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Monte Carlo: What and Why

Monte Carlo
- term coined by physicists at Los Alamos, 1940 (refers to

gambling casinos in Monaco)
- broad term, describes an approach to solving problems that

involves generating a sequence of random numbers
- Monte Carlo simulations are statistical and non-deterministic:

each simulation will give a different result, but the results will be
related via some statistical error

- examples: numerical integration, percolation threshold, diffusion
limited aggregation, brownian motion, Ising models, radiation
transport, subnuclear processes, stellar evolution, econometrics,
Dow Jones forecasting … very broad, but hopefully you will
have a sense for this by the time we are through with this
discussion
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Example: Computing Pi

How can we estimate the
value of π using simple
Monte Carlo methods?

Choose N points at random in
the xy-plane so that -1 <
x,y < 1.

Calculate the distance from
the origin for each point --
record whether it fall inside
the circle or not.

Note how the estimate
improves as we use more
points in the simulation!from http://www.originlab.com

commercially available MC!
(why is this not common?)
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Example: Video Scheme Segmentation
Zhai & Shah. IEEE Transactions on Multimedia, Vol. 8, No. 4, August 2006.
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Example: Percolation of Permeable, Hard-
Spheres

Rottereau et al. Eur. Phys. J. E 11, 61-64 (2003).



Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Example: Percolation of Permeable, Hard-
Spheres

Rottereau et al. Eur. Phys. J. E 11, 61-64 (2003).



Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Example: Percolation of Permeable, Hard-
Spheres

Rottereau et al. Eur. Phys. J. E 11, 61-64 (2003).



Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Historical Perspective
• Prior to computer simulations, liquids were modeled

mechanically - large assemblies of macroscopic spheres or ball
bearings (crude, and what about thermal motion?)
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Historical Perspective
• Prior to computer simulations, liquids were modeled

mechanically - large assemblies of macroscopic spheres (crude,
and what about thermal motion?)

J.R. Bernal, Bakerian Lecture, Proc. Roy. Soc. 280:299, 1964.
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Historical Perspective

• 1953: Electronic computers made available for non-classified research.
Numerical simulation of these liquids was one of the first problems tackled:

–Metropolis et al. (Los Alamos) introduces Monte Carlo method.
J. Chem. Phys. 21: 1088-1092, 1953.
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The Problem We Want to Solve
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Our goal is the evaluation of integrals such as:

Where do such integrals arise?  From statistical mechanics, the classical
expression for partition function looks like this (c is normalization):

! 

Z = c dr
N
dp

N
exp "E(rN , pN ) /kT[ ]#

So computing any physical property of the system of interest will involve
integral expressions like the one above.

I will present a quick introduction to why we are interested in integrals of this
form in ….
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Fastest Introduction to Stat Mech Ever

1 cm3 of Silicon = 5 x 1022 atoms.

Let’s say we know the differential equations that govern the motion
of the atoms and wish to solve them directly.  Then:

- 6 coordinates per atom ( x, y, z, px, py, pz)
- 8 bytes per coordinate
- memory requirements = 8 bytes * 6 * 5 * 1022 = 2.4 * 1024 bytes
(1 GB of memory = 109 bytes)

Even the memory requirements alone are absurd,
even by today’s standards!!

(Aside: I played a little “Moore’s Law” game.  If we assume that the memory
available doubles every year, we are still ~ 50 years away from meeting these
memory requirements.)
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Statistical Mechanics - Bare Minimum
In Stat Mech, we solve this problem by coarse-graining our system:

state of a system is characterized not by 1023 coordinates, but
instead by a small set of parameters: T, P, magnetization, etc.

Ideally, these coarse-grained parameters are sufficient to describe
the properties with which we are concerned.

Note how different microstates can give us the same macrostate.

Underlying assumption of Stat Mech: given a particular macrostate,
all corresponding microstates are equally likely

microstates macrostates

3m

2m

-2m

-3m
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Statistical Mechanics - Bare Minimum
For a system, in contact (thermal equilibrium) with a heat bath, what is the

probability p(εsys) of finding the system at a given microstate with energy εsys?

We get this information from the canonical distribution.  (i.e., NVT ensemble)

universe

system

Energy conservation:
εtot = εbath + εsys

Let Ωsys(εsys) = # of microstates of
system with energy εsys

energy exchange

! 

p "sys( )   #   e
$%" sys

     &      p "sys( ) =
e
$%" sys

e
$%"

all microstates

'

From Boltzmann statistics, the relative probability of finding this system at a microstate
with energy εsys scales as exp(-βεsys).

Normalizing, the probability of finding the system at a given microstate is:

! 

Z = e
"#$ sys

all microstates

% = &sys $sys( )e"#$ sys
all energies

%We define the
partition function Z
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Statistical Mechanics - Bare Minimum

! 

p =
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all energies
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Fluctuations in measured properties
arise because the system is
constantly exchanging energy with
the universe.

Such fluctuations are inherent to the
system, not just an experimental
feature!

The average properties, however,
are well-defined even though
instantaneous properties fluctuate.

Known as the canonical distribution.

! 

"sys

What about the probability of finding the system at a particular macrostate, with
energy εsys?
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Back to Monte Carlo
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Now we understand why we are likely to run into integrals of the form:

How to evaluate?  Consider direct integration, first. Let’s consider even the simplest
case.  For a classical system, the total energy can be written as:
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where V is a specified interaction potential.

The great majority of observables of interest do not explicitly depend on the
velocities; in that case, the integration over the velocities factors out and the
equation for <A> becomes:

! 

A =
dRA(R)exp "#V (R)[ ]$
dRexp "#V (R)[ ]$
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Why Monte Carlo?

Consider numerical integration (quadrature, Simpson’s rule, etc).  Choose
m equidistant points along each axis for the integration, in a D-
dimensional space with N particles.

We have mDN points at which to evaluate the function.  For N=100 particles
in a D=3 dimensional space, say we choose m=5.  We must evaluate
10210 points!  This is clearly impossible.

Additionally, even if we could do it, the statistical error would be huge
because numerical integration works well only for functions that are
smooth relative to the mesh size.

For most interatomic potentials, the Boltzmann factor is a rapidly varying
function of particle coordinates.  In fact, for the overwhelming majority
of points, the Boltzmann factor is vanishingly small.

For example, for a fluid of 100 hard spheres at the freezing point, the
Boltzmann factor is nonzero for only 1 out of every 10260 configurations.

Clearly, we need another approach … and this is where Monte Carlo
comes in.

! 

A =
dRA(R)exp "#V (R)[ ]$
dRexp "#V (R)[ ]$
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Metropolis Monte Carlo
Metropolis, in 1953, showed that it is possible to evaluate this ratio

of integrals using statistical methods.  His approach is known as
“Metropolis Monte Carlo”, and it is the most common form of
Monte Carlo methods.

We will start by describing it, and then moving on to some
generalizations of the Metropolis method to other forms of
Monte Carlo.

In the Metropolis method, we randomly generate points in
configuration space according to the Boltzmann distribution.
This is called importance sampling.

We do this via a random walk in configuration space, however, the
next configuration is rejected or accepted in such a way that we
sample the configuration according to the probability distribution.

Thus, we generate a sequence of points in configuration space with
a relative probability proportional to the Boltzmann factor.
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Metropolis Monte Carlo

• This is why we use Monte Carlo simulations to generate sequences of
configurations of the system weighted according to the canonical
distribution.

• If we measure the property of interest (energy, magnetization) at each
configuration, we can compute the average value of that property over
the course of the simulation.

• Of course, there will be some statistical error in our calculated average
(more later…)

Note: we have lost something along the way!
- There is no inherent sense of “time” in a pure Monte Carlo simulation -
each step of the simulation corresponds to a different microstate or
configuration that is physically accessible.
- We will get to “time” when we discuss Kinetic Monte Carlo later on.
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Metropolis Monte Carlo
How do we sample the configuration according to the Boltzmann

distribution?
Let “c” denote the current configuration, and “n” denote a possible

new configuration.  Let N(c) give the relative probability of
sampling state c, and let π(c  n) denote the transition
probability from state c to state n.

The transition probabilities must satisfy one important rule.  Once
an equilibrium distribution is reached, the transition probabilities
must maintain that equilibrium.

The average number of accepted trial moves that result in the
system leaving state c must be exactly equal to the number of
accepted trial moves from all other states n into c.

In practice, we impose much stricter condition for convenience: the
average number of trial moves from c to a specific state n is
exactly canceled by the number of moves from n to c.

This is the condition of detailed balance.  Mathematically,

! 

N c( )" c# n( ) = N n( )" n# c( )
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Metropolis Algorithm

Theorists’ Warning: be extremely wary of simulations that violate detailed
balance!  Detailed balance implies configurations consistent w/ equilibrium …

! 

N c( )" c# n( ) = N n( )" n# c( )

We can implement detailed balance in many ways.  Let’s break it down further…

! 

" c# n( ) =$ c# n( ) % acc c# n( )

Probability of selecting state n as the
next trial configuration given that you are
currently in state c

Probability of accepting the move from c
to n, given that you have selected n.
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Metropolis Algorithm

In the original Metropolis scheme, the factor α is symmetric:

! 

" c# n( ) =" n# c( )

Thus, our detailed balance condition becomes:

! 

N c( ) " acc c# n( ) = N n( ) " acc n# c( )

To correctly sample the canonical distribution, this means that the relative
acceptance rates must satisfy:
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Many ways to do this, but Metropolis approach is:

! 

acc c" n( ) =
exp #$ %

n
#%

c( )[ ]   if  %
n

> %
c

1   if  %
n

< %
c

& 
' 
( 



Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Metropolis Algorithm - Implementation

1. Assign an initial configuration (non-trivial!!) for your system, record it’s energy.

2. Choose a second possible configuration for the system (e.g. move an atom by a
diffusion step in a random direction, flip a spin, move all of the atoms, etc), and
compute the change in energy Δε associated with the change in configuration

3. If Δε < 0 : accept the change

      If Δε > 0 : accept the change with probability e-β(Δε)

- i.e. generate a random number r uniformly distributed 
between 0 and 1.

- If r < e-β(Δε), accept the change.  Otherwise, reject it.

     This accepting and rejecting ensures that we choose our configurations
consistently with the Boltzmann population distribution.

4.  Repeat steps 2 and 3 as long as reasonable.  We can use these successive
configurations to obtain an estimate for the desired average.

Basic idea: The Metropolis algorithm obeys detailed balance and exhibits the
dynamics of a canonical distribution.
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How do we generate trial moves?

First, we have to devise a way to choose a new trial configuration Rn from a
current one, Rc

Generally, we use Markov chains to do this.  The probability of choosing a
trial state Rn depends only on the current state which you are in Rc.

There are many ways to choose Rn from Rc.  For instance,
  - move all particles by a random 3D vector
 - move one particle by a random 3D vector
 - move all particles by a diffusion step of fixed length in a random direction
 - move one particle by a diffusion step of fixed length in a random direction

Of course, after choosing the trial configuration, the next step will be an
acceptance test.

That is, we have only proposed a move, but we need to determine whether
that attempt should actually be taken or whether it should be discarded and
a new trial move computed.
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Efficient Sampling
We want an efficient sampling procedure -- we want the lowest

statistical error for a given amount of computing time.
We can assume that the mean-square error is inversely

proportional to the number of uncorrelated configurations
visited.  But the number of independent configurations depends
on how much of phase space we can cover.

Maximizing efficiency is a balancing game:
- if we use too large a step size, it is likely that the new
configuration will be high energy and thus rejected
- if we use too small a step size, then successive measurements
are correlated and we have less independent configurations.
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Efficient Sampling
Is there a single optimal acceptance ratio?

Often, 50% is cited as a target acceptance ratio.
In truth, not really - it depends on the specifics of your system.

For instance, does the amount of computing required to test
whether a trial move is accepted depend on the magnitude of
the move?
Not for continuous potentials, but it does for hard spheres -- a
move can be rejected as soon as neighbor overlap is detected.

     Thus, for hard spheres, rejection is cheap, and we can
accommodate lower acceptance ratios (20%).


