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Computational Science: 
Historical Perspective 
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Computer Hardware Historical Milestones


1946: Eniac

Op/s: 5000

Sq. ft: 3000 


1952: IBM SSEC

Op/s: 2000 

Sq. ft: 1000


1951: MIT Whirlwind

Op/s: 200,000

Sq. ft: 3100


1964: CDC 6600

Op/s: 3,000,000

Sq. ft: 3100


1968: Apollo Guide

Apollo 7&11 missions


1971: Kenbak-1

First personal computer

256 Bytes of memory


1974: Xerox Alto

Built-in mouse

Connect to network
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JCG Personal Computer History


Tandy TRS-80 (a.k.a. “Trash-80”)
 Atari 400 (note the stylish keyboard)


Start-up 
screens
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Computational Science


Modeling and simulation can be thought of as “experimental theory” or 
“theoretical experiments” 

The field is still in its infancy –  40 years vs. > 400 years of experimental 
sciences 

Computational Science is not Computer Science 

The Third Branch of Science – along with Analytic Theory and Experiment 

Analytic Theory Experiment 

Simulation 
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Scientific Computing Milestones


So…what has computational science done for us thus far? 

• Many early engineering and control examples, used by NASA (Apollo missions, 
1960’s), the Census Bureau (1970’s), and even election tabulation  

•  Note that these are not very “scientific” in nature 

• Early applications that solved equations numerically in order to probe new 
science include: 

•  Enrico Fermi’s Monte Carlo calculation of neutron diffusion (1930’s) 
•  12 “hard sphere” atoms 

•  Hydrodynamics simulations required for the Manhattan Project (1940’s) 
•  Molecular dynamics simulations for materials science (1960’s) and later 
(1970’s) for protein structure 
•  Quantum Monte Carlo calculation of electron gas density (1980) - 
became the basis for density functional theory calculations 
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Density functional theory


Walter Kohn (left), receiving 
the Nobel prize in chemistry  
in 1998. 

E 0 = E [ n 0 ] 

Energy 

Hohenberg & Kohn, 1964 

Electron density 

Interacting Non-interacting 

- 
- - - 

- 
- - - 

- 

Kohn & Sham, 1965 
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The first ʻfirst-principlesʼ calculation
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Scientific Computing State-of-the-Art


And what can computational science do for us now? 

Computational: 
•  Physics 
•  Chemistry 
•  Biology 
•  Cosmology 
•  Climate Modeling 
•  …and much more 

Depending on what is needed to solve the problem, we can now simulate: 
•  the (almost) exact quantum behavior of a thousand atoms 
•  the approximate quantum behavior of billions of atoms 
•  3-dimensional, transient, turbulent reacting combustive flows 
•  global climate with 50 km resolution for next 200 years 
•  protein folding geometries during entire folding process 
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Top Supercomputers Available Today


from http://www.top500.org/list/2007/11/100: 
Installation of cables for Blue 
Gene/L at LLNL, October 2005. 

Current and recent projects:


(1)  (On-going) Blue Brain - attempt to 
map the entire human brain at the 
molecular level.  Thatʼs 30 million 
synapses! (Ecole Polytechnique, 
Switzerland).  Computer: Blue 
Gene. 


(2)  (2005) Simulation of the ribosome 
- the motion of 2.64 million atoms! 
Computer: Q Machine, Los 
Alamos.  Largest biomolecular 
dynamics simulation to date.
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Nanoscience 
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Nanotechnology Historical Milestones

“It would be, in principle, possible (I think) for a physicist to synthesize 
any chemical substance that the chemist writes down. . . . Put the atoms 
down where the chemist says, and so you make the substance.” - 
Richard Feynman, There’s Plenty of Room at the Bottom (1959). 

“My budget supports a major new National Nanotechnology Initiative, 
worth $500 million. More than 40 years ago, Caltech’s own Richard 
Feynman asked, ‘What would happen if we could arrange the atoms one 
by one the way we want them?’” - President Clinton, Caltech (2000). 

"We cannot afford certain types of accidents” - Eric Drexler, Engines of 
creation, 1986, the book where the term “grey goo” was coined. 

Don Eigler and Erhard Schweizer spelled “IBM” with 35 xenon atoms, 
1989. This logo could fit 350 million times in the area at the point of a pin. 
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Nanotechnology Definition… 


•  Technology development at the atomic, molecular, or macromolecular range of 
approximately 1-100 nanometers to create and use structures, devices, and 
systems that have novel properties. 

•  The application of nanoscience in order to control processes on the nanometer 
scale, ie between 0.1 nm and 100 nm. 

•  The development and use of devices that have a size of only less than 200 
nanometers. 

•  This is a general term for technology research on the scale of less than about 
1000 nanometers. 

•  First coined by K. Eric Drexler in 1986 
•  According to the Oxford English Dictionary, the term “nanotechnology” was 

coined in 1974. 

define: nanotechnology
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“How Super-Cows and Nanotechnology will Make Ice Cream Healthy” 

In a field somewhere in County Down, Northern Ireland, is a herd of 40 
super-cows that could take all the poisonous guilt out of bingeing on ice 
cream. Unilever, the manufacturer of Persil and PG Tips, is sponsoring a 
secret research project by a leading British agricultural science institution 
into how to reduce the levels of saturated fat in cow's milk.  
It is also experimenting with nanotechnology, or the science of invisibly 
tiny things. Unilever believes that by halving the size of particles that 
make up the emulsion - or fatty oil - that it uses to make ice cream, it 
could use 90 per cent less of the emulsion.  

(Ed.'s note: just shrinking the particle size into the nano-realm does not 
make it nanotechnology, even by today's materials science standards. 
For that, the particles would have to exhibit new properties.)
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tiny things. Unilever believes that by halving the size of particles that 
make up the emulsion - or fatty oil - that it uses to make ice cream, it 
could use 90 per cent less of the emulsion.  

(Ed.'s note: just shrinking the particle size into the nano-realm does not 
make it nanotechnology, even by today's materials science standards. 
For that, the particles would have to exhibit new properties.)


Nanotechnology Press


telegraph.co.uk, August 21, 2005 
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Nanotechnology in Hollywood*


*After M. Hersam


Nanotechnology Scientist in Spiderman1
 Nanotechnology created The Hulk2


1 Copyright 2002, Columbia Pictures, used without permission

2 Copyright 2003, Universal Pictures, used without permission
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Ask the Government (www.nano.gov)
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Ask the Government (www.nano.gov)


Labeled "nanotechnology" only if it involves all of the following: 

 1. Research and technology development at the atomic, 
molecular or macromolecular levels, in the length scale of 
approximately 1 - 100 nanometer range. 

 2. Creating and using structures, devices and systems that have 
novel properties and functions because of their small and/or 
intermediate size. 

 3. Ability to control or manipulate on the atomic scale.  
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“The purposeful engineering of matter at 
scales of less than 100 nanometers to 
achieve size-dependent properties and 
functions.” 

Nanotechnology Definition


Matthew Nordan, 
Lux Research, 2005. 

Not “nano by accident” 

Really small Not just “small;” “small and different” 
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Computational Nanoscience


• There was a little perspective on Computational Science and on Nanoscience 

• Now how about Computational Nanoscience? Here’s a great quote: 

“The fundamental laws necessary for the mathematical 
treatment of a large part of physics and the whole of 
chemistry are thus completely known, and the difficulty lies 
only in the fact that application of these laws leads to 
equations that are too complex to be solved.” (P.A.M. Dirac) 

• With a combination of computer power and algorithm development over the 
last 50 years, these equations - the ones that govern nanoscience - are no 
longer too complex to solve 

• And that’s a good thing, because it is much needed… 
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Simulation as Computer Experiments


• Why is simulation so important in nanoscience and nanotechnology? 
•  Because nanoscale systems are “complex” 
•  Because experimental characterization is challenging 
•  Because optimization is nonlinear 
•  Because classical models and simple theories may fail 

• Complex means (for now): 
• There is more than one individual constituent in the system 
• Constituents cannot be considered independent, as they interact with one 

another 
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How Does One Begin?


Generally speaking, two steps are involved: 

1.  A mathematical model must be introduced to describe, as faithfully as 
possible, the physical system under exam. For example, in the case of a 
classical monatomic liquid, atoms can be described as massive, point-like 
particles, mutually interacting via a two-body potential. 
A model is essentially an idealized version of the system under exam, 
conceived to be mathematically well-defined, so that calculations can be 
performed, and to incorporate most of the effects that are relevant to the 
science in which one is interested. 

2.  The model introduced in must be studied by solving appropriate equations of 
motion, either classical (i.e., F=ma) or quantum-mechanical, according to 
whether the model is based on Newtonian or quantum mechanics. The 
solution of the equation of motion enables one to calculate values of physical 
quantities of interest. 
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Defining vs. Solving a Model


Both are, of course, important. In this class, we will focus more on solving a 
specific model, for a number of reasons: 

• Very accurate and realistic models often exist in both basic and 
applied research. 

• Artificial models are also of interest - not quantitative, but can 
incorporate essential chemistry/physics of an entire class of systems. 

• Even when a model is known to a high degree of accuracy, an exact 
analytical solution of the equations of motion is usually out of 
question. 

Why is this so difficult?
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Solving a Model is Difficult


The presence of interactions among constituents renders the many-body 
problem usually unsolvable exactly.  

As of now, no general solution is known when the number of interacting bodies 
is greater than two.  

One can sometimes obtain useful results by making simplifying 
approximations, for example: 

• neglecting interactions altogether (sometimes OK, e.g., for gases at high 
temperature) 

•  reducing the problem to an effective one-body problem, describing the 
interactions by means of an effective single-particle external field (e.g., 
in the Hartree method) 

However, these simplifications can have uncontrolled approximations, meaning 
it may be impossible to estimate reliably how far off one is from the exact 
answer (the one corresponding to the initial model). 
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Advantage of Computer Simulations


• obtain reliable theoretical predictions for the system of interest 

• gauge quantitatively the accuracy of approximate methods and theories, by 
comparing their predictions against computer-generated answers 

• much easier and faster to do, even for very complex systems, than analytical 
calculations, even approximate ones 

• scale up with the increase of computer power; thus, something which is not 
feasible today might become so tomorrow 

• generally allow to calculate the most relevant quantities, those that are 
measured in an experiment, or that are most directly related to our 
understanding, or that would be too difficult to measure experimentally 

Computer simulations can obtain essentially exact numerical solutions to the 
equations of motion for the model of interest, with no approximation. 
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Some Important Issues with Simulations


•  results are numbers, as opposed to elegant equations; thus, one has to 
make sense out of a set of numbers, i. e. interpret the results. 

•  results are obtained for finite systems only, whereas often one is seeking 
estimates for infinite systems, to eliminate surface effects; thus, one has to 
assess the sensitivity of the results to the system size (finite-size scaling). 

• even when the simulation is free from approximation, the results are usually 
affected by statistical errors, which have to be estimated.  

• Because the field of computer simulations is no more than 50 years old, most 
interesting techniques have likely not yet been invented or tried. 
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Some Important Issues with Simulations


Some good initial questions to ask before trying to solve a problem with 
a computer: 

•  What is the optimal algorithm for a given problem? 

•  What do we want to calculate? 

•  Is it feasible, given the computational facilities available? 

•  What are the limits, underlying assumptions, and underlying approximations 
in our model?  Is it still useful? 
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Analogies with Experiment


• The goal is to obtain a (hopefully) reliable numerical estimate for some 
relevant physical quantity A characterizing a system of interest, such as a 
liquid, or a solid, or a biological membrane.  

• Let us assume that a mathematical model, deemed suitable, has been 
defined for the system of interest. 
The simulation essentially consists of performing an experiment on the model, 
i. e. on a fictitious system, described by the mathematical model specified. 

• For example, we may put a bunch of particles in a box, specify the way in 
which they interact (the potential), assign initial positions and velocities and 
let them move according to the laws of classical mechanics (this is a 
Molecular Dynamics simulation).  

• A computer can do that for us, thereby simulating the behavior that our ideal 
system would have if it existed, and rendering it possible to make 
measurements on it.  
Naturally, the “measurements” are performed by the computer itself. 
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Simulations as Computer Experiments


Just as in an experiment, the estimate of the value of the quantity A is 
obtained by measuring it a sufficiently large number of times during the 
simulation, and averaging the results in some way. 

An important difference between a real experiment and the simulation is that 
the latter makes it possible to “measure” quantities that cannot be easily (or at 
all) measured in a real experiment (for example, the trajectory of a single 
particle). 

This way of “solving” the problem has obvious methodological and deep 
philosophical differences with respect to tackling the problem analytically. 
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Sources of  Error


Statistical errors 

Always affect numerical simulations, just like they affect experimental 
measurements. This is because the experiment (e.g., the simulation) 
necessarily takes a finite time. 

As it turns out, assigning statistical errors is a rather delicate part of the job (as 
we’ll see in a moment). 

Just like in a real experiment, in computer simulations the measured quantity 
is assigned a numerical value, which is in principle affected by statistical and 
systematic errors. 
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Systematic Errors


The hardest to deal with; i.e., if my instrument is not calibrated the outcomes of 
my measurements will be biased.  

Systematic errors can be generally associated with “lack of calibration”, or 
“incomplete calibration”, even when discussing computer simulations, for 
which the word “calibration” takes a slightly generalized meaning. 

In a computer simulation, typical sources of systematic errors are: 
• The finite size of the simulation sample 
• A defective random number generator in Monte Carlo simulations 
• The finite time-step in Molecular Dynamics simulations 
• Round-off errors due to the finite precision of the computer (any 

numerical calculation suffers from this) 
• Sometimes, approximations in the numerical procedure (hopefully, this is 

never the case!) 

There are, with the sole exception of the last item in the above list, well-defined 
methods to deal with systematic errors in the context of computer simulations. 
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Computation of Physical Averages


Again, let’s draw analogy with experiment 

(Basically) two types of experiments: 
•  those in which the system of interest is in thermal equilibrium, i. e. for 

which physical averages do not change with time 
•  those in which the system is not in equilibrium, or it is under the 

influence of an external perturbation 

For the first case, the physical system is initially “prepared” into a given state, 
and then allowed to “relax” toward equilibrium. The experimenter has to: 

• determine when equilibrium has been reached 
• perform measurements to determine the values of the sought physical 

averages for the system in equilibrium 
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Computation of Physical Averages


Analogy with experiment, continued 

If the experiment could be carried on for an infinitely long time, the 
experimenter could collect an infinite number of measurements of the desired 
physical quantity for the system in equilibrium, and determine its expectation 
value, an error-free average.  

Naturally, instead, the experiment can only last a finite time, and so one can 
only attempt to estimate the given expectation value by computing an average 
over a finite number of measurements, determining the statistical error. 

A fundamental assumption underlying this procedure is ergodicity, according to 
which a system, given enough time, will explore all its accessible states.* 

This is equivalent to taking instantaneous measurements on a very large 
number of independent systems in equilibrium. 

* See, for example, F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill 
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Computation of Physical Averages


Simulations of systems in equilibrium typically start from a given configuration 
of the system. For example: 

•  if one is considering a classical liquid one may put N particles at random 
positions inside a container, with initial velocities specified according to 
the selected value of the temperature 

•  if one is interested in the solid phase of a given element or material, it is 
usually a safe choice to start with particles at well-defined lattice 
positions 

•  in a quantum simulation, it is impossible to assign both positions and 
velocities, so one simply assigns the positions 
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An Example Result


Here’s a typical simulation result: 
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Computation of Physical Averages


If the simulation could last for an arbitrarily long time, <A> could approach 
arbitrarily the expectation value of A, which is what, ideally, we would like to 
determine, and the initial transient would be rendered immaterial, as it would 
represent a vanishingly small fraction of the simulation time. 

But because in practice the simulation cannot take an arbitrarily long time, <A> 
can only be estimated, by averaging over a finite period of time, and the 
problem arises of assessing the reliability of the estimated value of <A> 

Unfortunately, often the initial transient represents a significant fraction of the 
total simulation time; thus, how does one go about eliminating, or rendering as 
small as possible the effect of the transient on the final estimate of <A>? 

Error bars prove crucial to overcome both problems 
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Error Bars


Error bars determine a range, centered around the estimated <A>, within 
which the “true” <A> is expected to lie with a specified probability. 

Many simulation results are not meaningful without an associated error bar 

Once a robust procedure is defined to calculate error bars reliably, then one can 
empirically attempt to establish how many initial data points should be discarded, 
in other words how long the transient is.  

Typically, one wants to make sure that as little data as possible from the transient 
region is included in the average, but at the same time one does not want to throw 
away too much data.  

What is usually done is to calculate the average < A > by discarding an increasing 
number of initial data points until the average does not change, within error bars. 

Occasionally, one may fail to reach such a limit: in this case, the simulation should 
be carried on for a longer time, as the transient extends through most of it.  
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Review: Error Bars


Averages are computed as: 

€ 

< A >=
1
n

Ai
i=1

n

∑

Statistical error is then:  

€ 

(σ )2 ≈ (δA)2 1±
2

(n −1)

 

 
 

 

 
 

€ 

(δA)2 =
(Ai− < A >)
i

∑
2

n(n −1)
where: 

Actually, this is only true when two criteria are met: (1) the data is drawn from 
a gaussian probability distribution, and (2) the data are uncorrelated  
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Reblocking Transformation


Blocking or “binning” method is simplest way to eliminate data correlation. 

In this method, the data set is transformed, for example into one that is 1/2 the 
size: 

The statistical error is then recomputed, and the reblocking is repeated. 

  

€ 

σ 2 ≥ (δA(n / 2))2 ≥ (δA(n / 2−1))2 ≥ ≥ (δA'' )2 ≥ (δA' )2 ≥ (δA)2

One can derive the following result (*):  

  

€ 

A1,A2,A3,…,An{ }→ A1
' ,A2

' ,A3
' ,…,An / 2

'{ }

* see, for example, H. Flyvbjerg and H. G. Petersen, J. Chem. Phys. 91, 461 
(1989).  
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Reblocking Transformations


An example of the blocking method applied to a data set of 137,072 elements 
from a Monte Carlo simulation. 




