contacts and near contacts. The counting of these contacts and near contacts for
a large number of balls, of the order of several hundred, was carried out by
Mr J. Mason (Bernal & Mason 1960). It provided one further clue of great im-
portance, namely, that the numbers of contacts were arranged in some definite
statistical order, that is, the number of balls having five, six, seven, etc., up to
eleven contacts formed a determinate curve and was absolutely distincet from the
regular arrangement, where every ball must have twelve contacts. It was evident
that this variation of contact numbers or co-ordination was one of the most
significant features, possibly the most significant feature of the irregular liquid
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Historical Perspective

« Prior to computer simulations, liquids were modeled
mechanically - large assemblies of macroscopic spheres (crude,

and what about thermal motion?)
J.R. Bernal, Bakerian Lecture, Proc. Roy. Soc. 280:299, 1964.

5+ ﬂ
4-—
8 3-
U
R J.r\‘
z la
Z ;
® i
]
'
o Al
l i
]
!
Vi ' \
1'5 2:0

oL A 1
05 10
radius in terms of distance of closest approach, r/r,
Ficure 1. Radial distribution functions: variation of mean particle density as a function of r/r,.
...... , Derived from calculated random model; ——, derived from squeezed random model;
————, calculated for liquid lead by Furukawa (1960) with X-rays calculated for

liquid argon by Henshaw, D. G. (Phys. Rev. 105, 976; 1957) with neutron diffraction.
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Historical Perspective

+ 1953: Electronic computers made available for non-classified research.
Numerical simulation of these liquids was one of the first problems tackled:

—Metropolis et al. (Los Alamos) introduces Monte Carlo method.
J. Chem. Phys. 21: 1088-1092, 1953.

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicHoras METrOPOLIS, ARIANNA W. RosenBLUTH, MARSHALL N. ROSENBLUTH, AND AucusTA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EpwArDp TELLER,* Depariment of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.
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The Problem We Want to Solve

Our goal is the evaluation of integrals such as:

. [ ar"dp® A", pN)exp[—E(rN, pN)/kT]
A)= [ dr"dp" exp[-E(™,p")/kT]

Where do such integrals arise? From statistical mechanics, the classical
expression for partition function looks like this (c is normalization):

Z = cfdrNde exp[—E(rN,pN)/kT]

So computing any physical property of the system of interest will involve
integral expressions like the one above.

| will present a quick introduction to why we are interested in integrals of this
formin ....
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Fastest Introduction to Stat Mech Ever

1 cm?® of Silicon =5 x 1022 atoms.

Let’s say we know the differential equations that govern the motion
of the atoms and wish to solve them directly. Then:

- 6 coordinates per atom ( x, Yy, z, pX, pY, pz)

- 8 bytes per coordinate

- memory requirements = 8 bytes * 6 * 5 * 1022 = 2.4 * 1024 bytes
(1 GB of memory = 10° bytes)

Even the memory requirements alone are absurd,
even by today’s standards!!

(Aside: | played a little “Moore’s Law” game. |f we assume that the memory
available doubles every year, we are still ~ 50 years away from meeting these
memory requirements.)
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Statistical Mechanics - Bare Minimum

In Stat Mech, we solve this problem by coarse-graining our system:

state of a system is characterized not by 1023 coordinates, but
instead by a small set of parameters: T, P, magnetization, etc.

i) 3m
gor 1o ol 2m
i 4ol 44u 2m
UL -3m
microstates macrostates

|deally, these coarse-grained parameters are sufficient to describe
the properties with which we are concerned.

Note how different microstates can give us the same macrostate.

Underlying assumption of Stat Mech: given a particular macrostate,
all corresponding microstates are equally likely
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Statistical Mechanics - Bare Minimum

For a system, in contact (thermal equilibrium) with a heat bath, what is the

probability p(ey) of finding the system at a given microstate with energy & ?

We get this information from the canonical distribution. (i.e., NVT ensemble)

Energy conservation:
energy exchange

'//f system

i Let Qg (es,s) = # of microstates of

et erse system with energy ¢

€tot = €bath + 8sys

sys

From Boltzmann statistics, the relative probability of finding this system at a microstate

with energy ¢_ . scales as exp(-pe

sys sys)'

Normalizing, the probability of finding the system at a given microstate is:
_/J)gsys
e

= o)ty

ﬁ‘g sys

p(ssys) o e

all microstates

We define the 7 = Ee‘ﬁgsys _ EQ (8 )e‘ﬁfsys
sys\ “sys

partition function Z

all microstates all energies
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Statistical Mechanics - Bare Minimum

What about the probability of finding the system at a particular macrostate, with
sts(gs

energy €7
_ﬁgsys
)e

sys’
p= “pe
EQSyS(e)e P

all energies

Fluctuations in measured properties

_ arise because the system is

i n O (8 ) constantly exchanging energy with
R the universe.

L Such fluctuations are inherent to the
i e_ﬁ Eavs _pe system, not just an experimental

| of(e )™ | featne

i 4ys\ Esys eature!

N The average properties, however,
are well-defined even though
instantaneous properties fluctuate.

- T T T I T
&

Known as the canonical distribution.
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Back to Monte Carlo

Now we understand why we are likely to run into integrals of the form:

i [ drap” A" p"yexp|-E(r", p") /KT |
 [ardp" exp[-E(".p")/kT]

(A)

How to evaluate? Consider direct integration, first. Let’s consider even the simplest
case. For a classical system, the total energy can be written as:

N
1
ER)V)= E—mivi2 +V(r,r,,....ry)
i=1 2
where V is a specified interaction potential.

The great majority of observables of interest do not explicitly depend on the
velocities; in that case, the integration over the velocities factors out and the

equation for <A> becomes:
(4)- [ dRAR)exp[-pV(R)]
f dRexp[-BV (R)]
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Why Monte Carlo?

) [ dRAR)exp[-pV(R)]
f dRexp[-BV (R)]

(A)

Consider numerical integration (quadrature, Simpson’s rule, etc). Choose
m equidistant points along each axis for the integration, in a D-
dimensional space with N particles.

We have mPN points at which to evaluate the function. For N=100 particles
in a D=3 dimensional space, say we choose m=5. We must evaluate
10210 points! This is clearly impossible.

Additionally, even if we could do it, the statistical error would be huge
because numerical integration works well only for functions that are
smooth relative to the mesh size.

For most interatomic potentials, the Boltzmann factor is a rapidly varying
function of particle coordinates. In fact, for the overwhelming majority
of points, the Boltzmann factor is vanishingly small.

For example, for a fluid of 100 hard spheres at the freezing point, the
Boltzmann factor is nonzero for only 1 out of every 10260 configurations.

Clearly, we need another approach ... and this is where Monte Carlo
comes in.
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Metropolis Monte Carlo

Metropolis, in 1953, showed that it is possible to evaluate this ratio
of integrals using statistical methods. His approach is known as
“Metropolis Monte Carlo”, and it is the most common form of
Monte Carlo methods.

We will start by describing it, and then moving on to some
generalizations of the Metropolis method to other forms of
Monte Carlo.

In the Metropolis method, we randomly generate points in
configuration space according to the Boltzmann distribution.
This is called importance sampling.

We do this via a random walk in configuration space, however, the
next configuration is rejected or accepted in such a way that we
sample the configuration according to the probability distribution.

Thus, we generate a sequence of points in configuration space with
a relative probability proportional to the Boltzmann factor.
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Metropolis Monte Carlo

* This is why we use Monte Carlo simulations to generate sequences of
configurations of the system weighted according to the canonical
distribution.

* If we measure the property of interest (energy, magnetization) at each
configuration, we can compute the average value of that property over
the course of the simulation.

 Of course, there will be some statistical error in our calculated average
(more later...)

Note: we have lost something along the way!

- There is no inherent sense of “time” in a pure Monte Carlo simulation -
each step of the simulation corresponds to a different microstate or
configuration that is physically accessible.

- We will get to “time” when we discuss Kinetic Monte Carlo later on.
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Metropolis Monte Carlo

How do we sample the configuration according to the Boltzmann
distribution?

Let “c” denote the current configuration, and “n” denote a possible
new configuration. Let N(c) give the relative probability of
sampling state c, and let w(c - n) denote the transition
probability from state c to state n.

The transition probabilities must satisfy one important rule. Once
an equilibrium distribution is reached, the transition probabilities
must maintain that equilibrium.

The average number of accepted trial moves that result in the
system leaving state ¢ must be exactly equal to the number of
accepted trial moves from all other states n into c.

In practice, we impose much stricter condition for convenience: the
average number of trial moves from c to a specific state n is
exactly canceled by the number of moves from n to c.

This is the condition of detailed balance. Mathematically,
N(c)n(c — n) = N(n)zt(n — c)
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Metropolis Algorithm

N(c)n(c — n) = N(n)n(n — c)

Theorists’ Warning: be extremely wary of simulations that violate detailed
balance! Detailed balance implies configurations consistent w/ equilibrium ...

We can implement detailed balance in many ways. Let’s break it down further...
n(c = n)=alc —=n)xacc(c — n)

I A

Probability of selecting state n as the

next trial configuration given that you are
currently in state c

Probability of accepting the move from c
to n, given that you have selected n.
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Metropolis Algorithm

In the original Metropolis scheme, the factor a is symmetric:

a(c — n) = a(n — c)
Thus, our detailed balance condition becomes:

N(c)xacc(c = n)=N(n)xacc(n —c)

To correctly sample the canonical distribution, this means that the relative
acceptance rates must satisfy:

acc(c —n) _ N(n) _ exp|-pe, |
acc(n — c) N(c) exp[—/o’ec]

Many ways to do this, but Metropolis approach is:

exp|—-P(e, — €. if ¢ >¢,
acc(c%nk{ [ (1 )] it ¢ <é

= exp[—/&’(sn - sc)]
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Metropolis Algorithm - Implementation

1. Assign an initial configuration (non-trivial!!) for your system, record it's energy.

2. Choose a second possible configuration for the system (e.g. move an atom by a
diffusion step in a random direction, flip a spin, move all of the atoms, etc), and
compute the change in energy Ae associated with the change in configuration

3. If Ae <0 : accept the change
If Ae > 0 : accept the change with probability e-f(4e)

- i.e. generate a random number r uniformly distributed
between 0 and 1.

- If r < e'P(8¢) accept the change. Otherwise, reject it.

This accepting and rejecting ensures that we choose our configurations
consistently with the Boltzmann population distribution.

4. Repeat steps 2 and 3 as long as reasonable. We can use these successive
configurations to obtain an estimate for the desired average.

Basic idea: The Metropolis algorithm obeys detailed balance and exhibits the
dynamics of a canonical distribution.
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How do we generate trial moves?

First, we have to devise a way to choose a new trial configuration R" from a
current one, R¢

Generally, we use Markov chains to do this. The probability of choosing a
trial state R" depends only on the current state which you are in Re.

There are many ways to choose R" from R¢. For instance,

- move all particles by a random 3D vector

- move one particle by a random 3D vector

- move all particles by a diffusion step of fixed length in a random direction
- move one particle by a diffusion step of fixed length in a random direction

Of course, after choosing the trial configuration, the next step will be an
acceptance test.

That is, we have only proposed a move, but we need to determine whether
that attempt should actually be taken or whether it should be discarded and
a new trial move computed.
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Efficient Sampling

We want an efficient sampling procedure -- we want the lowest
statistical error for a given amount of computing time.

We can assume that the mean-square error is inversely
proportional to the number of uncorrelated configurations
visited. But the number of independent configurations depends

on how much of phase space we can cover.
Maximizing efficiency is a balancing game:

- if we use too large a step size, it is likely that the new
configuration will be high energy and thus rejected

- if we use too small a step size, then successive measurements
are correlated and we have less independent configurations.
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Efficient Sampling

Is there a single optimal acceptance ratio?
Often, 50% is cited as a target acceptance ratio.
In truth, not really - it depends on the specifics of your system.

For instance, does the amount of computing required to test

whether a trial move is accepted depend on the magnitude of
the move?

Not for continuous potentials, but it does for hard spheres -- a
move can be rejected as soon as neighbor overlap is detected.

Thus, for hard spheres, rejection is cheap, and we can
accommodate lower acceptance ratios (20%).
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